mirror of
https://github.com/google/brotli.git
synced 2024-11-25 13:00:06 +00:00
501cb86172
While there, add -Wmissing-prototypes and -Wmissing-declarations to shared.mk in order to catch similar errors in the future. Signed-off-by: Piotr Sikora <piotrsikora@google.com>
702 lines
28 KiB
C++
702 lines
28 KiB
C++
/* Copyright 2015 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
// Function for fast encoding of an input fragment, independently from the input
|
|
// history. This function uses one-pass processing: when we find a backward
|
|
// match, we immediately emit the corresponding command and literal codes to
|
|
// the bit stream.
|
|
//
|
|
// Adapted from the CompressFragment() function in
|
|
// https://github.com/google/snappy/blob/master/snappy.cc
|
|
|
|
#include "./compress_fragment.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
|
|
#include "./brotli_bit_stream.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
#include "./find_match_length.h"
|
|
#include "./port.h"
|
|
#include "./types.h"
|
|
#include "./write_bits.h"
|
|
|
|
namespace brotli {
|
|
|
|
// kHashMul32 multiplier has these properties:
|
|
// * The multiplier must be odd. Otherwise we may lose the highest bit.
|
|
// * No long streaks of 1s or 0s.
|
|
// * There is no effort to ensure that it is a prime, the oddity is enough
|
|
// for this use.
|
|
// * The number has been tuned heuristically against compression benchmarks.
|
|
static const uint32_t kHashMul32 = 0x1e35a7bd;
|
|
|
|
static inline uint32_t Hash(const uint8_t* p, size_t shift) {
|
|
const uint64_t h = (BROTLI_UNALIGNED_LOAD64(p) << 24) * kHashMul32;
|
|
return static_cast<uint32_t>(h >> shift);
|
|
}
|
|
|
|
static inline uint32_t HashBytesAtOffset(uint64_t v, int offset, size_t shift) {
|
|
assert(offset >= 0);
|
|
assert(offset <= 3);
|
|
const uint64_t h = ((v >> (8 * offset)) << 24) * kHashMul32;
|
|
return static_cast<uint32_t>(h >> shift);
|
|
}
|
|
|
|
static inline int IsMatch(const uint8_t* p1, const uint8_t* p2) {
|
|
return (BROTLI_UNALIGNED_LOAD32(p1) == BROTLI_UNALIGNED_LOAD32(p2) &&
|
|
p1[4] == p2[4]);
|
|
}
|
|
|
|
// Builds a literal prefix code into "depths" and "bits" based on the statistics
|
|
// of the "input" string and stores it into the bit stream.
|
|
// Note that the prefix code here is built from the pre-LZ77 input, therefore
|
|
// we can only approximate the statistics of the actual literal stream.
|
|
// Moreover, for long inputs we build a histogram from a sample of the input
|
|
// and thus have to assign a non-zero depth for each literal.
|
|
static void BuildAndStoreLiteralPrefixCode(const uint8_t* input,
|
|
const size_t input_size,
|
|
uint8_t depths[256],
|
|
uint16_t bits[256],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
uint32_t histogram[256] = { 0 };
|
|
size_t histogram_total;
|
|
if (input_size < (1 << 15)) {
|
|
for (size_t i = 0; i < input_size; ++i) {
|
|
++histogram[input[i]];
|
|
}
|
|
histogram_total = input_size;
|
|
for (size_t i = 0; i < 256; ++i) {
|
|
// We weigh the first 11 samples with weight 3 to account for the
|
|
// balancing effect of the LZ77 phase on the histogram.
