mirror of
https://github.com/google/brotli.git
synced 2025-01-03 21:51:07 +00:00
1335 lines
48 KiB
C
1335 lines
48 KiB
C
/* Copyright 2014 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* Brotli bit stream functions to support the low level format. There are no
|
|
compression algorithms here, just the right ordering of bits to match the
|
|
specs. */
|
|
|
|
#include "./brotli_bit_stream.h"
|
|
|
|
#include <string.h> /* memcpy, memset */
|
|
|
|
#include "../common/constants.h"
|
|
#include "../common/types.h"
|
|
#include "./context.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./entropy_encode_static.h"
|
|
#include "./fast_log.h"
|
|
#include "./memory.h"
|
|
#include "./port.h"
|
|
#include "./write_bits.h"
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
|
|
|
|
/* Represents the range of values belonging to a prefix code:
|
|
[offset, offset + 2^nbits) */
|
|
typedef struct PrefixCodeRange {
|
|
uint32_t offset;
|
|
uint32_t nbits;
|
|
} PrefixCodeRange;
|
|
|
|
static const PrefixCodeRange
|
|
kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = {
|
|
{ 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3},
|
|
{41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5},
|
|
{177, 5}, { 209, 5}, { 241, 6}, { 305, 6}, { 369, 7}, { 497, 8},
|
|
{753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24}
|
|
};
|
|
|
|
static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
|
|
uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
|
|
while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
|
|
len >= kBlockLengthPrefixCode[code + 1].offset) ++code;
|
|
return code;
|
|
}
|
|
|
|
static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
|
|
uint32_t* n_extra, uint32_t* extra) {
|
|
*code = BlockLengthPrefixCode(len);
|
|
*n_extra = kBlockLengthPrefixCode[*code].nbits;
|
|
*extra = len - kBlockLengthPrefixCode[*code].offset;
|
|
}
|
|
|
|
typedef struct BlockTypeCodeCalculator {
|
|
size_t last_type;
|
|
size_t second_last_type;
|
|
} BlockTypeCodeCalculator;
|
|
|
|
static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
|
|
self->last_type = 1;
|
|
self->second_last_type = 0;
|
|
}
|
|
|
|
static BROTLI_INLINE size_t NextBlockTypeCode(
|
|
BlockTypeCodeCalculator* calculator, uint8_t type) {
|
|
size_t type_code = (type == calculator->last_type + 1) ? 1u :
|
|
(type == calculator->second_last_type) ? 0u : type + 2u;
|
|
calculator->second_last_type = calculator->last_type;
|
|
calculator->last_type = type;
|
|
return type_code;
|
|
}
|
|
|
|
/* nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
|
|
REQUIRES: length > 0
|
|
REQUIRES: length <= (1 << 24) */
|
|
static void BrotliEncodeMlen(size_t length, uint64_t* bits,
|
|
size_t* numbits, uint64_t* nibblesbits) {
|
|
size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
|
|
size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
|
|
assert(length > 0);
|
|
assert(length <= (1 << 24));
|
|
assert(lg <= 24);
|
|
*nibblesbits = mnibbles - 4;
|
|
*numbits = mnibbles * 4;
|
|
*bits = length - 1;
|
|
}
|
|
|
|
static BROTLI_INLINE void StoreCommandExtra(
|
|
const Command* cmd, size_t* storage_ix, uint8_t* storage) {
|
|
uint32_t copylen_code = CommandCopyLenCode(cmd);
|
|
uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
|
|
uint16_t copycode = GetCopyLengthCode(copylen_code);
|
|
uint32_t insnumextra = GetInsertExtra(inscode);
|
|
uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
|
|
uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
|
|
uint64_t bits = (copyextraval << insnumextra) | insextraval;
|
|
BrotliWriteBits(
|
|
insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
|
|
}
|
|
|
|
/* Data structure that stores almost everything that is needed to encode each
|
|
block switch command. */
|
|
typedef struct BlockSplitCode {
|
|
BlockTypeCodeCalculator type_code_calculator;
|
|
uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
|
|
uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
|
|
uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
|
|
uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
|
|
} BlockSplitCode;
|
|
|
|
/* Stores a number between 0 and 255. */
|
|
static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
|
|
if (n == 0) {
|
|
BrotliWriteBits(1, 0, storage_ix, storage);
|
|
} else {
|
|
size_t nbits = Log2FloorNonZero(n);
|
|
BrotliWriteBits(1, 1, storage_ix, storage);
|
|
BrotliWriteBits(3, nbits, storage_ix, storage);
|
|
BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* Stores the compressed meta-block header.
|
|
REQUIRES: length > 0
|
|
REQUIRES: length <= (1 << 24) */
|
|
static void StoreCompressedMetaBlockHeader(int is_final_block,
|
|
size_t length,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
uint64_t lenbits;
|
|
size_t nlenbits;
|
|
uint64_t nibblesbits;
|
|
|
|
/* Write ISLAST bit. */
|
|
BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
|
|
/* Write ISEMPTY bit. */
|
|
if (is_final_block) {
|
|
BrotliWriteBits(1, 0, storage_ix, storage);
|
|
}
|
|
|
|
BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
|
|
BrotliWriteBits(2, nibblesbits, storage_ix, storage);
|
|
BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
|
|
|
|
if (!is_final_block) {
|
|
/* Write ISUNCOMPRESSED bit. */
|
|
BrotliWriteBits(1, 0, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* Stores the uncompressed meta-block header.
|
|
REQUIRES: length > 0
|
|
REQUIRES: length <= (1 << 24) */
|
|
static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
uint64_t lenbits;
|
|
size_t nlenbits;
|
|
uint64_t nibblesbits;
|
|
|
|
/* Write ISLAST bit.
