mirror of
https://github.com/google/brotli.git
synced 2024-11-22 19:50:06 +00:00
634 lines
22 KiB
C
634 lines
22 KiB
C
/* Copyright 2010 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* A (forgetful) hash table to the data seen by the compressor, to
|
|
help create backward references to previous data. */
|
|
|
|
#ifndef BROTLI_ENC_HASH_H_
|
|
#define BROTLI_ENC_HASH_H_
|
|
|
|
#include <string.h> /* memcmp, memset */
|
|
|
|
#include "../common/dictionary.h"
|
|
#include "../common/types.h"
|
|
#include "./dictionary_hash.h"
|
|
#include "./fast_log.h"
|
|
#include "./find_match_length.h"
|
|
#include "./memory.h"
|
|
#include "./port.h"
|
|
#include "./static_dict.h"
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define MAX_TREE_SEARCH_DEPTH 64
|
|
#define MAX_TREE_COMP_LENGTH 128
|
|
|
|
static const uint32_t kDistanceCacheIndex[] = {
|
|
0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
|
};
|
|
static const int kDistanceCacheOffset[] = {
|
|
0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3
|
|
};
|
|
|
|
static const uint32_t kCutoffTransformsCount = 10;
|
|
static const uint8_t kCutoffTransforms[] = {
|
|
0, 12, 27, 23, 42, 63, 56, 48, 59, 64
|
|
};
|
|
|
|
/* kHashMul32 multiplier has these properties:
|
|
* The multiplier must be odd. Otherwise we may lose the highest bit.
|
|
* No long streaks of 1s or 0s.
|
|
* There is no effort to ensure that it is a prime, the oddity is enough
|
|
for this use.
|
|
* The number has been tuned heuristically against compression benchmarks. */
|
|
static const uint32_t kHashMul32 = 0x1e35a7bd;
|
|
|
|
static BROTLI_INLINE uint32_t Hash14(const uint8_t* data) {
|
|
uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
|
|
/* The higher bits contain more mixture from the multiplication,
|
|
so we take our results from there. */
|
|
return h >> (32 - 14);
|
|
}
|
|
|
|
/* Usually, we always choose the longest backward reference. This function
|
|
allows for the exception of that rule.
|
|
|
|
If we choose a backward reference that is further away, it will
|
|
usually be coded with more bits. We approximate this by assuming
|
|
log2(distance). If the distance can be expressed in terms of the
|
|
last four distances, we use some heuristic constants to estimate
|
|
the bits cost. For the first up to four literals we use the bit
|
|
cost of the literals from the literal cost model, after that we
|
|
use the average bit cost of the cost model.
|
|
|
|
This function is used to sometimes discard a longer backward reference
|
|
when it is not much longer and the bit cost for encoding it is more
|
|
than the saved literals.