|
|
const uint32_t adjust = 2 * std::min(histogram[i], 11u);
|
|
histogram[i] += adjust;
|
|
histogram_total += adjust;
|
|
}
|
|
} else {
|
|
static const size_t kSampleRate = 29;
|
|
for (size_t i = 0; i < input_size; i += kSampleRate) {
|
|
++histogram[input[i]];
|
|
}
|
|
histogram_total = (input_size + kSampleRate - 1) / kSampleRate;
|
|
for (size_t i = 0; i < 256; ++i) {
|
|
// We add 1 to each population count to avoid 0 bit depths (since this is
|
|
// only a sample and we don't know if the symbol appears or not), and we
|
|
// weigh the first 11 samples with weight 3 to account for the balancing
|
|
// effect of the LZ77 phase on the histogram (more frequent symbols are
|
|
// more likely to be in backward references instead as literals).
|
|
const uint32_t adjust = 1 + 2 * std::min(histogram[i], 11u);
|
|
histogram[i] += adjust;
|
|
histogram_total += adjust;
|
|
}
|
|
}
|
|
BuildAndStoreHuffmanTreeFast(histogram, histogram_total,
|
|
/* max_bits = */ 8,
|
|
depths, bits, storage_ix, storage);
|
|
}
|
|
|
|
// Builds a command and distance prefix code (each 64 symbols) into "depth" and
|
|
// "bits" based on "histogram" and stores it into the bit stream.
|
|
static void BuildAndStoreCommandPrefixCode(const uint32_t histogram[128],
|
|
uint8_t depth[128],
|
|
uint16_t bits[128],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
// Tree size for building a tree over 64 symbols is 2 * 64 + 1.
|
|
static const size_t kTreeSize = 129;
|
|
HuffmanTree tree[kTreeSize];
|
|
CreateHuffmanTree(histogram, 64, 15, tree, depth);
|
|
CreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
|
|
// We have to jump through a few hoopes here in order to compute
|
|
// the command bits because the symbols are in a different order than in
|
|
// the full alphabet. This looks complicated, but having the symbols
|
|
// in this order in the command bits saves a few branches in the Emit*
|
|
// functions.
|
|
uint8_t cmd_depth[64];
|
|
uint16_t cmd_bits[64];
|
|
memcpy(cmd_depth, depth, 24);
|
|
memcpy(cmd_depth + 24, depth + 40, 8);
|
|
memcpy(cmd_depth + 32, depth + 24, 8);
|
|
memcpy(cmd_depth + 40, depth + 48, 8);
|
|
memcpy(cmd_depth + 48, depth + 32, 8);
|
|
memcpy(cmd_depth + 56, depth + 56, 8);
|
|
ConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
|
|
memcpy(bits, cmd_bits, 48);
|
|
memcpy(bits + 24, cmd_bits + 32, 16);
|
|
memcpy(bits + 32, cmd_bits + 48, 16);
|
|
memcpy(bits + 40, cmd_bits + 24, 16);
|
|
memcpy(bits + 48, cmd_bits + 40, 16);
|
|
memcpy(bits + 56, cmd_bits + 56, 16);
|
|
ConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
|
|
{
|
|
// Create the bit length array for the full command alphabet.
|
|
uint8_t cmd_depth[704] = { 0 };
|
|
memcpy(cmd_depth, depth, 8);
|
|
memcpy(cmd_depth + 64, depth + 8, 8);
|
|
memcpy(cmd_depth + 128, depth + 16, 8);
|
|
memcpy(cmd_depth + 192, depth + 24, 8);
|
|
memcpy(cmd_depth + 384, depth + 32, 8);
|
|
for (size_t i = 0; i < 8; ++i) {
|
|
cmd_depth[128 + 8 * i] = depth[40 + i];
|
|
cmd_depth[256 + 8 * i] = depth[48 + i];
|
|
cmd_depth[448 + 8 * i] = depth[56 + i];
|
|
}
|
|
StoreHuffmanTree(cmd_depth, 704, tree, storage_ix, storage);
|
|
}
|
|
StoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage);
|
|
}
|
|