|
|
Uncompressed block cannot be the last one, so set to 0. */
|
|
BrotliWriteBits(1, 0, storage_ix, storage);
|
|
BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
|
|
BrotliWriteBits(2, nibblesbits, storage_ix, storage);
|
|
BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
|
|
/* Write ISUNCOMPRESSED bit. */
|
|
BrotliWriteBits(1, 1, storage_ix, storage);
|
|
}
|
|
|
|
static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
|
|
const int num_codes, const uint8_t* code_length_bitdepth,
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
|
|
1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
|
};
|
|
/* The bit lengths of the Huffman code over the code length alphabet
|
|
are compressed with the following static Huffman code:
|
|
Symbol Code
|
|
------ ----
|
|
0 00
|
|
1 1110
|
|
2 110
|
|
3 01
|
|
4 10
|
|
5 1111 */
|
|
static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
|
|
0, 7, 3, 2, 1, 15
|
|
};
|
|
static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
|
|
2, 4, 3, 2, 2, 4
|
|
};
|
|
|
|
size_t skip_some = 0; /* skips none. */
|
|
|
|
/* Throw away trailing zeros: */
|
|
size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
|
|
if (num_codes > 1) {
|
|
for (; codes_to_store > 0; --codes_to_store) {
|
|
if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
|
|
code_length_bitdepth[kStorageOrder[1]] == 0) {
|
|
skip_some = 2; /* skips two. */
|
|
if (code_length_bitdepth[kStorageOrder[2]] == 0) {
|
|
skip_some = 3; /* skips three. */
|
|
}
|
|
}
|
|
BrotliWriteBits(2, skip_some, storage_ix, storage);
|
|
{
|
|
size_t i;
|
|
for (i = skip_some; i < codes_to_store; ++i) {
|
|
size_t l = code_length_bitdepth[kStorageOrder[i]];
|
|
BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
|
|
kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void BrotliStoreHuffmanTreeToBitMask(
|
|
const size_t huffman_tree_size, const uint8_t* huffman_tree,
|
|
const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
|
|
const uint16_t* code_length_bitdepth_symbols,
|
|
size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
|
|
size_t i;
|
|
for (i = 0; i < huffman_tree_size; ++i) {
|
|
size_t ix = huffman_tree[i];
|
|
BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
|
|
storage_ix, storage);
|
|
/* Extra bits */
|
|
switch (ix) {
|
|
case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
|
|
BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
|
|
break;
|
|
case BROTLI_REPEAT_ZERO_CODE_LENGTH:
|
|
BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void StoreSimpleHuffmanTree(const uint8_t* depths,
|
|
size_t symbols[4],
|
|
size_t num_symbols,
|
|
size_t max_bits,
|
|
size_t *storage_ix, uint8_t *storage) {
|
|
/* value of 1 indicates a simple Huffman code */
|
|
BrotliWriteBits(2, 1, storage_ix, storage);
|
|
BrotliWriteBits(2, num_symbols - 1, storage_ix, storage); /* NSYM - 1 */
|
|
|
|
{
|
|
/* Sort */
|
|
size_t i;
|
|
for (i = 0; i < num_symbols; i++) {
|
|
size_t j;
|
|
for (j = i + 1; j < num_symbols; j++) {
|
|
if (depths[symbols[j]] < depths[symbols[i]]) {
|
|
BROTLI_SWAP(size_t, symbols, j, i);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (num_symbols == 2) {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
} else if (num_symbols == 3) {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
|
|
} else {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
|
|
/* tree-select */
|
|
BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* num = alphabet size
|
|
depths = symbol depths */
|
|
void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
|
|
HuffmanTree* tree,
|
|
size_t *storage_ix, uint8_t *storage) {
|
|
/* Write the Huffman tree into the brotli-representation.
|
|
The command alphabet is the largest, so this allocation will fit all
|
|
alphabets. */
|
|
uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
size_t huffman_tree_size = 0;
|
|
uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
|
|
uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
|
|
uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
|
|
size_t i;
|
|
int num_codes = 0;
|
|
size_t code = 0;
|
|
|
|
assert(num <= BROTLI_NUM_COMMAND_SYMBOLS);
|
|
|
|
BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
|
|
huffman_tree_extra_bits);
|
|
|
|
/* Calculate the statistics of the Huffman tree in brotli-representation. */
|
|
for (i = 0; i < huffman_tree_size; ++i) {
|
|
++huffman_tree_histogram[huffman_tree[i]];
|
|
}
|
|
|
|
for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
|
|
if (huffman_tree_histogram[i]) {
|
|
if (num_codes == 0) {
|
|
code = i;
|
|
num_codes = 1;
|
|
} else if (num_codes == 1) {
|
|
num_codes = 2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate another Huffman tree to use for compressing both the
|
|
earlier Huffman tree with. */
|
|
BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
|
|
5, tree, code_length_bitdepth);
|
|
BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
|
|
BROTLI_CODE_LENGTH_CODES,
|
|
code_length_bitdepth_symbols);
|
|
|
|
/* Now, we have all the data, let's start storing it */
|
|
BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
|
|
storage_ix, storage);
|
|
|
|
if (num_codes == 1) {
|
|
code_length_bitdepth[code] = 0;
|
|
}
|
|
|
|
/* Store the real huffman tree now. */
|
|
BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
|
|
