mirror of
https://github.com/google/brotli.git
synced 2024-12-01 23:40:05 +00:00
332 lines
11 KiB
C++
332 lines
11 KiB
C++
/* Copyright 2013 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* Functions for clustering similar histograms together. */
|
|
|
|
#ifndef BROTLI_ENC_CLUSTER_H_
|
|
#define BROTLI_ENC_CLUSTER_H_
|
|
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "../common/types.h"
|
|
#include "./bit_cost.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
#include "./histogram.h"
|
|
#include "./port.h"
|
|
|
|
namespace brotli {
|
|
|
|
struct HistogramPair {
|
|
uint32_t idx1;
|
|
uint32_t idx2;
|
|
double cost_combo;
|
|
double cost_diff;
|
|
};
|
|
|
|
inline bool operator<(const HistogramPair& p1, const HistogramPair& p2) {
|
|
if (p1.cost_diff != p2.cost_diff) {
|
|
return p1.cost_diff > p2.cost_diff;
|
|
}
|
|
return (p1.idx2 - p1.idx1) > (p2.idx2 - p2.idx1);
|
|
}
|
|
|
|
// Returns entropy reduction of the context map when we combine two clusters.
|
|
inline double ClusterCostDiff(size_t size_a, size_t size_b) {
|
|
size_t size_c = size_a + size_b;
|
|
return static_cast<double>(size_a) * FastLog2(size_a) +
|
|
static_cast<double>(size_b) * FastLog2(size_b) -
|
|
static_cast<double>(size_c) * FastLog2(size_c);
|
|
}
|
|
|
|
// Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
|
|
// it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue.
|
|
template<typename HistogramType>
|
|
void CompareAndPushToQueue(const HistogramType* out,
|
|
const uint32_t* cluster_size,
|
|
uint32_t idx1, uint32_t idx2,
|
|
size_t max_num_pairs,
|
|
HistogramPair* pairs,
|
|
size_t* num_pairs) {
|
|
if (idx1 == idx2) {
|
|
return;
|
|
}
|
|
if (idx2 < idx1) {
|
|
uint32_t t = idx2;
|
|
idx2 = idx1;
|
|
idx1 = t;
|
|
}
|
|
bool store_pair = false;
|
|
HistogramPair p;
|
|
p.idx1 = idx1;
|
|
p.idx2 = idx2;
|
|
p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
|
|
p.cost_diff -= out[idx1].bit_cost_;
|
|
p.cost_diff -= out[idx2].bit_cost_;
|
|
|
|
if (out[idx1].total_count_ == 0) {
|
|
p.cost_combo = out[idx2].bit_cost_;
|
|
store_pair = true;
|
|
} else if (out[idx2].total_count_ == 0) {
|
|
p.cost_combo = out[idx1].bit_cost_;
|
|
store_pair = true;
|
|
} else {
|
|
double threshold = *num_pairs == 0 ? 1e99 :
|
|
std::max(0.0, pairs[0].cost_diff);
|
|
HistogramType combo = out[idx1];
|
|
combo.AddHistogram(out[idx2]);
|
|
double cost_combo = PopulationCost(combo);
|
|
if (cost_combo < threshold - p.cost_diff) {
|
|
p.cost_combo = cost_combo;
|
|
store_pair = true;
|
|
}
|
|
}
|
|
if (store_pair) {
|
|
p.cost_diff += p.cost_combo;
|
|
if (*num_pairs > 0 && pairs[0] < p) {
|
|
// Replace the top of the queue if needed.
|
|
if (*num_pairs < max_num_pairs) {
|
|
pairs[*num_pairs] = pairs[0];
|
|
++(*num_pairs);
|
|
}
|
|
pairs[0] = p;
|
|
} else if (*num_pairs < max_num_pairs) {
|
|
pairs[*num_pairs] = p;
|
|
++(*num_pairs);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType>
|
|
size_t HistogramCombine(HistogramType* out,
|
|
uint32_t* cluster_size,
|
|
uint32_t* symbols,
|
|
uint32_t* clusters,
|
|
HistogramPair* pairs,
|
|
size_t num_clusters,
|
|
size_t symbols_size,
|
|
size_t max_clusters,
|
|
size_t max_num_pairs) {
|
|
double cost_diff_threshold = 0.0;
|
|
size_t min_cluster_size = 1;
|
|
|
|
// We maintain a vector of histogram pairs, with the property that the pair
|
|
// with the maximum bit cost reduction is the first.