|
|
// REQUIRES: insertlen < 6210
|
|
inline void EmitInsertLen(size_t insertlen,
|
|
const uint8_t depth[128],
|
|
const uint16_t bits[128],
|
|
uint32_t histo[128],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (insertlen < 6) {
|
|
const size_t code = insertlen + 40;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
++histo[code];
|
|
} else if (insertlen < 130) {
|
|
insertlen -= 2;
|
|
const uint32_t nbits = Log2FloorNonZero(insertlen) - 1u;
|
|
const size_t prefix = insertlen >> nbits;
|
|
const size_t inscode = (nbits << 1) + prefix + 42;
|
|
WriteBits(depth[inscode], bits[inscode], storage_ix, storage);
|
|
WriteBits(nbits, insertlen - (prefix << nbits), storage_ix, storage);
|
|
++histo[inscode];
|
|
} else if (insertlen < 2114) {
|
|
insertlen -= 66;
|
|
const uint32_t nbits = Log2FloorNonZero(insertlen);
|
|
const size_t code = nbits + 50;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(nbits, insertlen - (1 << nbits), storage_ix, storage);
|
|
++histo[code];
|
|
} else {
|
|
WriteBits(depth[61], bits[61], storage_ix, storage);
|
|
WriteBits(12, insertlen - 2114, storage_ix, storage);
|
|
++histo[21];
|
|
}
|
|
}
|
|
|
|
inline void EmitLongInsertLen(size_t insertlen,
|
|
const uint8_t depth[128],
|
|
const uint16_t bits[128],
|
|
uint32_t histo[128],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (insertlen < 22594) {
|
|
WriteBits(depth[62], bits[62], storage_ix, storage);
|
|
WriteBits(14, insertlen - 6210, storage_ix, storage);
|
|
++histo[22];
|
|
} else {
|
|
WriteBits(depth[63], bits[63], storage_ix, storage);
|
|
WriteBits(24, insertlen - 22594, storage_ix, storage);
|
|
++histo[23];
|
|
}
|
|
}
|
|
|
|
inline void EmitCopyLen(size_t copylen,
|
|
const uint8_t depth[128],
|
|
const uint16_t bits[128],
|
|
uint32_t histo[128],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (copylen < 10) {
|
|
WriteBits(depth[copylen + 14], bits[copylen + 14], storage_ix, storage);
|
|
++histo[copylen + 14];
|
|
} else if (copylen < 134) {
|
|
copylen -= 6;
|
|
const uint32_t nbits = Log2FloorNonZero(copylen) - 1u;
|
|
const size_t prefix = copylen >> nbits;
|
|
const size_t code = (nbits << 1) + prefix + 20;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage);
|
|
++histo[code];
|
|
} else if (copylen < 2118) {
|
|
copylen -= 70;
|
|
const uint32_t nbits = Log2FloorNonZero(copylen);
|
|
const size_t code = nbits + 28;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage);
|
|
++histo[code];
|
|
} else {
|
|
WriteBits(depth[39], bits[39], storage_ix, storage);
|
|
WriteBits(24, copylen - 2118, storage_ix, storage);
|
|
++histo[47];
|
|
}
|
|
}
|
|
|
|
inline void EmitCopyLenLastDistance(size_t copylen,
|
|
const uint8_t depth[128],
|
|
const uint16_t bits[128],
|
|
uint32_t histo[128],
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (copylen < 12) {
|
|
WriteBits(depth[copylen - 4], bits[copylen - 4], storage_ix, storage);
|
|
++histo[copylen - 4];
|
|
} else if (copylen < 72) {
|
|
copylen -= 8;
|
|
const uint32_t nbits = Log2FloorNonZero(copylen) - 1;
|
|
const size_t prefix = copylen >> nbits;
|
|
const size_t code = (nbits << 1) + prefix + 4;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(nbits, copylen - (prefix << nbits), storage_ix, storage);
