mirror of
https://github.com/google/brotli.git
synced 2024-11-14 16:01:06 +00:00
2048189048
* booleanification * integer BR scores, may improve performance if FPU is slow * condense speed-quality constants in quality.h * code massage to calm down CoverityScan * hashers refactoring * new hasher - improved speed, compression and reduced memory usage for q:5-9 w:10-16 * reduced static recources -> binary size
316 lines
11 KiB
C
316 lines
11 KiB
C
/* NOLINT(build/header_guard) */
|
|
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* template parameters: FN, CODE */
|
|
|
|
#define HistogramType FN(Histogram)
|
|
|
|
/* Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
|
|
it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue. */
|
|
BROTLI_INTERNAL void FN(BrotliCompareAndPushToQueue)(
|
|
const HistogramType* out, const uint32_t* cluster_size, uint32_t idx1,
|
|
uint32_t idx2, size_t max_num_pairs, HistogramPair* pairs,
|
|
size_t* num_pairs) CODE({
|
|
BROTLI_BOOL is_good_pair = BROTLI_FALSE;
|
|
HistogramPair p;
|
|
if (idx1 == idx2) {
|
|
return;
|
|
}
|
|
if (idx2 < idx1) {
|
|
uint32_t t = idx2;
|
|
idx2 = idx1;
|
|
idx1 = t;
|
|
}
|
|
p.idx1 = idx1;
|
|
p.idx2 = idx2;
|
|
p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
|
|
p.cost_diff -= out[idx1].bit_cost_;
|
|
p.cost_diff -= out[idx2].bit_cost_;
|
|
|
|
if (out[idx1].total_count_ == 0) {
|
|
p.cost_combo = out[idx2].bit_cost_;
|
|
is_good_pair = BROTLI_TRUE;
|
|
} else if (out[idx2].total_count_ == 0) {
|
|
p.cost_combo = out[idx1].bit_cost_;
|
|
is_good_pair = BROTLI_TRUE;
|
|
} else {
|
|
double threshold = *num_pairs == 0 ? 1e99 :
|
|
BROTLI_MAX(double, 0.0, pairs[0].cost_diff);
|
|
HistogramType combo = out[idx1];
|
|
double cost_combo;
|
|
FN(HistogramAddHistogram)(&combo, &out[idx2]);
|
|
cost_combo = FN(BrotliPopulationCost)(&combo);
|
|
if (cost_combo < threshold - p.cost_diff) {
|
|
p.cost_combo = cost_combo;
|
|
is_good_pair = BROTLI_TRUE;
|
|
}
|
|
}
|
|
if (is_good_pair) {
|
|
p.cost_diff += p.cost_combo;
|
|
if (*num_pairs > 0 && HistogramPairIsLess(&pairs[0], &p)) {
|
|
/* Replace the top of the queue if needed. */
|
|
if (*num_pairs < max_num_pairs) {
|
|
pairs[*num_pairs] = pairs[0];
|
|
++(*num_pairs);
|
|
}
|
|
pairs[0] = p;
|
|
} else if (*num_pairs < max_num_pairs) {
|
|
pairs[*num_pairs] = p;
|
|
++(*num_pairs);
|
|
}
|
|
}
|
|
})
|
|
|
|
BROTLI_INTERNAL size_t FN(BrotliHistogramCombine)(HistogramType* out,
|
|
uint32_t* cluster_size,
|
|
uint32_t* symbols,
|
|
uint32_t* clusters,
|
|
HistogramPair* pairs,
|
|
size_t num_clusters,
|
|
size_t symbols_size,
|
|
size_t max_clusters,
|
|
size_t max_num_pairs) CODE({
|
|
double cost_diff_threshold = 0.0;
|
|
size_t min_cluster_size = 1;
|
|
size_t num_pairs = 0;
|
|
|
|
{
|
|
/* We maintain a vector of histogram pairs, with the property that the pair
|
|
with the maximum bit cost reduction is the first. */
|
|
size_t idx1;
|
|
for (idx1 = 0; idx1 < num_clusters; ++idx1) {
|
|
size_t idx2;
|
|
for (idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) {
|
|
FN(BrotliCompareAndPushToQueue)(out, cluster_size, clusters[idx1],
|
|
clusters[idx2], max_num_pairs, &pairs[0], &num_pairs);
|
|
}
|
|
}
|
|
}
|
|
|
|
while (num_clusters > min_cluster_size) {
|
|
uint32_t best_idx1;
|
|
uint32_t best_idx2;
|
|
size_t i;
|
|
if (pairs[0].cost_diff >= cost_diff_threshold) {
|
|
cost_diff_threshold = 1e99;
|
|
min_cluster_size = max_clusters;
|
|
continue;
|
|
}
|
|
/* Take the best pair from the top of heap. */
|
|
best_idx1 = pairs[0].idx1;
|
|
best_idx2 = pairs[0].idx2;
|
|