huffman_tree,
|
|
huffman_tree_extra_bits,
|
|
code_length_bitdepth,
|
|
code_length_bitdepth_symbols,
|
|
storage_ix, storage);
|
|
}
|
|
|
|
/* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
|
|
bits[0:length] and stores the encoded tree to the bit stream. */
|
|
static void BuildAndStoreHuffmanTree(const uint32_t *histogram,
|
|
const size_t length,
|
|
HuffmanTree* tree,
|
|
uint8_t* depth,
|
|
uint16_t* bits,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
size_t count = 0;
|
|
size_t s4[4] = { 0 };
|
|
size_t i;
|
|
size_t max_bits = 0;
|
|
for (i = 0; i < length; i++) {
|
|
if (histogram[i]) {
|
|
if (count < 4) {
|
|
s4[count] = i;
|
|
} else if (count > 4) {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
|
|
{
|
|
size_t max_bits_counter = length - 1;
|
|
while (max_bits_counter) {
|
|
max_bits_counter >>= 1;
|
|
++max_bits;
|
|
}
|
|
}
|
|
|
|
if (count <= 1) {
|
|
BrotliWriteBits(4, 1, storage_ix, storage);
|
|
BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
|
|
depth[s4[0]] = 0;
|
|
bits[s4[0]] = 0;
|
|
return;
|
|
}
|
|
|
|
memset(depth, 0, length * sizeof(depth[0]));
|
|
BrotliCreateHuffmanTree(histogram, length, 15, tree, depth);
|
|
BrotliConvertBitDepthsToSymbols(depth, length, bits);
|
|
|
|
if (count <= 4) {
|
|
StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
|
|
} else {
|
|
BrotliStoreHuffmanTree(depth, length, tree, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE int SortHuffmanTree(const HuffmanTree* v0,
|
|
const HuffmanTree* v1) {
|
|
return (v0->total_count_ < v1->total_count_) ? 1 : 0;
|
|
}
|
|
|
|
void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m,
|
|
const uint32_t* histogram,
|
|
const size_t histogram_total,
|
|
const size_t max_bits,
|
|
uint8_t* depth, uint16_t* bits,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
size_t count = 0;
|
|
size_t symbols[4] = { 0 };
|
|
size_t length = 0;
|
|
size_t total = histogram_total;
|
|
while (total != 0) {
|
|
if (histogram[length]) {
|
|
if (count < 4) {
|
|
symbols[count] = length;
|
|
}
|
|
++count;
|
|
total -= histogram[length];
|
|
}
|
|
++length;
|
|
}
|
|
|
|
if (count <= 1) {
|
|
BrotliWriteBits(4, 1, storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
depth[symbols[0]] = 0;
|
|
bits[symbols[0]] = 0;
|
|
return;
|
|
}
|
|
|
|
memset(depth, 0, length * sizeof(depth[0]));
|
|
{
|
|
const size_t max_tree_size = 2 * length + 1;
|
|
HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size);
|
|
uint32_t count_limit;
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
for (count_limit = 1; ; count_limit *= 2) {
|
|
HuffmanTree* node = tree;
|
|
size_t l;
|
|
for (l = length; l != 0;) {
|
|
--l;
|
|
if (histogram[l]) {
|
|
if (PREDICT_TRUE(histogram[l] >= count_limit)) {
|
|
InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
|
|
} else {
|
|
InitHuffmanTree(node, count_limit, -1, (int16_t)l);
|
|
}
|
|
++node;
|
|
}
|
|
}
|
|
{
|
|
const int n = (int)(node - tree);
|
|
HuffmanTree sentinel;
|
|
int i = 0; /* Points to the next leaf node. */
|
|
int j = n + 1; /* Points to the next non-leaf node. */
|
|
int k;
|
|
|
|
SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
|
|
/* The nodes are:
|
|
[0, n): the sorted leaf nodes that we start with.
|
|
[n]: we add a sentinel here.
|
|
[n + 1, 2n): new parent nodes are added here, starting from
|
|
(n+1). These are naturally in ascending order.
|
|
[2n]: we add a sentinel at the end as well.
|
|
There will be (2n+1) elements at the end. */
|
|
InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
|
|
*node++ = sentinel;
|
|
*node++ = sentinel;
|
|
|
|
for (k = n - 1; k > 0; --k) {
|
|
int left, right;
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
left = i;
|
|
++i;
|
|
} else {
|
|
left = j;
|
|
++j;
|
|
}
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
right = i;
|
|
++i;
|
|
} else {
|
|
right = j;
|
|
++j;
|
|
}
|
|
/* The sentinel node becomes the parent node. */
|
|
node[-1].total_count_ =
|
|
tree[left].total_count_ + tree[right].total_count_;
|
|
node[-1].index_left_ = (int16_t)left;
|
|
node[-1].index_right_or_value_ = (int16_t)right;
|
|
/* Add back the last sentinel node. */
|
|
*node++ = sentinel;
|
|
}
|
|
if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
|
|
/* We need to pack the Huffman tree in 14 bits. If this was not
|
|
successful, add fake entities to the lowest values and retry. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
BROTLI_FREE(m, tree);
|
|
}
|
|
BrotliConvertBitDepthsToSymbols(depth, length, bits);
|
|
if (count <= 4) {
|
|
size_t i;
|
|
/* value of 1 indicates a simple Huffman code */
|
|
BrotliWriteBits(2, 1, storage_ix, storage);
|
|
BrotliWriteBits(2, count - 1, storage_ix, storage); /* NSYM - 1 */
|
|
|
|
/* Sort */
|
|
for (i = 0; i < count; i++) {
|
|
size_t j;
|
|
for (j = i + 1; j < count; j++) {
|
|
if (depth[symbols[j]] < depth[symbols[i]]) {
|
|
BROTLI_SWAP(size_t, symbols, j, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (count == 2) {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
} else if (count == 3) {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
|
|
} else {
|
|
BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
|
|
BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
|
|
/* tree-select */
|
|
BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
|
|
}
|
|
} else {
|
|