|
|
|
|
backward_reference_offset MUST be positive. */
|
|
static BROTLI_INLINE double BackwardReferenceScore(
|
|
size_t copy_length, size_t backward_reference_offset) {
|
|
return 5.4 * (double)copy_length -
|
|
1.20 * Log2FloorNonZero(backward_reference_offset);
|
|
}
|
|
|
|
static BROTLI_INLINE double BackwardReferenceScoreUsingLastDistance(
|
|
size_t copy_length, size_t distance_short_code) {
|
|
static const double kDistanceShortCodeBitCost[16] = {
|
|
-0.6, 0.95, 1.17, 1.27,
|
|
0.93, 0.93, 0.96, 0.96, 0.99, 0.99,
|
|
1.05, 1.05, 1.15, 1.15, 1.25, 1.25
|
|
};
|
|
return 5.4 * (double)copy_length -
|
|
kDistanceShortCodeBitCost[distance_short_code];
|
|
}
|
|
|
|
typedef struct BackwardMatch {
|
|
uint32_t distance;
|
|
uint32_t length_and_code;
|
|
} BackwardMatch;
|
|
|
|
static BROTLI_INLINE void InitBackwardMatch(BackwardMatch* self,
|
|
size_t dist, size_t len) {
|
|
self->distance = (uint32_t)dist;
|
|
self->length_and_code = (uint32_t)(len << 5);
|
|
}
|
|
|
|
static BROTLI_INLINE void InitDictionaryBackwardMatch(BackwardMatch* self,
|
|
size_t dist, size_t len, size_t len_code) {
|
|
self->distance = (uint32_t)dist;
|
|
self->length_and_code =
|
|
(uint32_t)((len << 5) | (len == len_code ? 0 : len_code));
|
|
}
|
|
|
|
static BROTLI_INLINE size_t BackwardMatchLength(const BackwardMatch* self) {
|
|
return self->length_and_code >> 5;
|
|
}
|
|
|
|
static BROTLI_INLINE size_t BackwardMatchLengthCode(const BackwardMatch* self) {
|
|
size_t code = self->length_and_code & 31;
|
|
return code ? code : BackwardMatchLength(self);
|
|
}
|
|
|
|
#define EXPAND_CAT(a, b) CAT(a, b)
|
|
#define CAT(a, b) a ## b
|
|
#define FN(X) EXPAND_CAT(X, HASHER())
|
|
|
|
#define MAX_NUM_MATCHES_H10 (64 + MAX_TREE_SEARCH_DEPTH)
|
|
|
|
#define HASHER() H10
|
|
#define HashToBinaryTree HASHER()
|
|
|
|
#define BUCKET_BITS 17
|
|
#define BUCKET_SIZE (1 << BUCKET_BITS)
|
|
|
|
static size_t FN(HashTypeLength)(void) { return 4; }
|
|
static size_t FN(StoreLookahead)(void) { return MAX_TREE_COMP_LENGTH; }
|
|
|
|
static uint32_t FN(HashBytes)(const uint8_t *data) {
|
|
uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
|
|
/* The higher bits contain more mixture from the multiplication,
|
|
so we take our results from there. */
|
|
return h >> (32 - BUCKET_BITS);
|
|
}
|
|
|
|
/* A (forgetful) hash table where each hash bucket contains a binary tree of
|
|
sequences whose first 4 bytes share the same hash code.
|
|
Each sequence is MAX_TREE_COMP_LENGTH long and is identified by its starting
|
|
position in the input data. The binary tree is sorted by the lexicographic
|
|
order of the sequences, and it is also a max-heap with respect to the
|
|
starting positions. */
|
|
typedef struct HashToBinaryTree {
|
|
/* The window size minus 1 */
|
|
size_t window_mask_;
|
|
|
|
/* Hash table that maps the 4-byte hashes of the sequence to the last
|
|
position where this hash was found, which is the root of the binary
|
|
tree of sequences that share this hash bucket. */
|
|
uint32_t buckets_[BUCKET_SIZE];
|
|
|
|
/* The union of the binary trees of each hash bucket. The root of the tree
|
|
corresponding to a hash is a sequence starting at buckets_[hash] and