|
|
++histo[code];
|
|
} else if (copylen < 136) {
|
|
copylen -= 8;
|
|
const size_t code = (copylen >> 5) + 30;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(5, copylen & 31, storage_ix, storage);
|
|
WriteBits(depth[64], bits[64], storage_ix, storage);
|
|
++histo[code];
|
|
++histo[64];
|
|
} else if (copylen < 2120) {
|
|
copylen -= 72;
|
|
const uint32_t nbits = Log2FloorNonZero(copylen);
|
|
const size_t code = nbits + 28;
|
|
WriteBits(depth[code], bits[code], storage_ix, storage);
|
|
WriteBits(nbits, copylen - (1 << nbits), storage_ix, storage);
|
|
WriteBits(depth[64], bits[64], storage_ix, storage);
|
|
++histo[code];
|
|
++histo[64];
|
|
} else {
|
|
WriteBits(depth[39], bits[39], storage_ix, storage);
|
|
WriteBits(24, copylen - 2120, storage_ix, storage);
|
|
WriteBits(depth[64], bits[64], storage_ix, storage);
|
|
++histo[47];
|
|
++histo[64];
|
|
}
|
|
}
|
|
|
|
inline void EmitDistance(size_t distance,
|
|
const uint8_t depth[128],
|
|
const uint16_t bits[128],
|
|
uint32_t histo[128],
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
distance += 3;
|
|
const uint32_t nbits = Log2FloorNonZero(distance) - 1u;
|
|
const size_t prefix = (distance >> nbits) & 1;
|
|
const size_t offset = (2 + prefix) << nbits;
|
|
const size_t distcode = 2 * (nbits - 1) + prefix + 80;
|
|
WriteBits(depth[distcode], bits[distcode], storage_ix, storage);
|
|
WriteBits(nbits, distance - offset, storage_ix, storage);
|
|
++histo[distcode];
|
|
}
|
|
|
|
inline void EmitLiterals(const uint8_t* input, const size_t len,
|
|
const uint8_t depth[256], const uint16_t bits[256],
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
for (size_t j = 0; j < len; j++) {
|
|
const uint8_t lit = input[j];
|
|
WriteBits(depth[lit], bits[lit], storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
// REQUIRES: len <= 1 << 20.
|
|
static void StoreMetaBlockHeader(
|
|
size_t len, bool is_uncompressed, size_t* storage_ix, uint8_t* storage) {
|
|
// ISLAST
|
|
WriteBits(1, 0, storage_ix, storage);
|
|
if (len <= (1U << 16)) {
|
|
// MNIBBLES is 4
|
|
WriteBits(2, 0, storage_ix, storage);
|
|
WriteBits(16, len - 1, storage_ix, storage);
|
|
} else {
|
|
// MNIBBLES is 5
|
|
WriteBits(2, 1, storage_ix, storage);
|
|
WriteBits(20, len - 1, storage_ix, storage);
|
|
}
|
|
// ISUNCOMPRESSED
|
|
WriteBits(1, is_uncompressed, storage_ix, storage);
|
|
}
|
|
|
|
static void UpdateBits(size_t n_bits,
|
|
uint32_t bits,
|
|
size_t pos,
|
|
uint8_t *array) {
|
|
while (n_bits > 0) {
|
|
size_t byte_pos = pos >> 3;
|
|
size_t n_unchanged_bits = pos & 7;
|
|
size_t n_changed_bits = std::min(n_bits, 8 - n_unchanged_bits);
|
|
size_t total_bits = n_unchanged_bits + n_changed_bits;
|
|
uint32_t mask = (~((1 << total_bits) - 1)) | ((1 << n_unchanged_bits) - 1);
|
|
uint32_t unchanged_bits = array[byte_pos] & mask;
|
|
uint32_t changed_bits = bits & ((1 << n_changed_bits) - 1);
|
|
array[byte_pos] =
|
|
static_cast<uint8_t>((changed_bits << n_unchanged_bits) |
|
|
unchanged_bits);
|
|
n_bits -= n_changed_bits;
|
|
bits >>= n_changed_bits;
|
|
pos += n_changed_bits;
|
|
}
|
|
}
|
|
|
|
static void RewindBitPosition(const size_t new_storage_ix,
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