uint8_t previous_value = 8;
|
|
size_t i;
|
|
/* Complex Huffman Tree */
|
|
StoreStaticCodeLengthCode(storage_ix, storage);
|
|
|
|
/* Actual rle coding. */
|
|
for (i = 0; i < length;) {
|
|
const uint8_t value = depth[i];
|
|
size_t reps = 1;
|
|
size_t k;
|
|
for (k = i + 1; k < length && depth[k] == value; ++k) {
|
|
++reps;
|
|
}
|
|
i += reps;
|
|
if (value == 0) {
|
|
BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
|
|
storage_ix, storage);
|
|
} else {
|
|
if (previous_value != value) {
|
|
BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
|
|
storage_ix, storage);
|
|
--reps;
|
|
}
|
|
if (reps < 3) {
|
|
while (reps != 0) {
|
|
reps--;
|
|
BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
|
|
storage_ix, storage);
|
|
}
|
|
} else {
|
|
reps -= 3;
|
|
BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
|
|
storage_ix, storage);
|
|
}
|
|
previous_value = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
|
|
size_t i = 0;
|
|
for (; i < v_size; ++i) {
|
|
if (v[i] == value) return i;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void MoveToFront(uint8_t* v, size_t index) {
|
|
uint8_t value = v[index];
|
|
size_t i;
|
|
for (i = index; i != 0; --i) {
|
|
v[i] = v[i - 1];
|
|
}
|
|
v[0] = value;
|
|
}
|
|
|
|
static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
|
|
const size_t v_size,
|
|
uint32_t* v_out) {
|
|
size_t i;
|
|
uint8_t mtf[256];
|
|
uint32_t max_value;
|
|
if (v_size == 0) {
|
|
return;
|
|
}
|
|
max_value = v_in[0];
|
|
for (i = 1; i < v_size; ++i) {
|
|
if (v_in[i] > max_value) max_value = v_in[i];
|
|
}
|
|
assert(max_value < 256u);
|
|
for (i = 0; i <= max_value; ++i) {
|
|
mtf[i] = (uint8_t)i;
|
|
}
|
|
{
|
|
size_t mtf_size = max_value + 1;
|
|
for (i = 0; i < v_size; ++i) {
|
|
size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
|
|
assert(index < mtf_size);
|
|
v_out[i] = (uint32_t)index;
|
|
MoveToFront(mtf, index);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
|
|
the run length plus extra bits (lower 9 bits is the prefix code and the rest
|
|
are the extra bits). Non-zero values in v[] are shifted by
|
|
*max_length_prefix. Will not create prefix codes bigger than the initial
|
|
value of *max_run_length_prefix. The prefix code of run length L is simply
|
|
Log2Floor(L) and the number of extra bits is the same as the prefix code. */
|
|
static void RunLengthCodeZeros(const size_t in_size,
|
|
uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
|
|
uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
|
|
uint32_t max_reps = 0;
|
|
size_t i;
|
|
uint32_t max_prefix;
|
|
for (i = 0; i < in_size;) {
|
|
uint32_t reps = 0;
|
|
for (; i < in_size && v[i] != 0; ++i) ;
|
|
for (; i < in_size && v[i] == 0; ++i) {
|
|
++reps;
|
|
}
|
|
max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
|
|
}
|
|
max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
|
|
max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
|
|
*max_run_length_prefix = max_prefix;
|
|
*out_size = 0;
|
|
for (i = 0; i < in_size;) {
|
|
assert(*out_size <= i);
|
|
if (v[i] != 0) {
|
|
v[*out_size] = v[i] + *max_run_length_prefix;
|
|
++i;
|
|
++(*out_size);
|
|
} else {
|
|
uint32_t reps = 1;
|
|
size_t k;
|
|
for (k = i + 1; k < in_size && v[k] == 0; ++k) {
|
|
++reps;
|
|
}
|
|
i += reps;
|
|
while (reps != 0) {
|
|
if (reps < (2u << max_prefix)) {
|
|
uint32_t run_length_prefix = Log2FloorNonZero(reps);
|
|
const uint32_t extra_bits = reps - (1u << run_length_prefix);
|
|
v[*out_size] = run_length_prefix + (extra_bits << 9);
|
|
++(*out_size);
|
|
break;
|
|
} else {
|
|
const uint32_t extra_bits = (1u << max_prefix) - 1u;
|
|
v[*out_size] = max_prefix + (extra_bits << 9);
|
|
reps -= (2u << max_prefix) - 1u;
|
|
++(*out_size);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#define SYMBOL_BITS 9
|
|
|
|
static void EncodeContextMap(MemoryManager* m,
|
|
const uint32_t* context_map,
|
|
size_t context_map_size,
|
|
size_t num_clusters,
|
|
HuffmanTree* tree,
|
|
size_t* storage_ix, uint8_t* storage) {
|
|
size_t i;
|
|
uint32_t* rle_symbols;
|
|
uint32_t max_run_length_prefix = 6;
|
|
size_t num_rle_symbols = 0;
|
|
uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
|
|
uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
|
|
StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
|
|
|
|
if (num_clusters == 1) {
|
|
return;
|
|
}
|
|
|
|
rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
MoveToFrontTransform(context_map, context_map_size, rle_symbols);
|
|
RunLengthCodeZeros(context_map_size, rle_symbols,
|
|
&num_rle_symbols, &max_run_length_prefix);
|
|
memset(histogram, 0, sizeof(histogram));
|
|
for (i = 0; i < num_rle_symbols; ++i) {
|
|
++histogram[rle_symbols[i] & kSymbolMask];
|
|
}
|
|
{
|
|
int use_rle = (max_run_length_prefix > 0) ? 1 : 0;
|
|
BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
|
|
if (use_rle) {
|
|
BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
|
|
}
|
|
}
|
|
BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
|
|
tree, depths, bits, storage_ix, storage);
|
|
for (i = 0; i < num_rle_symbols; ++i) {
|
|
const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
|
|
const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
|
|
BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
|
|
if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
|
|
BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
|
|
}
|
|
}
|
|
BrotliWriteBits(1, 1, storage_ix, storage); /* use move-to-front */
|
|
BROTLI_FREE(m, rle_symbols);
|
|
}
|
|
|
|
/* Stores the block switch command with index block_ix to the bit stream. */
|
|
static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
|
|
const uint32_t block_len,
|
|
const uint8_t block_type,
|
|
int is_first_block,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
|
|
size_t lencode;
|
|
uint32_t len_nextra;
|
|
uint32_t len_extra;
|
|
if (!is_first_block) {
|
|
BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
|
|
storage_ix, storage);
|
|
}
|
|
GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
|
|
|
|
BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
|
|
storage_ix, storage);
|
|
BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
|
|
}
|
|
|
|
/* Builds a BlockSplitCode data structure from the block split given by the
|
|
vector of block types and block lengths and stores it to the bit stream. */
|
|
static void BuildAndStoreBlockSplitCode(const uint8_t* types,
|
|
const uint32_t* lengths,
|
|
const size_t num_blocks,
|
|
const size_t num_types,
|
|
HuffmanTree* tree,
|
|
BlockSplitCode* code,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
|
|
uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
|
|
size_t i;
|
|
BlockTypeCodeCalculator type_code_calculator;
|
|
memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
|
|
memset(length_histo, 0, sizeof(length_histo));
|
|
InitBlockTypeCodeCalculator(&type_code_calculator);
|
|
for (i = 0; i < num_blocks; ++i) {
|
|
size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
|
|
if (i != 0) ++type_histo[type_code];
|
|
++length_histo[BlockLengthPrefixCode(lengths[i])];
|
|
}
|
|
StoreVarLenUint8(num_types - 1, storage_ix, storage);
|
|
if (num_types > 1) { /* TODO: else? could StoreBlockSwitch occur? */
|
|
BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, tree,
|
|
&code->type_depths[0], &code->type_bits[0],
|
|
storage_ix, storage);
|
|
BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
|
|
tree, &code->length_depths[0],
|
|
&code->length_bits[0], storage_ix, storage);
|
|
StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* Stores a context map where the histogram type is always the block type. */
|
|
static void StoreTrivialContextMap(size_t num_types,
|
|
size_t context_bits,
|
|
HuffmanTree* tree,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
StoreVarLenUint8(num_types - 1, storage_ix, storage);
|
|
if (num_types > 1) {
|
|
size_t repeat_code = context_bits - 1u;
|
|
size_t repeat_bits = (1u << repeat_code) - 1u;
|
|
size_t alphabet_size = num_types + repeat_code;
|
|
uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
|
|
size_t i;
|
|
memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
|
|
/* Write RLEMAX. */
|
|
BrotliWriteBits(1, 1, storage_ix, storage);
|
|
BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
|
|
histogram[repeat_code] = (uint32_t)num_types;
|
|
histogram[0] = 1;
|
|
for (i = context_bits; i < alphabet_size; ++i) {
|
|
histogram[i] = 1;
|
|
}
|
|
BuildAndStoreHuffmanTree(histogram, alphabet_size, tree,
|
|
depths, bits, storage_ix, storage);
|
|
for (i = 0; i < num_types; ++i) {
|
|
size_t code = (i == 0 ? 0 : i + context_bits - 1);
|
|
BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
|
|
BrotliWriteBits(
|
|
depths[repeat_code], bits[repeat_code], storage_ix, storage);
|
|
BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
|
|
}
|
|
/* Write IMTF (inverse-move-to-front) bit. */
|
|
BrotliWriteBits(1, 1, storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* Manages the encoding of one block category (literal, command or distance). */
|
|
typedef struct BlockEncoder {
|
|
size_t alphabet_size_;
|
|
size_t num_block_types_;
|
|
const uint8_t* block_types_; /* Not owned. */
|
|
const uint32_t* block_lengths_; /* Not owned. */
|
|
size_t num_blocks_;
|
|
BlockSplitCode block_split_code_;
|
|
size_t block_ix_;
|
|
size_t block_len_;
|
|
size_t entropy_ix_;
|
|
uint8_t* depths_;
|
|
uint16_t* bits_;
|
|
} BlockEncoder;
|
|
|
|
static void InitBlockEncoder(BlockEncoder* self, size_t alphabet_size,
|
|
size_t num_block_types, const uint8_t* block_types,
|
|
const uint32_t* block_lengths, const size_t num_blocks) {
|
|
self->alphabet_size_ = alphabet_size;
|
|
self->num_block_types_ = num_block_types;
|
|
self->block_types_ = block_types;
|
|
self->block_lengths_ = block_lengths;
|
|
self->num_blocks_ = num_blocks;
|
|
InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
|
|
self->block_ix_ = 0;
|
|
self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
|
|
self->entropy_ix_ = 0;
|
|
self->depths_ = 0;
|
|
self->bits_ = 0;
|
|
}
|
|
|
|
static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
|
|
BROTLI_FREE(m, self->depths_);
|
|
BROTLI_FREE(m, self->bits_);
|
|
}
|
|
|
|
/* Creates entropy codes of block lengths and block types and stores them
|
|
to the bit stream. */
|
|
static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
|
|
HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
|
|
BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
|
|
self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
|
|
storage_ix, storage);
|
|
}
|
|
|
|
/* Stores the next symbol with the entropy code of the current block type.
