mirror of
https://github.com/google/brotli.git
synced 2024-11-23 12:10:07 +00:00
667f70adcb
* Cluster at most 64 histograms at a time in the first round of clustering. * Use a faster histogram cost estimation function. * Don't compute the log2(total) multiple times in the block splitter.
305 lines
9.8 KiB
C++
305 lines
9.8 KiB
C++
// Copyright 2013 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Functions for clustering similar histograms together.
|
|
|
|
#ifndef BROTLI_ENC_CLUSTER_H_
|
|
#define BROTLI_ENC_CLUSTER_H_
|
|
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <algorithm>
|
|
#include <complex>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "./bit_cost.h"
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
#include "./histogram.h"
|
|
|
|
namespace brotli {
|
|
|
|
struct HistogramPair {
|
|
int idx1;
|
|
int idx2;
|
|
bool valid;
|
|
double cost_combo;
|
|
double cost_diff;
|
|
};
|
|
|
|
struct HistogramPairComparator {
|
|
bool operator()(const HistogramPair& p1, const HistogramPair& p2) const {
|
|
if (p1.cost_diff != p2.cost_diff) {
|
|
return p1.cost_diff > p2.cost_diff;
|
|
}
|
|
return abs(p1.idx1 - p1.idx2) > abs(p2.idx1 - p2.idx2);
|
|
}
|
|
};
|
|
|
|
// Returns entropy reduction of the context map when we combine two clusters.
|
|
inline double ClusterCostDiff(int size_a, int size_b) {
|
|
int size_c = size_a + size_b;
|
|
return size_a * FastLog2(size_a) + size_b * FastLog2(size_b) -
|
|
size_c * FastLog2(size_c);
|
|
}
|
|
|
|
// Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
|
|
// it is below a threshold, stores the pair (idx1, idx2) in the *pairs heap.
|
|
template<typename HistogramType>
|
|
void CompareAndPushToHeap(const HistogramType* out,
|
|
const int* cluster_size,
|
|
int idx1, int idx2,
|
|
std::vector<HistogramPair>* pairs) {
|
|
if (idx1 == idx2) {
|
|
return;
|
|
}
|
|
if (idx2 < idx1) {
|
|
int t = idx2;
|
|
idx2 = idx1;
|
|
idx1 = t;
|
|
}
|
|
bool store_pair = false;
|
|
HistogramPair p;
|
|
p.idx1 = idx1;
|
|
p.idx2 = idx2;
|
|
p.valid = true;
|
|
p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
|
|
p.cost_diff -= out[idx1].bit_cost_;
|
|
p.cost_diff -= out[idx2].bit_cost_;
|
|
|
|
if (out[idx1].total_count_ == 0) {
|
|
p.cost_combo = out[idx2].bit_cost_;
|
|
store_pair = true;
|
|
} else if (out[idx2].total_count_ == 0) {
|
|
p.cost_combo = out[idx1].bit_cost_;
|
|
store_pair = true;
|
|
} else {
|
|
double threshold = pairs->empty() ? 1e99 :
|
|
std::max(0.0, (*pairs)[0].cost_diff);
|
|
HistogramType combo = out[idx1];
|
|
combo.AddHistogram(out[idx2]);
|
|
double cost_combo = PopulationCost(combo);
|
|
if (cost_combo < threshold - p.cost_diff) {
|
|
p.cost_combo = cost_combo;
|
|
store_pair = true;
|
|
}
|
|
}
|
|
if (store_pair) {
|
|
p.cost_diff += p.cost_combo;
|
|
pairs->push_back(p);
|
|
std::push_heap(pairs->begin(), pairs->end(), HistogramPairComparator());
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType>
|
|
void HistogramCombine(HistogramType* out,
|
|
int* cluster_size,
|
|
int* symbols,
|
|
int symbols_size,
|
|
int max_clusters) {
|
|
double cost_diff_threshold = 0.0;
|
|
int min_cluster_size = 1;
|
|
std::set<int> all_symbols;
|
|
std::vector<int> clusters;
|
|
for (int i = 0; i < symbols_size; ++i) {
|
|
if (all_symbols.find(symbols[i]) == all_symbols.end()) {
|
|
all_symbols.insert(symbols[i]);
|
|
clusters.push_back(symbols[i]);
|
|
}
|
|
}
|
|
|
|
// We maintain a heap of histogram pairs, ordered by the bit cost reduction.