const size_t bitpos = new_storage_ix & 7;
|
|
const size_t mask = (1u << bitpos) - 1;
|
|
storage[new_storage_ix >> 3] &= static_cast<uint8_t>(mask);
|
|
*storage_ix = new_storage_ix;
|
|
}
|
|
|
|
static bool ShouldMergeBlock(const uint8_t* data, size_t len,
|
|
const uint8_t* depths) {
|
|
size_t histo[256] = { 0 };
|
|
static const size_t kSampleRate = 43;
|
|
for (size_t i = 0; i < len; i += kSampleRate) {
|
|
++histo[data[i]];
|
|
}
|
|
const size_t total = (len + kSampleRate - 1) / kSampleRate;
|
|
double r = (FastLog2(total) + 0.5) * static_cast<double>(total) + 200;
|
|
for (size_t i = 0; i < 256; ++i) {
|
|
r -= static_cast<double>(histo[i]) * (depths[i] + FastLog2(histo[i]));
|
|
}
|
|
return r >= 0.0;
|
|
}
|
|
|
|
inline bool ShouldUseUncompressedMode(const uint8_t* metablock_start,
|
|
const uint8_t* next_emit,
|
|
const size_t insertlen,
|
|
const uint8_t literal_depths[256]) {
|
|
const size_t compressed = static_cast<size_t>(next_emit - metablock_start);
|
|
if (compressed * 50 > insertlen) {
|
|
return false;
|
|
}
|
|
static const double kAcceptableLossForUncompressibleSpeedup = 0.02;
|
|
static const double kMinEntropy =
|
|
8 * (1.0 - kAcceptableLossForUncompressibleSpeedup);
|
|
uint32_t sum = 0;
|
|
for (int i = 0; i < 256; ++i) {
|
|
const uint32_t n = literal_depths[i];
|
|
sum += n << (15 - n);
|
|
}
|
|
return sum > static_cast<uint32_t>((1 << 15) * kMinEntropy);
|
|
}
|
|
|
|
static void EmitUncompressedMetaBlock(const uint8_t* begin, const uint8_t* end,
|
|
const size_t storage_ix_start,
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
const size_t len = static_cast<size_t>(end - begin);
|
|
RewindBitPosition(storage_ix_start, storage_ix, storage);
|
|
StoreMetaBlockHeader(len, 1, storage_ix, storage);
|
|
*storage_ix = (*storage_ix + 7u) & ~7u;
|
|
memcpy(&storage[*storage_ix >> 3], begin, len);
|
|
*storage_ix += len << 3;
|
|
storage[*storage_ix >> 3] = 0;
|
|
}
|
|
|
|
void BrotliCompressFragmentFast(const uint8_t* input, size_t input_size,
|
|
bool is_last,
|
|
int* table, size_t table_size,
|
|
uint8_t cmd_depth[128], uint16_t cmd_bits[128],
|
|
size_t* cmd_code_numbits, uint8_t* cmd_code,
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
if (input_size == 0) {
|
|
assert(is_last);
|
|
WriteBits(1, 1, storage_ix, storage); // islast
|
|
WriteBits(1, 1, storage_ix, storage); // isempty
|
|
*storage_ix = (*storage_ix + 7u) & ~7u;
|
|
return;
|
|
}
|
|
|
|
// "next_emit" is a pointer to the first byte that is not covered by a
|
|
// previous copy. Bytes between "next_emit" and the start of the next copy or
|
|
// the end of the input will be emitted as literal bytes.
|
|
const uint8_t* next_emit = input;
|
|
// Save the start of the first block for position and distance computations.
|
|
const uint8_t* base_ip = input;
|
|
|
|
static const size_t kFirstBlockSize = 3 << 15;
|
|
static const size_t kMergeBlockSize = 1 << 16;
|
|
|
|
const uint8_t* metablock_start = input;
|
|
size_t block_size = std::min(input_size, kFirstBlockSize);
|
|
size_t total_block_size = block_size;
|
|
// Save the bit position of the MLEN field of the meta-block header, so that
|
|
// we can update it later if we decide to extend this meta-block.