|
|
the left and right children of a sequence starting at pos are
|
|
forest_[2 * pos] and forest_[2 * pos + 1]. */
|
|
uint32_t* forest_;
|
|
|
|
/* A position used to mark a non-existent sequence, i.e. a tree is empty if
|
|
its root is at invalid_pos_ and a node is a leaf if both its children
|
|
are at invalid_pos_. */
|
|
uint32_t invalid_pos_;
|
|
|
|
int is_dirty_;
|
|
} HashToBinaryTree;
|
|
|
|
static void FN(Reset)(HashToBinaryTree* self) {
|
|
self->is_dirty_ = 1;
|
|
}
|
|
|
|
static void FN(Initialize)(HashToBinaryTree* self) {
|
|
self->forest_ = NULL;
|
|
FN(Reset)(self);
|
|
}
|
|
|
|
static void FN(Cleanup)(MemoryManager* m, HashToBinaryTree* self) {
|
|
BROTLI_FREE(m, self->forest_);
|
|
}
|
|
|
|
static void FN(Init)(
|
|
MemoryManager* m, HashToBinaryTree* self, const uint8_t* data, int lgwin,
|
|
size_t position, size_t bytes, int is_last) {
|
|
if (self->is_dirty_) {
|
|
uint32_t invalid_pos;
|
|
size_t num_nodes;
|
|
uint32_t i;
|
|
BROTLI_UNUSED(data);
|
|
self->window_mask_ = (1u << lgwin) - 1u;
|
|
invalid_pos = (uint32_t)(0 - self->window_mask_);
|
|
self->invalid_pos_ = invalid_pos;
|
|
for (i = 0; i < BUCKET_SIZE; i++) {
|
|
self->buckets_[i] = invalid_pos;
|
|
}
|
|
num_nodes = (position == 0 && is_last) ? bytes : self->window_mask_ + 1;
|
|
self->forest_ = BROTLI_ALLOC(m, uint32_t, 2 * num_nodes);
|
|
self->is_dirty_ = 0;
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE size_t FN(LeftChildIndex)(HashToBinaryTree* self,
|
|
const size_t pos) {
|
|
return 2 * (pos & self->window_mask_);
|
|
}
|
|
|
|
static BROTLI_INLINE size_t FN(RightChildIndex)(HashToBinaryTree* self,
|
|
const size_t pos) {
|
|
return 2 * (pos & self->window_mask_) + 1;
|
|
}
|
|
|
|
/* Stores the hash of the next 4 bytes and in a single tree-traversal, the
|
|
hash bucket's binary tree is searched for matches and is re-rooted at the
|
|
current position.
|
|
|
|
If less than MAX_TREE_COMP_LENGTH data is available, the hash bucket of the
|
|
current position is searched for matches, but the state of the hash table
|
|
is not changed, since we can not know the final sorting order of the
|
|
current (incomplete) sequence.
|
|
|
|
This function must be called with increasing cur_ix positions. */
|
|
static BROTLI_INLINE BackwardMatch* FN(StoreAndFindMatches)(
|
|
HashToBinaryTree* self, const uint8_t* const BROTLI_RESTRICT data,
|
|
const size_t cur_ix, const size_t ring_buffer_mask, const size_t max_length,
|
|
const size_t max_backward, size_t* const BROTLI_RESTRICT best_len,
|
|
BackwardMatch* BROTLI_RESTRICT matches) {
|
|
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
|
|
const size_t max_comp_len =
|
|
BROTLI_MIN(size_t, max_length, MAX_TREE_COMP_LENGTH);
|
|
const int should_reroot_tree = (max_length >= MAX_TREE_COMP_LENGTH) ? 1 : 0;
|
|
const uint32_t key = FN(HashBytes)(&data[cur_ix_masked]);
|
|
size_t prev_ix = self->buckets_[key];
|
|
/* The forest index of the rightmost node of the left subtree of the new
|
|
root, updated as we traverse and reroot the tree of the hash bucket. */
|
|
size_t node_left = FN(LeftChildIndex)(self, cur_ix);
|
|
/* The forest index of the leftmost node of the right subtree of the new
|
|