FN(HistogramAddHistogram)(&out[best_idx1], &out[best_idx2]);
|
|
out[best_idx1].bit_cost_ = pairs[0].cost_combo;
|
|
cluster_size[best_idx1] += cluster_size[best_idx2];
|
|
for (i = 0; i < symbols_size; ++i) {
|
|
if (symbols[i] == best_idx2) {
|
|
symbols[i] = best_idx1;
|
|
}
|
|
}
|
|
for (i = 0; i < num_clusters; ++i) {
|
|
if (clusters[i] == best_idx2) {
|
|
memmove(&clusters[i], &clusters[i + 1],
|
|
(num_clusters - i - 1) * sizeof(clusters[0]));
|
|
break;
|
|
}
|
|
}
|
|
--num_clusters;
|
|
{
|
|
/* Remove pairs intersecting the just combined best pair. */
|
|
size_t copy_to_idx = 0;
|
|
for (i = 0; i < num_pairs; ++i) {
|
|
HistogramPair* p = &pairs[i];
|
|
if (p->idx1 == best_idx1 || p->idx2 == best_idx1 ||
|
|
p->idx1 == best_idx2 || p->idx2 == best_idx2) {
|
|
/* Remove invalid pair from the queue. */
|
|
continue;
|
|
}
|
|
if (HistogramPairIsLess(&pairs[0], p)) {
|
|
/* Replace the top of the queue if needed. */
|
|
HistogramPair front = pairs[0];
|
|
pairs[0] = *p;
|
|
pairs[copy_to_idx] = front;
|
|
} else {
|
|
pairs[copy_to_idx] = *p;
|
|
}
|
|
++copy_to_idx;
|
|
}
|
|
num_pairs = copy_to_idx;
|
|
}
|
|
|
|
/* Push new pairs formed with the combined histogram to the heap. */
|
|
for (i = 0; i < num_clusters; ++i) {
|
|
FN(BrotliCompareAndPushToQueue)(out, cluster_size, best_idx1, clusters[i],
|
|
max_num_pairs, &pairs[0], &num_pairs);
|
|
}
|
|
}
|
|
return num_clusters;
|
|
})
|
|
|
|
/* What is the bit cost of moving histogram from cur_symbol to candidate. */
|
|
BROTLI_INTERNAL double FN(BrotliHistogramBitCostDistance)(
|
|
const HistogramType* histogram, const HistogramType* candidate) CODE({
|
|
if (histogram->total_count_ == 0) {
|
|
return 0.0;
|
|
} else {
|
|
HistogramType tmp = *histogram;
|
|
FN(HistogramAddHistogram)(&tmp, candidate);
|
|
return FN(BrotliPopulationCost)(&tmp) - candidate->bit_cost_;
|
|
}
|
|
})
|
|
|
|
/* Find the best 'out' histogram for each of the 'in' histograms.
|
|
When called, clusters[0..num_clusters) contains the unique values from
|
|
symbols[0..in_size), but this property is not preserved in this function.
|
|
Note: we assume that out[]->bit_cost_ is already up-to-date. */
|
|
BROTLI_INTERNAL void FN(BrotliHistogramRemap)(const HistogramType* in,
|
|
size_t in_size, const uint32_t* clusters, size_t num_clusters,
|
|
HistogramType* out, uint32_t* symbols) CODE({
|
|
size_t i;
|
|
for (i = 0; i < in_size; ++i) {
|
|
uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1];
|
|
double best_bits =
|
|
FN(BrotliHistogramBitCostDistance)(&in[i], &out[best_out]);
|
|
size_t j;
|
|
for (j = 0; j < num_clusters; ++j) {
|
|
const double cur_bits =
|
|
FN(BrotliHistogramBitCostDistance)(&in[i], &out[clusters[j]]);
|
|
if (cur_bits < best_bits) {
|
|
best_bits = cur_bits;
|
|
best_out = clusters[j];
|
|
}
|
|
}
|
|
symbols[i] = best_out;
|
|
}
|
|
|
|
/* Recompute each out based on raw and symbols. */
|
|
for (i = 0; i < num_clusters; ++i) {
|
|
FN(HistogramClear)(&out[clusters[i]]);
|
|
}
|
|
for (i = 0; i < in_size; ++i) {
|
|
FN(HistogramAddHistogram)(&out[symbols[i]], &in[i]);
|
|
}
|
|
})
|
|
|
|
/* Reorders elements of the out[0..length) array and changes values in
|
|
symbols[0..length) array in the following way:
|
|
* when called, symbols[] contains indexes into out[], and has N unique
|
|
values (possibly N < length)
|
|
* on return, symbols'[i] = f(symbols[i]) and
|
|
out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length,
|
|
where f is a bijection between the range of symbols[] and [0..N), and
|
|
the first occurrences of values in symbols'[i] come in consecutive
|
|
increasing order.