|
|
size_t mlen_storage_ix = *storage_ix + 3;
|
|
StoreMetaBlockHeader(block_size, 0, storage_ix, storage);
|
|
// No block splits, no contexts.
|
|
WriteBits(13, 0, storage_ix, storage);
|
|
|
|
uint8_t lit_depth[256] = { 0 };
|
|
uint16_t lit_bits[256] = { 0 };
|
|
BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
|
|
// Store the pre-compressed command and distance prefix codes.
|
|
for (size_t i = 0; i + 7 < *cmd_code_numbits; i += 8) {
|
|
WriteBits(8, cmd_code[i >> 3], storage_ix, storage);
|
|
}
|
|
WriteBits(*cmd_code_numbits & 7, cmd_code[*cmd_code_numbits >> 3],
|
|
storage_ix, storage);
|
|
|
|
emit_commands:
|
|
// Initialize the command and distance histograms. We will gather
|
|
// statistics of command and distance codes during the processing
|
|
// of this block and use it to update the command and distance
|
|
// prefix codes for the next block.
|
|
uint32_t cmd_histo[128] = {
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 0, 0, 0, 0,
|
|
};
|
|
|
|
// "ip" is the input pointer.
|
|
const uint8_t* ip = input;
|
|
assert(table_size);
|
|
assert(table_size <= (1u << 31));
|
|
assert((table_size & (table_size - 1)) == 0); // table must be power of two
|
|
const size_t shift = 64u - Log2FloorNonZero(table_size);
|
|
assert(table_size - 1 == static_cast<size_t>(
|
|
MAKE_UINT64_T(0xFFFFFFFF, 0xFFFFFF) >> shift));
|
|
const uint8_t* ip_end = input + block_size;
|
|
|
|
int last_distance = -1;
|
|
const size_t kInputMarginBytes = 16;
|
|
const size_t kMinMatchLen = 5;
|
|
if (PREDICT_TRUE(block_size >= kInputMarginBytes)) {
|
|
// For the last block, we need to keep a 16 bytes margin so that we can be
|
|
// sure that all distances are at most window size - 16.
|
|
// For all other blocks, we only need to keep a margin of 5 bytes so that
|
|
// we don't go over the block size with a copy.
|
|
const size_t len_limit = std::min(block_size - kMinMatchLen,
|
|
input_size - kInputMarginBytes);
|
|
const uint8_t* ip_limit = input + len_limit;
|
|
|
|
for (uint32_t next_hash = Hash(++ip, shift); ; ) {
|
|
assert(next_emit < ip);
|
|
// Step 1: Scan forward in the input looking for a 5-byte-long match.
|
|
// If we get close to exhausting the input then goto emit_remainder.
|
|
//
|
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
|
// found, start looking only at every other byte. If 32 more bytes are
|
|
// scanned, look at every third byte, etc.. When a match is found,
|
|
// immediately go back to looking at every byte. This is a small loss
|
|
// (~5% performance, ~0.1% density) for compressible data due to more
|
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
|
|
// win since the compressor quickly "realizes" the data is incompressible
|
|
// and doesn't bother looking for matches everywhere.
|
|
//
|
|
// The "skip" variable keeps track of how many bytes there are since the
|
|
// last match; dividing it by 32 (ie. right-shifting by five) gives the
|
|
// number of bytes to move ahead for each iteration.
|
|
uint32_t skip = 32;
|
|
|
|
const uint8_t* next_ip = ip;
|
|
const uint8_t* candidate;
|
|
do {
|
|
ip = next_ip;
|
|
uint32_t hash = next_hash;
|
|
assert(hash == Hash(ip, shift));
|
|
uint32_t bytes_between_hash_lookups = skip++ >> 5;
|
|
next_ip = ip + bytes_between_hash_lookups;
|
|
if (PREDICT_FALSE(next_ip > ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
next_hash = Hash(next_ip, shift);
|
|
candidate = ip - last_distance;
|
|
if (IsMatch(ip, candidate)) {
|
|
if (PREDICT_TRUE(candidate < ip)) {
|
|
table[hash] = static_cast<int>(ip - base_ip);
|
|
break;
|
|
}
|
|
}
|
|
candidate = base_ip + table[hash];
|
|
assert(candidate >= base_ip);
|
|
assert(candidate < ip);
|
|
|
|
table[hash] = static_cast<int>(ip - base_ip);
|
|
} while (PREDICT_TRUE(!IsMatch(ip, candidate)));
|
|
|
|
// Step 2: Emit the found match together with the literal bytes from
|
|
// "next_emit" to the bit stream, and then see if we can find a next macth
|
|
// immediately afterwards. Repeat until we find no match for the input
|
|
// without emitting some literal bytes.