root, updated as we traverse and reroot the tree of the hash bucket. */
|
|
size_t node_right = FN(RightChildIndex)(self, cur_ix);
|
|
/* The match length of the rightmost node of the left subtree of the new
|
|
root, updated as we traverse and reroot the tree of the hash bucket. */
|
|
size_t best_len_left = 0;
|
|
/* The match length of the leftmost node of the right subtree of the new
|
|
root, updated as we traverse and reroot the tree of the hash bucket. */
|
|
size_t best_len_right = 0;
|
|
size_t depth_remaining;
|
|
if (should_reroot_tree) {
|
|
self->buckets_[key] = (uint32_t)cur_ix;
|
|
}
|
|
for (depth_remaining = MAX_TREE_SEARCH_DEPTH; ; --depth_remaining) {
|
|
const size_t backward = cur_ix - prev_ix;
|
|
const size_t prev_ix_masked = prev_ix & ring_buffer_mask;
|
|
if (backward == 0 || backward > max_backward || depth_remaining == 0) {
|
|
if (should_reroot_tree) {
|
|
self->forest_[node_left] = self->invalid_pos_;
|
|
self->forest_[node_right] = self->invalid_pos_;
|
|
}
|
|
break;
|
|
}
|
|
{
|
|
const size_t cur_len = BROTLI_MIN(size_t, best_len_left, best_len_right);
|
|
size_t len;
|
|
assert(cur_len <= MAX_TREE_COMP_LENGTH);
|
|
len = cur_len +
|
|
FindMatchLengthWithLimit(&data[cur_ix_masked + cur_len],
|
|
&data[prev_ix_masked + cur_len],
|
|
max_length - cur_len);
|
|
assert(0 == memcmp(&data[cur_ix_masked], &data[prev_ix_masked], len));
|
|
if (matches && len > *best_len) {
|
|
*best_len = len;
|
|
InitBackwardMatch(matches++, backward, len);
|
|
}
|
|
if (len >= max_comp_len) {
|
|
if (should_reroot_tree) {
|
|
self->forest_[node_left] =
|
|
self->forest_[FN(LeftChildIndex)(self, prev_ix)];
|
|
self->forest_[node_right] =
|
|
self->forest_[FN(RightChildIndex)(self, prev_ix)];
|
|
}
|
|
break;
|
|
}
|
|
if (data[cur_ix_masked + len] > data[prev_ix_masked + len]) {
|
|
best_len_left = len;
|
|
if (should_reroot_tree) {
|
|
self->forest_[node_left] = (uint32_t)prev_ix;
|
|
}
|
|
node_left = FN(RightChildIndex)(self, prev_ix);
|
|
prev_ix = self->forest_[node_left];
|
|
} else {
|
|
best_len_right = len;
|
|
if (should_reroot_tree) {
|
|
self->forest_[node_right] = (uint32_t)prev_ix;
|
|
}
|
|
node_right = FN(LeftChildIndex)(self, prev_ix);
|
|
prev_ix = self->forest_[node_right];
|
|
}
|
|
}
|
|
}
|
|
return matches;
|
|
}
|
|
|
|
/* Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the
|
|
length of max_length and stores the position cur_ix in the hash table.
|
|
|
|
Sets *num_matches to the number of matches found, and stores the found
|
|
matches in matches[0] to matches[*num_matches - 1]. The matches will be
|
|
sorted by strictly increasing length and (non-strictly) increasing
|
|
distance. */
|
|
static BROTLI_INLINE size_t FN(FindAllMatches)(HashToBinaryTree* self,
|
|
const uint8_t* data, const size_t ring_buffer_mask, const size_t cur_ix,
|
|
const size_t max_length, const size_t max_backward, const int quality,
|
|
BackwardMatch* matches) {
|
|
BackwardMatch* const orig_matches = matches;
|
|
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
|
|
size_t best_len = 1;
|
|
const size_t short_match_max_backward = quality <= 10 ? 16 : 64;
|
|
size_t stop = cur_ix - short_match_max_backward;
|
|