|
|
Returns N, the number of unique values in symbols[]. */
|
|
BROTLI_INTERNAL size_t FN(BrotliHistogramReindex)(MemoryManager* m,
|
|
HistogramType* out, uint32_t* symbols, size_t length) CODE({
|
|
static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX;
|
|
uint32_t* new_index = BROTLI_ALLOC(m, uint32_t, length);
|
|
uint32_t next_index;
|
|
HistogramType* tmp;
|
|
size_t i;
|
|
if (BROTLI_IS_OOM(m)) return 0;
|
|
for (i = 0; i < length; ++i) {
|
|
new_index[i] = kInvalidIndex;
|
|
}
|
|
next_index = 0;
|
|
for (i = 0; i < length; ++i) {
|
|
if (new_index[symbols[i]] == kInvalidIndex) {
|
|
new_index[symbols[i]] = next_index;
|
|
++next_index;
|
|
}
|
|
}
|
|
/* TODO: by using idea of "cycle-sort" we can avoid allocation of
|
|
tmp and reduce the number of copying by the factor of 2. */
|
|
tmp = BROTLI_ALLOC(m, HistogramType, next_index);
|
|
if (BROTLI_IS_OOM(m)) return 0;
|
|
next_index = 0;
|
|
for (i = 0; i < length; ++i) {
|
|
if (new_index[symbols[i]] == next_index) {
|
|
tmp[next_index] = out[symbols[i]];
|
|
++next_index;
|
|
}
|
|
symbols[i] = new_index[symbols[i]];
|
|
}
|
|
BROTLI_FREE(m, new_index);
|
|
for (i = 0; i < next_index; ++i) {
|
|
out[i] = tmp[i];
|
|
}
|
|
BROTLI_FREE(m, tmp);
|
|
return next_index;
|
|
})
|
|
|
|
BROTLI_INTERNAL void FN(BrotliClusterHistograms)(
|
|
MemoryManager* m, const HistogramType* in, const size_t in_size,
|
|
size_t max_histograms, HistogramType* out, size_t* out_size,
|
|
uint32_t* histogram_symbols) CODE({
|
|
uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, in_size);
|
|
uint32_t* clusters = BROTLI_ALLOC(m, uint32_t, in_size);
|
|
size_t num_clusters = 0;
|
|
const size_t max_input_histograms = 64;
|
|
size_t pairs_capacity = max_input_histograms * max_input_histograms / 2;
|
|
/* For the first pass of clustering, we allow all pairs. */
|
|
HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity + 1);
|
|
size_t i;
|
|
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
|
|
for (i = 0; i < in_size; ++i) {
|
|
cluster_size[i] = 1;
|
|
}
|
|
|
|
for (i = 0; i < in_size; ++i) {
|
|
out[i] = in[i];
|
|
out[i].bit_cost_ = FN(BrotliPopulationCost)(&in[i]);
|
|
histogram_symbols[i] = (uint32_t)i;
|
|
}
|
|
|
|
for (i = 0; i < in_size; i += max_input_histograms) {
|
|
size_t num_to_combine =
|
|
BROTLI_MIN(size_t, in_size - i, max_input_histograms);
|
|
size_t num_new_clusters;
|
|
size_t j;
|
|
for (j = 0; j < num_to_combine; ++j) {
|
|
clusters[num_clusters + j] = (uint32_t)(i + j);
|
|
}
|
|
num_new_clusters =
|
|
FN(BrotliHistogramCombine)(out, cluster_size,
|
|
&histogram_symbols[i],
|
|
&clusters[num_clusters], pairs,
|
|
num_to_combine, num_to_combine,
|
|
max_histograms, pairs_capacity);
|
|
num_clusters += num_new_clusters;
|
|
}
|
|
|
|
{
|
|
/* For the second pass, we limit the total number of histogram pairs.
|
|
After this limit is reached, we only keep searching for the best pair. */
|
|
size_t max_num_pairs = BROTLI_MIN(size_t,
|
|
64 * num_clusters, (num_clusters / 2) * num_clusters);
|
|
BROTLI_ENSURE_CAPACITY(
|
|
m, HistogramPair, pairs, pairs_capacity, max_num_pairs + 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
|
|
/* Collapse similar histograms. */
|
|
num_clusters = FN(BrotliHistogramCombine)(out, cluster_size,
|
|
histogram_symbols, clusters,
|
|
pairs, num_clusters, in_size,
|
|
max_histograms, max_num_pairs);
|
|
}
|
|
BROTLI_FREE(m, pairs);
|
|
BROTLI_FREE(m, cluster_size);
|
|
/* Find the optimal map from original histograms to the final ones. */
|
|
FN(BrotliHistogramRemap)(in, in_size, clusters, num_clusters,
|
|
out, histogram_symbols);
|
|
BROTLI_FREE(m, clusters);
|
|
/* Convert the context map to a canonical form. */
|
|
*out_size = FN(BrotliHistogramReindex)(m, out, histogram_symbols, in_size);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
})
|
|
|
|
#undef HistogramType
|