|
|
Updates the block type and block length at block boundaries. */
|
|
static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
if (self->block_len_ == 0) {
|
|
size_t block_ix = ++self->block_ix_;
|
|
uint32_t block_len = self->block_lengths_[block_ix];
|
|
uint8_t block_type = self->block_types_[block_ix];
|
|
self->block_len_ = block_len;
|
|
self->entropy_ix_ = block_type * self->alphabet_size_;
|
|
StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
|
|
storage_ix, storage);
|
|
}
|
|
--self->block_len_;
|
|
{
|
|
size_t ix = self->entropy_ix_ + symbol;
|
|
BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* Stores the next symbol with the entropy code of the current block type and
|
|
context value.
|
|
Updates the block type and block length at block boundaries. */
|
|
static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
|
|
size_t context, const uint32_t* context_map, size_t* storage_ix,
|
|
uint8_t* storage, const size_t context_bits) {
|
|
if (self->block_len_ == 0) {
|
|
size_t block_ix = ++self->block_ix_;
|
|
uint32_t block_len = self->block_lengths_[block_ix];
|
|
uint8_t block_type = self->block_types_[block_ix];
|
|
self->block_len_ = block_len;
|
|
self->entropy_ix_ = (size_t)block_type << context_bits;
|
|
StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
|
|
storage_ix, storage);
|
|
}
|
|
--self->block_len_;
|
|
{
|
|
size_t histo_ix = context_map[self->entropy_ix_ + context];
|
|
size_t ix = histo_ix * self->alphabet_size_ + symbol;
|
|
BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
#define FN(X) X ## Literal
|
|
/* NOLINTNEXTLINE(build/include) */
|
|
#include "./block_encoder_inc.h"
|
|
#undef FN
|
|
|
|
#define FN(X) X ## Command
|
|
/* NOLINTNEXTLINE(build/include) */
|
|
#include "./block_encoder_inc.h"
|
|
#undef FN
|
|
|
|
#define FN(X) X ## Distance
|
|
/* NOLINTNEXTLINE(build/include) */
|
|
#include "./block_encoder_inc.h"
|
|
#undef FN
|
|
|
|
static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
|
|
*storage_ix = (*storage_ix + 7u) & ~7u;
|
|
storage[*storage_ix >> 3] = 0;
|
|
}
|
|
|
|
void BrotliStoreMetaBlock(MemoryManager* m,
|
|
const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t length,
|
|
size_t mask,
|
|
uint8_t prev_byte,
|
|
uint8_t prev_byte2,
|
|
int is_last,
|
|
uint32_t num_direct_distance_codes,
|
|
uint32_t distance_postfix_bits,
|
|
ContextType literal_context_mode,
|
|
const Command *commands,
|
|
size_t n_commands,
|
|
const MetaBlockSplit* mb,
|
|
size_t *storage_ix,
|
|
uint8_t *storage) {
|
|
size_t pos = start_pos;
|
|
size_t i;
|
|
size_t num_distance_codes =
|
|
BROTLI_NUM_DISTANCE_SHORT_CODES + num_direct_distance_codes +
|
|
(48u << distance_postfix_bits);
|
|
HuffmanTree* tree;
|
|
BlockEncoder literal_enc;
|
|
BlockEncoder command_enc;
|
|
BlockEncoder distance_enc;
|
|
|
|
StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
|
|
|
|
tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
InitBlockEncoder(&literal_enc, 256, mb->literal_split.num_types,
|
|
mb->literal_split.types, mb->literal_split.lengths,
|
|
mb->literal_split.num_blocks);
|
|
InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
|
|
mb->command_split.num_types, mb->command_split.types,
|
|
mb->command_split.lengths, mb->command_split.num_blocks);
|
|
InitBlockEncoder(&distance_enc, num_distance_codes,
|
|
mb->distance_split.num_types, mb->distance_split.types,
|
|
mb->distance_split.lengths, mb->distance_split.num_blocks);
|
|
|
|
BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage);
|
|
BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage);
|
|
BuildAndStoreBlockSwitchEntropyCodes(
|
|
&distance_enc, tree, storage_ix, storage);
|
|
|
|
BrotliWriteBits(2, distance_postfix_bits, storage_ix, storage);
|
|
BrotliWriteBits(4, num_direct_distance_codes >> distance_postfix_bits,
|
|
storage_ix, storage);
|
|
for (i = 0; i < mb->literal_split.num_types; ++i) {
|
|
BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
|
|
}
|
|
|
|
if (mb->literal_context_map_size == 0) {
|
|
StoreTrivialContextMap(mb->literal_histograms_size,
|
|
BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
|
|
} else {
|
|
EncodeContextMap(m,
|
|
mb->literal_context_map, mb->literal_context_map_size,
|
|
mb->literal_histograms_size, tree, storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
}
|
|
|
|
if (mb->distance_context_map_size == 0) {
|
|
StoreTrivialContextMap(mb->distance_histograms_size,
|
|
BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
|
|
} else {
|
|
EncodeContextMap(m,
|
|
mb->distance_context_map, mb->distance_context_map_size,
|
|
mb->distance_histograms_size, tree, storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
}
|
|
|
|
BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms,
|
|
mb->literal_histograms_size, tree, storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms,
|
|