uint32_t dict_matches[BROTLI_MAX_STATIC_DICTIONARY_MATCH_LEN + 1];
|
|
size_t i;
|
|
if (cur_ix < short_match_max_backward) { stop = 0; }
|
|
for (i = cur_ix - 1; i > stop && best_len <= 2; --i) {
|
|
size_t prev_ix = i;
|
|
const size_t backward = cur_ix - prev_ix;
|
|
if (PREDICT_FALSE(backward > max_backward)) {
|
|
break;
|
|
}
|
|
prev_ix &= ring_buffer_mask;
|
|
if (data[cur_ix_masked] != data[prev_ix] ||
|
|
data[cur_ix_masked + 1] != data[prev_ix + 1]) {
|
|
continue;
|
|
}
|
|
{
|
|
const size_t len =
|
|
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
|
|
max_length);
|
|
if (len > best_len) {
|
|
best_len = len;
|
|
InitBackwardMatch(matches++, backward, len);
|
|
}
|
|
}
|
|
}
|
|
if (best_len < max_length) {
|
|
matches = FN(StoreAndFindMatches)(self, data, cur_ix, ring_buffer_mask,
|
|
max_length, max_backward, &best_len, matches);
|
|
}
|
|
for (i = 0; i <= BROTLI_MAX_STATIC_DICTIONARY_MATCH_LEN; ++i) {
|
|
dict_matches[i] = kInvalidMatch;
|
|
}
|
|
{
|
|
size_t minlen = BROTLI_MAX(size_t, 4, best_len + 1);
|
|
if (BrotliFindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen,
|
|
max_length, &dict_matches[0])) {
|
|
size_t maxlen = BROTLI_MIN(
|
|
size_t, BROTLI_MAX_STATIC_DICTIONARY_MATCH_LEN, max_length);
|
|
size_t l;
|
|
for (l = minlen; l <= maxlen; ++l) {
|
|
uint32_t dict_id = dict_matches[l];
|
|
if (dict_id < kInvalidMatch) {
|
|
InitDictionaryBackwardMatch(matches++,
|
|
max_backward + (dict_id >> 5) + 1, l, dict_id & 31);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (size_t)(matches - orig_matches);
|
|
}
|
|
|
|
/* Stores the hash of the next 4 bytes and re-roots the binary tree at the
|
|
current sequence, without returning any matches.
|
|
REQUIRES: ix + MAX_TREE_COMP_LENGTH <= end-of-current-block */
|
|
static BROTLI_INLINE void FN(Store)(HashToBinaryTree* self, const uint8_t *data,
|
|
const size_t mask, const size_t ix) {
|
|
/* Maximum distance is window size - 16, see section 9.1. of the spec. */
|
|
const size_t max_backward = self->window_mask_ - 15;
|
|
FN(StoreAndFindMatches)(self, data, ix, mask, MAX_TREE_COMP_LENGTH,
|
|
max_backward, NULL, NULL);
|
|
}
|
|
|
|
static BROTLI_INLINE void FN(StoreRange)(HashToBinaryTree* self,
|
|
const uint8_t *data, const size_t mask, const size_t ix_start,
|
|
const size_t ix_end) {
|
|
size_t i = ix_start + 63 <= ix_end ? ix_end - 63 : ix_start;
|
|
for (; i < ix_end; ++i) {
|
|
FN(Store)(self, data, mask, i);
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE void FN(StitchToPreviousBlock)(HashToBinaryTree* self,
|
|
size_t num_bytes, size_t position, const uint8_t* ringbuffer,
|
|
size_t ringbuffer_mask) {
|
|
if (num_bytes >= FN(HashTypeLength)() - 1 &&
|
|
position >= MAX_TREE_COMP_LENGTH) {
|
|
/* Store the last `MAX_TREE_COMP_LENGTH - 1` positions in the hasher.
|
|
These could not be calculated before, since they require knowledge
|
|
of both the previous and the current block. */
|
|
const size_t i_start = position - MAX_TREE_COMP_LENGTH + 1;
|
|
const size_t i_end = BROTLI_MIN(size_t, position, i_start + num_bytes);
|
|
size_t i;
|
|
for (i = i_start; i < i_end; ++i) {
|
|
/* Maximum distance is window size - 16, see section 9.1. of the spec.
