mirror of
https://github.com/google/brotli.git
synced 2024-11-29 22:51:05 +00:00
65f3fc55f5
* Fix an out-of-bounds access to depth_histo in the bit cost calculation function. * Change type of distance symbol to uint16_t in block splitter, because if all postfix bits are used, there can be 520 distance symbols. * Save the distance cache between meta-blocks at the correct place. This fixes a roundtrip failure that can occur when there is an uncompressed metablock between two compressed metablocks. * Fix a bug when setting lgwin to 24 in the encoder parameters It ended up making metablocks larger than 24 bits in size. * Fix out-of-bounds memory accesses in parallel encoder. CreateBackwardReferences can read up to 4 bytes past end of input if the end of input is before mask. * Add missing header for memcpy() in port.h
138 lines
3.9 KiB
C++
138 lines
3.9 KiB
C++
// Copyright 2013 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Functions to estimate the bit cost of Huffman trees.
|
|
|
|
#ifndef BROTLI_ENC_BIT_COST_H_
|
|
#define BROTLI_ENC_BIT_COST_H_
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "./entropy_encode.h"
|
|
#include "./fast_log.h"
|
|
|
|
namespace brotli {
|
|
|
|
static inline double BitsEntropy(const int *population, int size) {
|
|
int sum = 0;
|
|
double retval = 0;
|
|
const int *population_end = population + size;
|
|
int p;
|
|
if (size & 1) {
|
|
goto odd_number_of_elements_left;
|
|
}
|
|
while (population < population_end) {
|
|
p = *population++;
|
|
sum += p;
|
|
retval -= p * FastLog2(p);
|
|
odd_number_of_elements_left:
|
|
p = *population++;
|
|
sum += p;
|
|
retval -= p * FastLog2(p);
|
|
}
|
|
if (sum) retval += sum * FastLog2(sum);
|
|
if (retval < sum) {
|
|
// At least one bit per literal is needed.
|
|
retval = sum;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
template<int kSize>
|
|
double PopulationCost(const Histogram<kSize>& histogram) {
|
|
if (histogram.total_count_ == 0) {
|
|
return 12;
|
|
}
|
|
int count = 0;
|
|
for (int i = 0; i < kSize; ++i) {
|
|
if (histogram.data_[i] > 0) {
|
|
++count;
|
|
}
|
|
}
|
|
if (count == 1) {
|
|
return 12;
|
|
}
|
|
if (count == 2) {
|
|
return 20 + histogram.total_count_;
|
|
}
|
|
double bits = 0;
|
|
uint8_t depth[kSize] = { 0 };
|
|
if (count <= 4) {
|
|
// For very low symbol count we build the Huffman tree.
|
|
CreateHuffmanTree(&histogram.data_[0], kSize, 15, depth);
|
|
for (int i = 0; i < kSize; ++i) {
|
|
bits += histogram.data_[i] * depth[i];
|
|
}
|
|
return count == 3 ? bits + 28 : bits + 37;
|
|
}
|
|
|
|
// In this loop we compute the entropy of the histogram and simultaneously
|
|
// build a simplified histogram of the code length codes where we use the
|
|
// zero repeat code 17, but we don't use the non-zero repeat code 16.
|
|
int max_depth = 1;
|
|
int depth_histo[kCodeLengthCodes] = { 0 };
|
|
const double log2total = FastLog2(histogram.total_count_);
|
|
for (int i = 0; i < kSize;) {
|
|
if (histogram.data_[i] > 0) {
|
|
// Compute -log2(P(symbol)) = -log2(count(symbol)/total_count) =
|
|
// = log2(total_count) - log2(count(symbol))
|
|
double log2p = log2total - FastLog2(histogram.data_[i]);
|
|
// Approximate the bit depth by round(-log2(P(symbol)))
|
|
int depth = static_cast<int>(log2p + 0.5);
|
|
bits += histogram.data_[i] * log2p;
|
|
if (depth > 15) {
|
|
depth = 15;
|
|
}
|
|
if (depth > max_depth) {
|
|
max_depth = depth;
|
|
}
|
|
++depth_histo[depth];
|
|
++i;
|
|
} else {
|
|
// Compute the run length of zeros and add the appropiate number of 0 and
|
|
// 17 code length codes to the code length code histogram.
|
|
int reps = 1;
|
|
for (int k = i + 1; k < kSize && histogram.data_[k] == 0; ++k) {
|
|
++reps;
|
|
}
|
|
i += reps;
|
|
if (i == kSize) {
|
|
// Don't add any cost for the last zero run, since these are encoded
|
|
// only implicitly.
|
|
break;
|
|
}
|
|
if (reps < 3) {
|
|
depth_histo[0] += reps;
|
|
} else {
|
|
reps -= 2;
|
|
while (reps > 0) {
|
|
++depth_histo[17];
|
|
// Add the 3 extra bits for the 17 code length code.
|
|
bits += 3;
|
|
reps >>= 3;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Add the estimated encoding cost of the code length code histogram.
|
|
bits += 18 + 2 * max_depth;
|
|
// Add the entropy of the code length code histogram.
|
|
bits += BitsEntropy(depth_histo, kCodeLengthCodes);
|
|
return bits;
|
|
}
|
|
|
|
} // namespace brotli
|
|
|
|
#endif // BROTLI_ENC_BIT_COST_H_
|