|
|
size_t num_pairs = 0;
|
|
for (size_t idx1 = 0; idx1 < num_clusters; ++idx1) {
|
|
for (size_t idx2 = idx1 + 1; idx2 < num_clusters; ++idx2) {
|
|
CompareAndPushToQueue(out, cluster_size, clusters[idx1], clusters[idx2],
|
|
max_num_pairs, &pairs[0], &num_pairs);
|
|
}
|
|
}
|
|
|
|
while (num_clusters > min_cluster_size) {
|
|
if (pairs[0].cost_diff >= cost_diff_threshold) {
|
|
cost_diff_threshold = 1e99;
|
|
min_cluster_size = max_clusters;
|
|
continue;
|
|
}
|
|
// Take the best pair from the top of heap.
|
|
uint32_t best_idx1 = pairs[0].idx1;
|
|
uint32_t best_idx2 = pairs[0].idx2;
|
|
out[best_idx1].AddHistogram(out[best_idx2]);
|
|
out[best_idx1].bit_cost_ = pairs[0].cost_combo;
|
|
cluster_size[best_idx1] += cluster_size[best_idx2];
|
|
for (size_t i = 0; i < symbols_size; ++i) {
|
|
if (symbols[i] == best_idx2) {
|
|
symbols[i] = best_idx1;
|
|
}
|
|
}
|
|
for (size_t i = 0; i < num_clusters; ++i) {
|
|
if (clusters[i] == best_idx2) {
|
|
memmove(&clusters[i], &clusters[i + 1],
|
|
(num_clusters - i - 1) * sizeof(clusters[0]));
|
|
break;
|
|
}
|
|
}
|
|
--num_clusters;
|
|
// Remove pairs intersecting the just combined best pair.
|
|
size_t copy_to_idx = 0;
|
|
for (size_t i = 0; i < num_pairs; ++i) {
|
|
HistogramPair& p = pairs[i];
|
|
if (p.idx1 == best_idx1 || p.idx2 == best_idx1 ||
|
|
p.idx1 == best_idx2 || p.idx2 == best_idx2) {
|
|
// Remove invalid pair from the queue.
|
|
continue;
|
|
}
|
|
if (pairs[0] < p) {
|
|
// Replace the top of the queue if needed.
|
|
HistogramPair front = pairs[0];
|
|
pairs[0] = p;
|
|
pairs[copy_to_idx] = front;
|
|
} else {
|
|
pairs[copy_to_idx] = p;
|
|
}
|
|
++copy_to_idx;
|
|
}
|
|
num_pairs = copy_to_idx;
|
|
|
|
// Push new pairs formed with the combined histogram to the heap.
|
|
for (size_t i = 0; i < num_clusters; ++i) {
|
|
CompareAndPushToQueue(out, cluster_size, best_idx1, clusters[i],
|
|
max_num_pairs, &pairs[0], &num_pairs);
|
|
}
|
|
}
|
|
return num_clusters;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Histogram refinement
|
|
|
|
// What is the bit cost of moving histogram from cur_symbol to candidate.
|
|
template<typename HistogramType>
|
|
double HistogramBitCostDistance(const HistogramType& histogram,
|
|
const HistogramType& candidate) {
|
|
if (histogram.total_count_ == 0) {
|
|
return 0.0;
|
|
}
|
|
HistogramType tmp = histogram;
|
|
tmp.AddHistogram(candidate);
|
|
return PopulationCost(tmp) - candidate.bit_cost_;
|
|
}
|
|
|
|
// Find the best 'out' histogram for each of the 'in' histograms.
|
|
// When called, clusters[0..num_clusters) contains the unique values from
|
|
// symbols[0..in_size), but this property is not preserved in this function.
|
|
// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
|
template<typename HistogramType>
|
|
void HistogramRemap(const HistogramType* in, size_t in_size,
|
|
const uint32_t* clusters, size_t num_clusters,
|
|
HistogramType* out, uint32_t* symbols) {
|
|
for (size_t i = 0; i < in_size; ++i) {
|
|
uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1];
|
|
double best_bits = HistogramBitCostDistance(in[i], out[best_out]);
|
|
for (size_t j = 0; j < num_clusters; ++j) {
|
|
const double cur_bits = HistogramBitCostDistance(in[i], out[clusters[j]]);
|
|
if (cur_bits < best_bits) {
|
|
best_bits = cur_bits;
|
|
best_out = clusters[j];
|
|
}
|
|
}
|
|
symbols[i] = best_out;
|
|
}
|
|
|
|
// Recompute each out based on raw and symbols.
|
|
for (size_t j = 0; j < num_clusters; ++j) {
|
|
out[clusters[j]].Clear();
|
|
}
|
|
for (size_t i = 0; i < in_size; ++i) {
|
|
out[symbols[i]].AddHistogram(in[i]);
|
|
}
|
|
}
|
|
|
|
// Reorders elements of the out[0..length) array and changes values in
|
|
// symbols[0..length) array in the following way:
|
|
// * when called, symbols[] contains indexes into out[], and has N unique
|
|
// values (possibly N < length)
|
|
// * on return, symbols'[i] = f(symbols[i]) and
|
|
// out'[symbols'[i]] = out[symbols[i]], for each 0 <= i < length,
|
|
// where f is a bijection between the range of symbols[] and [0..N), and
|
|
// the first occurrences of values in symbols'[i] come in consecutive
|
|
// increasing order.