mb->command_histograms_size, tree, storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms,
|
|
mb->distance_histograms_size, tree, storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BROTLI_FREE(m, tree);
|
|
|
|
for (i = 0; i < n_commands; ++i) {
|
|
const Command cmd = commands[i];
|
|
size_t cmd_code = cmd.cmd_prefix_;
|
|
StoreSymbol(&command_enc, cmd_code, storage_ix, storage);
|
|
StoreCommandExtra(&cmd, storage_ix, storage);
|
|
if (mb->literal_context_map_size == 0) {
|
|
size_t j;
|
|
for (j = cmd.insert_len_; j != 0; --j) {
|
|
StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage);
|
|
++pos;
|
|
}
|
|
} else {
|
|
size_t j;
|
|
for (j = cmd.insert_len_; j != 0; --j) {
|
|
size_t context = Context(prev_byte, prev_byte2, literal_context_mode);
|
|
uint8_t literal = input[pos & mask];
|
|
StoreSymbolWithContext(&literal_enc, literal, context,
|
|
mb->literal_context_map, storage_ix, storage,
|
|
BROTLI_LITERAL_CONTEXT_BITS);
|
|
prev_byte2 = prev_byte;
|
|
prev_byte = literal;
|
|
++pos;
|
|
}
|
|
}
|
|
pos += CommandCopyLen(&cmd);
|
|
if (CommandCopyLen(&cmd)) {
|
|
prev_byte2 = input[(pos - 2) & mask];
|
|
prev_byte = input[(pos - 1) & mask];
|
|
if (cmd.cmd_prefix_ >= 128) {
|
|
size_t dist_code = cmd.dist_prefix_;
|
|
uint32_t distnumextra = cmd.dist_extra_ >> 24;
|
|
uint64_t distextra = cmd.dist_extra_ & 0xffffff;
|
|
if (mb->distance_context_map_size == 0) {
|
|
StoreSymbol(&distance_enc, dist_code, storage_ix, storage);
|
|
} else {
|
|
size_t context = CommandDistanceContext(&cmd);
|
|
StoreSymbolWithContext(&distance_enc, dist_code, context,
|
|
mb->distance_context_map, storage_ix, storage,
|
|
BROTLI_DISTANCE_CONTEXT_BITS);
|
|
}
|
|
BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
|
|
}
|
|
}
|
|
}
|
|
CleanupBlockEncoder(m, &distance_enc);
|
|
CleanupBlockEncoder(m, &command_enc);
|
|
CleanupBlockEncoder(m, &literal_enc);
|
|
if (is_last) {
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
static void BuildHistograms(const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t mask,
|
|
const Command *commands,
|
|
size_t n_commands,
|
|
HistogramLiteral* lit_histo,
|
|
HistogramCommand* cmd_histo,
|
|
HistogramDistance* dist_histo) {
|
|
size_t pos = start_pos;
|
|
size_t i;
|
|
for (i = 0; i < n_commands; ++i) {
|
|
const Command cmd = commands[i];
|
|
size_t j;
|
|
HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
|
|
for (j = cmd.insert_len_; j != 0; --j) {
|
|
HistogramAddLiteral(lit_histo, input[pos & mask]);
|
|
++pos;
|
|
}
|
|
pos += CommandCopyLen(&cmd);
|
|
if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
|
|
HistogramAddDistance(dist_histo, cmd.dist_prefix_);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void StoreDataWithHuffmanCodes(const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t mask,
|
|
const Command *commands,
|
|
size_t n_commands,
|
|
const uint8_t* lit_depth,
|
|
const uint16_t* lit_bits,
|
|
const uint8_t* cmd_depth,
|
|
const uint16_t* cmd_bits,
|
|
const uint8_t* dist_depth,
|
|
const uint16_t* dist_bits,
|
|
size_t* storage_ix,
|
|
uint8_t* storage) {
|
|
size_t pos = start_pos;
|
|
size_t i;
|
|
for (i = 0; i < n_commands; ++i) {
|
|
const Command cmd = commands[i];
|
|
const size_t cmd_code = cmd.cmd_prefix_;
|
|
size_t j;
|
|
BrotliWriteBits(
|
|
cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
|
|
StoreCommandExtra(&cmd, storage_ix, storage);
|
|
for (j = cmd.insert_len_; j != 0; --j) {
|
|
const uint8_t literal = input[pos & mask];
|
|
BrotliWriteBits(
|
|
lit_depth[literal], lit_bits[literal], storage_ix, storage);
|
|
++pos;
|
|
}
|
|
pos += CommandCopyLen(&cmd);
|
|
if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
|
|
const size_t dist_code = cmd.dist_prefix_;
|
|
const uint32_t distnumextra = cmd.dist_extra_ >> 24;
|
|
const uint32_t distextra = cmd.dist_extra_ & 0xffffff;
|
|
BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
|
|
storage_ix, storage);
|
|
BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BrotliStoreMetaBlockTrivial(MemoryManager* m,
|
|
const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t length,
|
|
size_t mask,
|
|
int is_last,
|
|
const Command *commands,
|
|
size_t n_commands,
|
|
size_t *storage_ix,
|
|
uint8_t *storage) {
|
|
HistogramLiteral lit_histo;
|
|
HistogramCommand cmd_histo;
|
|
HistogramDistance dist_histo;
|
|
uint8_t lit_depth[256];
|
|
uint16_t lit_bits[256];
|
|
uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
uint8_t dist_depth[64];
|
|
uint16_t dist_bits[64];
|
|
HuffmanTree* tree;
|
|
|
|
StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
|
|
|
|
HistogramClearLiteral(&lit_histo);
|
|
HistogramClearCommand(&cmd_histo);
|
|
HistogramClearDistance(&dist_histo);
|
|
|
|
BuildHistograms(input, start_pos, mask, commands, n_commands,
|
|
&lit_histo, &cmd_histo, &dist_histo);
|
|
|
|
BrotliWriteBits(13, 0, storage_ix, storage);
|
|
|
|
tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BuildAndStoreHuffmanTree(lit_histo.data_, 256, tree,
|
|
lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, tree,
|
|
cmd_depth, cmd_bits,
|
|
storage_ix, storage);
|
|
BuildAndStoreHuffmanTree(dist_histo.data_, 64, tree,
|
|
dist_depth, dist_bits,
|
|
storage_ix, storage);
|
|
BROTLI_FREE(m, tree);
|
|
StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
|
|
n_commands, lit_depth, lit_bits,
|
|
cmd_depth, cmd_bits,
|
|
dist_depth, dist_bits,
|
|
storage_ix, storage);
|
|
if (is_last) {
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
void BrotliStoreMetaBlockFast(MemoryManager* m,
|
|
const uint8_t* input,
|
|
size_t start_pos,
|
|
size_t length,
|
|
size_t mask,
|
|
int is_last,
|
|
const Command *commands,
|
|
size_t n_commands,
|
|
size_t *storage_ix,
|
|
uint8_t *storage) {
|
|
StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
|
|
|
|
BrotliWriteBits(13, 0, storage_ix, storage);
|
|
|
|
if (n_commands <= 128) {
|
|
uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
|
|
size_t pos = start_pos;
|
|
size_t num_literals = 0;
|
|
size_t i;
|
|
uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
|
|
uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
|
|
for (i = 0; i < n_commands; ++i) {
|
|
const Command cmd = commands[i];
|
|
size_t j;
|
|
for (j = cmd.insert_len_; j != 0; --j) {
|
|
++histogram[input[pos & mask]];
|
|
++pos;
|
|
}
|
|
num_literals += cmd.insert_len_;
|
|
pos += CommandCopyLen(&cmd);
|
|
}
|
|
BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals,
|
|
/* max_bits = */ 8,
|
|
lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
StoreStaticCommandHuffmanTree(storage_ix, storage);
|
|
StoreStaticDistanceHuffmanTree(storage_ix, storage);
|
|
StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
|
|
n_commands, lit_depth, lit_bits,
|
|
kStaticCommandCodeDepth,
|
|
kStaticCommandCodeBits,
|
|
kStaticDistanceCodeDepth,
|
|
kStaticDistanceCodeBits,
|
|
storage_ix, storage);
|
|
} else {
|
|
HistogramLiteral lit_histo;
|
|
HistogramCommand cmd_histo;
|
|
HistogramDistance dist_histo;
|
|
uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
|
|
uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
|
|
uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
|
|
uint8_t dist_depth[64];
|
|
uint16_t dist_bits[64];
|
|
HistogramClearLiteral(&lit_histo);
|
|
HistogramClearCommand(&cmd_histo);
|
|
HistogramClearDistance(&dist_histo);
|
|
BuildHistograms(input, start_pos, mask, commands, n_commands,
|
|
&lit_histo, &cmd_histo, &dist_histo);
|
|
BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_,
|
|
lit_histo.total_count_,
|
|
/* max_bits = */ 8,
|
|
lit_depth, lit_bits,
|
|
storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_,
|
|
cmd_histo.total_count_,
|
|
/* max_bits = */ 10,
|
|
cmd_depth, cmd_bits,
|
|
storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_,
|
|
dist_histo.total_count_,
|
|
/* max_bits = */ 6,
|
|
dist_depth, dist_bits,
|
|
storage_ix, storage);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
|
|
n_commands, lit_depth, lit_bits,
|
|
cmd_depth, cmd_bits,
|
|
dist_depth, dist_bits,
|
|
storage_ix, storage);
|
|
}
|
|
|
|
if (is_last) {
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
/* This is for storing uncompressed blocks (simple raw storage of
|
|
bytes-as-bytes). */
|
|
void BrotliStoreUncompressedMetaBlock(int is_final_block,
|
|
const uint8_t * BROTLI_RESTRICT input,
|
|
size_t position, size_t mask,
|
|
size_t len,
|
|
size_t * BROTLI_RESTRICT storage_ix,
|
|
uint8_t * BROTLI_RESTRICT storage) {
|
|
size_t masked_pos = position & mask;
|
|
BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
|
|
if (masked_pos + len > mask + 1) {
|
|
size_t len1 = mask + 1 - masked_pos;
|
|
memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
|
|
*storage_ix += len1 << 3;
|
|
len -= len1;
|
|
masked_pos = 0;
|
|
}
|
|
memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
|
|
*storage_ix += len << 3;
|
|
|
|
/* We need to clear the next 4 bytes to continue to be
|
|
compatible with BrotliWriteBits. */
|
|
BrotliWriteBitsPrepareStorage(*storage_ix, storage);
|
|
|
|
/* Since the uncompressed block itself may not be the final block, add an
|
|
empty one after this. */
|
|
if (is_final_block) {
|
|
BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
|
|
BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
}
|
|
}
|
|
|
|
void BrotliStoreSyncMetaBlock(size_t* BROTLI_RESTRICT storage_ix,
|
|
uint8_t* BROTLI_RESTRICT storage) {
|
|
/* Empty metadata meta-block bit pattern:
|
|
1 bit: is_last (0)
|
|
2 bits: num nibbles (3)
|
|
1 bit: reserved (0)
|
|
2 bits: metadata length bytes (0) */
|
|
BrotliWriteBits(6, 6, storage_ix, storage);
|
|
JumpToByteBoundary(storage_ix, storage);
|
|
}
|
|
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} /* extern "C" */
|
|
#endif
|