|
|
std::vector<HistogramPair> pairs;
|
|
for (int idx1 = 0; idx1 < clusters.size(); ++idx1) {
|
|
for (int idx2 = idx1 + 1; idx2 < clusters.size(); ++idx2) {
|
|
CompareAndPushToHeap(out, cluster_size, clusters[idx1], clusters[idx2],
|
|
&pairs);
|
|
}
|
|
}
|
|
|
|
while (clusters.size() > min_cluster_size) {
|
|
if (pairs[0].cost_diff >= cost_diff_threshold) {
|
|
cost_diff_threshold = 1e99;
|
|
min_cluster_size = max_clusters;
|
|
continue;
|
|
}
|
|
// Take the best pair from the top of heap.
|
|
int best_idx1 = pairs[0].idx1;
|
|
int best_idx2 = pairs[0].idx2;
|
|
out[best_idx1].AddHistogram(out[best_idx2]);
|
|
out[best_idx1].bit_cost_ = pairs[0].cost_combo;
|
|
cluster_size[best_idx1] += cluster_size[best_idx2];
|
|
for (int i = 0; i < symbols_size; ++i) {
|
|
if (symbols[i] == best_idx2) {
|
|
symbols[i] = best_idx1;
|
|
}
|
|
}
|
|
for (int i = 0; i + 1 < clusters.size(); ++i) {
|
|
if (clusters[i] >= best_idx2) {
|
|
clusters[i] = clusters[i + 1];
|
|
}
|
|
}
|
|
clusters.pop_back();
|
|
// Invalidate pairs intersecting the just combined best pair.
|
|
for (int i = 0; i < pairs.size(); ++i) {
|
|
HistogramPair& p = pairs[i];
|
|
if (p.idx1 == best_idx1 || p.idx2 == best_idx1 ||
|
|
p.idx1 == best_idx2 || p.idx2 == best_idx2) {
|
|
p.valid = false;
|
|
}
|
|
}
|
|
// Pop invalid pairs from the top of the heap.
|
|
while (!pairs.empty() && !pairs[0].valid) {
|
|
std::pop_heap(pairs.begin(), pairs.end(), HistogramPairComparator());
|
|
pairs.pop_back();
|
|
}
|
|
// Push new pairs formed with the combined histogram to the heap.
|
|
for (int i = 0; i < clusters.size(); ++i) {
|
|
CompareAndPushToHeap(out, cluster_size, best_idx1, clusters[i], &pairs);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Histogram refinement
|
|
|
|
// What is the bit cost of moving histogram from cur_symbol to candidate.
|
|
template<typename HistogramType>
|
|
double HistogramBitCostDistance(const HistogramType& histogram,
|
|
const HistogramType& candidate) {
|
|
if (histogram.total_count_ == 0) {
|
|
return 0.0;
|
|
}
|
|
HistogramType tmp = histogram;
|
|
tmp.AddHistogram(candidate);
|
|
return PopulationCost(tmp) - candidate.bit_cost_;
|
|
}
|
|
|
|
// Find the best 'out' histogram for each of the 'in' histograms.
|
|
// Note: we assume that out[]->bit_cost_ is already up-to-date.
|
|
template<typename HistogramType>
|
|
void HistogramRemap(const HistogramType* in, int in_size,
|
|
HistogramType* out, int* symbols) {
|
|
std::set<int> all_symbols;
|
|
for (int i = 0; i < in_size; ++i) {
|
|
all_symbols.insert(symbols[i]);
|
|
}
|
|
for (int i = 0; i < in_size; ++i) {
|
|
int best_out = i == 0 ? symbols[0] : symbols[i - 1];
|
|
double best_bits = HistogramBitCostDistance(in[i], out[best_out]);
|
|
for (std::set<int>::const_iterator k = all_symbols.begin();
|
|
k != all_symbols.end(); ++k) {
|
|
const double cur_bits = HistogramBitCostDistance(in[i], out[*k]);
|
|
if (cur_bits < best_bits) {
|
|
best_bits = cur_bits;
|
|
best_out = *k;
|
|
}
|
|
}
|
|
symbols[i] = best_out;
|
|
}
|
|
|
|
// Recompute each out based on raw and symbols.