|
|
uint64_t input_bytes;
|
|
|
|
{
|
|
// We have a 5-byte match at ip, and we need to emit bytes in
|
|
// [next_emit, ip).
|
|
const uint8_t* base = ip;
|
|
size_t matched = 5 + FindMatchLengthWithLimit(
|
|
candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5);
|
|
ip += matched;
|
|
int distance = static_cast<int>(base - candidate); /* > 0 */
|
|
size_t insert = static_cast<size_t>(base - next_emit);
|
|
assert(0 == memcmp(base, candidate, matched));
|
|
if (PREDICT_TRUE(insert < 6210)) {
|
|
EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
} else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
|
|
lit_depth)) {
|
|
EmitUncompressedMetaBlock(metablock_start, base, mlen_storage_ix - 3,
|
|
storage_ix, storage);
|
|
input_size -= static_cast<size_t>(base - input);
|
|
input = base;
|
|
next_emit = input;
|
|
goto next_block;
|
|
} else {
|
|
EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
}
|
|
EmitLiterals(next_emit, insert, lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
if (distance == last_distance) {
|
|
WriteBits(cmd_depth[64], cmd_bits[64], storage_ix, storage);
|
|
++cmd_histo[64];
|
|
} else {
|
|
EmitDistance(static_cast<size_t>(distance), cmd_depth, cmd_bits,
|
|
cmd_histo, storage_ix, storage);
|
|
last_distance = distance;
|
|
}
|
|
EmitCopyLenLastDistance(matched, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
|
|
next_emit = ip;
|
|
if (PREDICT_FALSE(ip >= ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
// We could immediately start working at ip now, but to improve
|
|
// compression we first update "table" with the hashes of some positions
|
|
// within the last copy.
|
|
input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3);
|
|
uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 3);
|
|
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 2);
|
|
prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 1);
|
|
|
|
uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
|
|
candidate = base_ip + table[cur_hash];
|
|
table[cur_hash] = static_cast<int>(ip - base_ip);
|
|
}
|
|
|
|
while (IsMatch(ip, candidate)) {
|
|
// We have a 5-byte match at ip, and no need to emit any literal bytes
|
|
// prior to ip.
|
|
const uint8_t* base = ip;
|
|
size_t matched = 5 + FindMatchLengthWithLimit(
|
|
candidate + 5, ip + 5, static_cast<size_t>(ip_end - ip) - 5);
|
|
ip += matched;
|
|
last_distance = static_cast<int>(base - candidate); /* > 0 */
|
|
assert(0 == memcmp(base, candidate, matched));
|
|
EmitCopyLen(matched, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
EmitDistance(static_cast<size_t>(last_distance), cmd_depth, cmd_bits,
|
|
cmd_histo, storage_ix, storage);
|
|
|
|
next_emit = ip;
|
|
if (PREDICT_FALSE(ip >= ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
// We could immediately start working at ip now, but to improve
|
|
// compression we first update "table" with the hashes of some positions
|
|
// within the last copy.