|
|
// Returns N, the number of unique values in symbols[].
|
|
template<typename HistogramType>
|
|
size_t HistogramReindex(HistogramType* out, uint32_t* symbols, size_t length) {
|
|
static const uint32_t kInvalidIndex = std::numeric_limits<uint32_t>::max();
|
|
std::vector<uint32_t> new_index(length, kInvalidIndex);
|
|
uint32_t next_index = 0;
|
|
for (size_t i = 0; i < length; ++i) {
|
|
if (new_index[symbols[i]] == kInvalidIndex) {
|
|
new_index[symbols[i]] = next_index;
|
|
++next_index;
|
|
}
|
|
}
|
|
std::vector<HistogramType> tmp(next_index);
|
|
next_index = 0;
|
|
for (size_t i = 0; i < length; ++i) {
|
|
if (new_index[symbols[i]] == next_index) {
|
|
tmp[next_index] = out[symbols[i]];
|
|
++next_index;
|
|
}
|
|
symbols[i] = new_index[symbols[i]];
|
|
}
|
|
for (size_t i = 0; i < next_index; ++i) {
|
|
out[i] = tmp[i];
|
|
}
|
|
return next_index;
|
|
}
|
|
|
|
// Clusters similar histograms in 'in' together, the selected histograms are
|
|
// placed in 'out', and for each index in 'in', *histogram_symbols will
|
|
// indicate which of the 'out' histograms is the best approximation.
|
|
template<typename HistogramType>
|
|
void ClusterHistograms(const std::vector<HistogramType>& in,
|
|
size_t num_contexts, size_t num_blocks,
|
|
size_t max_histograms,
|
|
std::vector<HistogramType>* out,
|
|
std::vector<uint32_t>* histogram_symbols) {
|
|
const size_t in_size = num_contexts * num_blocks;
|
|
assert(in_size == in.size());
|
|
std::vector<uint32_t> cluster_size(in_size, 1);
|
|
std::vector<uint32_t> clusters(in_size);
|
|
size_t num_clusters = 0;
|
|
out->resize(in_size);
|
|
histogram_symbols->resize(in_size);
|
|
for (size_t i = 0; i < in_size; ++i) {
|
|
(*out)[i] = in[i];
|
|
(*out)[i].bit_cost_ = PopulationCost(in[i]);
|
|
(*histogram_symbols)[i] = static_cast<uint32_t>(i);
|
|
}
|
|
|
|
const size_t max_input_histograms = 64;
|
|
// For the first pass of clustering, we allow all pairs.
|
|
size_t max_num_pairs = max_input_histograms * max_input_histograms / 2;
|
|
std::vector<HistogramPair> pairs(max_num_pairs + 1);
|
|
|
|
for (size_t i = 0; i < in_size; i += max_input_histograms) {
|
|
size_t num_to_combine = std::min(in_size - i, max_input_histograms);
|
|
for (size_t j = 0; j < num_to_combine; ++j) {
|
|
clusters[num_clusters + j] = static_cast<uint32_t>(i + j);
|
|
}
|
|
size_t num_new_clusters =
|
|
HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[i],
|
|
&clusters[num_clusters], &pairs[0],
|
|
num_to_combine, num_to_combine,
|
|
max_histograms, max_num_pairs);
|
|
num_clusters += num_new_clusters;
|
|
}
|
|
|
|
// For the second pass, we limit the total number of histogram pairs.
|
|
// After this limit is reached, we only keep searching for the best pair.
|
|
max_num_pairs =
|
|
std::min(64 * num_clusters, (num_clusters / 2) * num_clusters);
|
|
pairs.resize(max_num_pairs + 1);
|
|
|
|
// Collapse similar histograms.
|
|
num_clusters = HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[0], &clusters[0],
|
|
&pairs[0], num_clusters, in_size,
|
|
max_histograms, max_num_pairs);
|
|
|
|
// Find the optimal map from original histograms to the final ones.
|
|
HistogramRemap(&in[0], in_size, &clusters[0], num_clusters,
|
|
&(*out)[0], &(*histogram_symbols)[0]);
|
|
|
|
// Convert the context map to a canonical form.
|
|
size_t num_histograms =
|
|
HistogramReindex(&(*out)[0], &(*histogram_symbols)[0], in_size);
|
|
out->resize(num_histograms);
|
|
}
|
|
|
|
} // namespace brotli
|
|
|
|
#endif /* BROTLI_ENC_CLUSTER_H_ */
|