|
|
for (std::set<int>::const_iterator k = all_symbols.begin();
|
|
k != all_symbols.end(); ++k) {
|
|
out[*k].Clear();
|
|
}
|
|
for (int i = 0; i < in_size; ++i) {
|
|
out[symbols[i]].AddHistogram(in[i]);
|
|
}
|
|
}
|
|
|
|
// Reorder histograms in *out so that the new symbols in *symbols come in
|
|
// increasing order.
|
|
template<typename HistogramType>
|
|
void HistogramReindex(std::vector<HistogramType>* out,
|
|
std::vector<int>* symbols) {
|
|
std::vector<HistogramType> tmp(*out);
|
|
std::map<int, int> new_index;
|
|
int next_index = 0;
|
|
for (int i = 0; i < symbols->size(); ++i) {
|
|
if (new_index.find((*symbols)[i]) == new_index.end()) {
|
|
new_index[(*symbols)[i]] = next_index;
|
|
(*out)[next_index] = tmp[(*symbols)[i]];
|
|
++next_index;
|
|
}
|
|
}
|
|
out->resize(next_index);
|
|
for (int i = 0; i < symbols->size(); ++i) {
|
|
(*symbols)[i] = new_index[(*symbols)[i]];
|
|
}
|
|
}
|
|
|
|
template<typename HistogramType>
|
|
void ClusterHistogramsTrivial(const std::vector<HistogramType>& in,
|
|
int num_contexts, int num_blocks,
|
|
int max_histograms,
|
|
std::vector<HistogramType>* out,
|
|
std::vector<int>* histogram_symbols) {
|
|
out->resize(num_blocks);
|
|
for (int i = 0; i < num_blocks; ++i) {
|
|
(*out)[i].Clear();
|
|
for (int j = 0; j < num_contexts; ++j) {
|
|
(*out)[i].AddHistogram(in[i * num_contexts + j]);
|
|
histogram_symbols->push_back(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clusters similar histograms in 'in' together, the selected histograms are
|
|
// placed in 'out', and for each index in 'in', *histogram_symbols will
|
|
// indicate which of the 'out' histograms is the best approximation.
|
|
template<typename HistogramType>
|
|
void ClusterHistograms(const std::vector<HistogramType>& in,
|
|
int num_contexts, int num_blocks,
|
|
int max_histograms,
|
|
std::vector<HistogramType>* out,
|
|
std::vector<int>* histogram_symbols) {
|
|
const int in_size = num_contexts * num_blocks;
|
|
std::vector<int> cluster_size(in_size, 1);
|
|
out->resize(in_size);
|
|
histogram_symbols->resize(in_size);
|
|
for (int i = 0; i < in_size; ++i) {
|
|
(*out)[i] = in[i];
|
|
(*out)[i].bit_cost_ = PopulationCost(in[i]);
|
|
(*histogram_symbols)[i] = i;
|
|
}
|
|
|
|
const int max_input_histograms = 64;
|
|
for (int i = 0; i < in_size; i += max_input_histograms) {
|
|
int num_to_combine = std::min(in_size - i, max_input_histograms);
|
|
HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[i], num_to_combine,
|
|
max_histograms);
|
|
}
|
|
|
|
// Collapse similar histograms.
|
|
HistogramCombine(&(*out)[0], &cluster_size[0],
|
|
&(*histogram_symbols)[0], in_size,
|
|
max_histograms);
|
|
|
|
// Find the optimal map from original histograms to the final ones.
|
|
HistogramRemap(&in[0], in_size, &(*out)[0], &(*histogram_symbols)[0]);
|
|
|
|
// Convert the context map to a canonical form.
|
|
HistogramReindex(out, histogram_symbols);
|
|
}
|
|
|
|
} // namespace brotli
|
|
|
|
#endif // BROTLI_ENC_CLUSTER_H_
|