|
|
input_bytes = BROTLI_UNALIGNED_LOAD64(ip - 3);
|
|
uint32_t prev_hash = HashBytesAtOffset(input_bytes, 0, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 3);
|
|
prev_hash = HashBytesAtOffset(input_bytes, 1, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 2);
|
|
prev_hash = HashBytesAtOffset(input_bytes, 2, shift);
|
|
table[prev_hash] = static_cast<int>(ip - base_ip - 1);
|
|
|
|
uint32_t cur_hash = HashBytesAtOffset(input_bytes, 3, shift);
|
|
candidate = base_ip + table[cur_hash];
|
|
table[cur_hash] = static_cast<int>(ip - base_ip);
|
|
}
|
|
|
|
next_hash = Hash(++ip, shift);
|
|
}
|
|
}
|
|
|
|
emit_remainder:
|
|
assert(next_emit <= ip_end);
|
|
input += block_size;
|
|
input_size -= block_size;
|
|
block_size = std::min(input_size, kMergeBlockSize);
|
|
|
|
// Decide if we want to continue this meta-block instead of emitting the
|
|
// last insert-only command.
|
|
if (input_size > 0 &&
|
|
total_block_size + block_size <= (1 << 20) &&
|
|
ShouldMergeBlock(input, block_size, lit_depth)) {
|
|
assert(total_block_size > (1 << 16));
|
|
// Update the size of the current meta-block and continue emitting commands.
|
|
// We can do this because the current size and the new size both have 5
|
|
// nibbles.
|
|
total_block_size += block_size;
|
|
UpdateBits(20, static_cast<uint32_t>(total_block_size - 1),
|
|
mlen_storage_ix, storage);
|
|
goto emit_commands;
|
|
}
|
|
|
|
// Emit the remaining bytes as literals.
|
|
if (next_emit < ip_end) {
|
|
const size_t insert = static_cast<size_t>(ip_end - next_emit);
|
|
if (PREDICT_TRUE(insert < 6210)) {
|
|
EmitInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
EmitLiterals(next_emit, insert, lit_depth, lit_bits, storage_ix, storage);
|
|
} else if (ShouldUseUncompressedMode(metablock_start, next_emit, insert,
|
|
lit_depth)) {
|
|
EmitUncompressedMetaBlock(metablock_start, ip_end, mlen_storage_ix - 3,
|
|
storage_ix, storage);
|
|
} else {
|
|
EmitLongInsertLen(insert, cmd_depth, cmd_bits, cmd_histo,
|
|
storage_ix, storage);
|
|
EmitLiterals(next_emit, insert, lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
}
|
|
}
|
|
next_emit = ip_end;
|
|
|
|
next_block:
|
|
// If we have more data, write a new meta-block header and prefix codes and
|
|
// then continue emitting commands.
|
|
if (input_size > 0) {
|
|
metablock_start = input;
|
|
block_size = std::min(input_size, kFirstBlockSize);
|
|
total_block_size = block_size;
|
|
// Save the bit position of the MLEN field of the meta-block header, so that
|
|
// we can update it later if we decide to extend this meta-block.
|
|
mlen_storage_ix = *storage_ix + 3;
|
|
StoreMetaBlockHeader(block_size, 0, storage_ix, storage);
|
|
// No block splits, no contexts.
|
|
WriteBits(13, 0, storage_ix, storage);
|
|
memset(lit_depth, 0, sizeof(lit_depth));
|
|
memset(lit_bits, 0, sizeof(lit_bits));
|
|
BuildAndStoreLiteralPrefixCode(input, block_size, lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
|
|
storage_ix, storage);
|
|
goto emit_commands;
|
|
}
|
|
|
|
if (is_last) {
|
|
WriteBits(1, 1, storage_ix, storage); // islast
|
|
WriteBits(1, 1, storage_ix, storage); // isempty
|
|
*storage_ix = (*storage_ix + 7u) & ~7u;
|
|
} else {
|
|
// If this is not the last block, update the command and distance prefix
|
|
// codes for the next block and store the compressed forms.
|
|
cmd_code[0] = 0;
|
|
*cmd_code_numbits = 0;
|
|
BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depth, cmd_bits,
|
|
cmd_code_numbits, cmd_code);
|
|
}
|
|
}
|
|
|
|
} // namespace brotli
|