|
|
Furthermore, we have to make sure that we don't look further back
|
|
from the start of the next block than the window size, otherwise we
|
|
could access already overwritten areas of the ringbuffer. */
|
|
const size_t max_backward =
|
|
self->window_mask_ - BROTLI_MAX(size_t, 15, position - i);
|
|
/* We know that i + MAX_TREE_COMP_LENGTH <= position + num_bytes, i.e. the
|
|
end of the current block and that we have at least
|
|
MAX_TREE_COMP_LENGTH tail in the ringbuffer. */
|
|
FN(StoreAndFindMatches)(self, ringbuffer, i, ringbuffer_mask,
|
|
MAX_TREE_COMP_LENGTH, max_backward, NULL, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef BUCKET_SIZE
|
|
#undef BUCKET_BITS
|
|
|
|
#undef HASHER
|
|
|
|
/* For BUCKET_SWEEP == 1, enabling the dictionary lookup makes compression
|
|
a little faster (0.5% - 1%) and it compresses 0.15% better on small text
|
|
and html inputs. */
|
|
|
|
#define HASHER() H2
|
|
#define BUCKET_BITS 16
|
|
#define BUCKET_SWEEP 1
|
|
#define USE_DICTIONARY 1
|
|
#include "./hash_longest_match_quickly_inc.h" /* NOLINT(build/include) */
|
|
#undef BUCKET_SWEEP
|
|
#undef USE_DICTIONARY
|
|
#undef HASHER
|
|
|
|
#define HASHER() H3
|
|
#define BUCKET_SWEEP 2
|
|
#define USE_DICTIONARY 0
|
|
#include "./hash_longest_match_quickly_inc.h" /* NOLINT(build/include) */
|
|
#undef USE_DICTIONARY
|
|
#undef BUCKET_SWEEP
|
|
#undef BUCKET_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H4
|
|
#define BUCKET_BITS 17
|
|
#define BUCKET_SWEEP 4
|
|
#define USE_DICTIONARY 1
|
|
#include "./hash_longest_match_quickly_inc.h" /* NOLINT(build/include) */
|
|
#undef USE_DICTIONARY
|
|
#undef BUCKET_SWEEP
|
|
#undef BUCKET_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H5
|
|
#define BUCKET_BITS 14
|
|
#define BLOCK_BITS 4
|
|
#define NUM_LAST_DISTANCES_TO_CHECK 4
|
|
#include "./hash_longest_match_inc.h" /* NOLINT(build/include) */
|
|
#undef BLOCK_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H6
|
|
#define BLOCK_BITS 5
|
|
#include "./hash_longest_match_inc.h" /* NOLINT(build/include) */
|
|
#undef NUM_LAST_DISTANCES_TO_CHECK
|
|
#undef BLOCK_BITS
|
|
#undef BUCKET_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H7
|
|
#define BUCKET_BITS 15
|
|
#define BLOCK_BITS 6
|
|
#define NUM_LAST_DISTANCES_TO_CHECK 10
|
|
#include "./hash_longest_match_inc.h" /* NOLINT(build/include) */
|
|
#undef BLOCK_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H8
|
|
#define BLOCK_BITS 7
|
|
#include "./hash_longest_match_inc.h" /* NOLINT(build/include) */
|
|
#undef NUM_LAST_DISTANCES_TO_CHECK
|
|
#undef BLOCK_BITS
|
|
#undef HASHER
|
|
|
|
#define HASHER() H9
|
|
#define BLOCK_BITS 8
|
|
#define NUM_LAST_DISTANCES_TO_CHECK 16
|
|
#include "./hash_longest_match_inc.h" /* NOLINT(build/include) */
|
|
#undef NUM_LAST_DISTANCES_TO_CHECK
|
|
#undef BLOCK_BITS
|
|
#undef BUCKET_BITS
|
|
#undef HASHER
|
|
|
|
#undef FN
|
|
#undef CAT
|
|
#undef EXPAND_CAT
|
|
|
|
typedef struct Hashers {
|
|
H2* hash_h2;
|
|
H3* hash_h3;
|
|
H4* hash_h4;
|
|
H5* hash_h5;
|
|
H6* hash_h6;
|
|
H7* hash_h7;
|
|
H8* hash_h8;
|
|
H9* hash_h9;
|
|
H10* hash_h10;
|
|
} Hashers;
|
|
|
|
static BROTLI_INLINE void InitHashers(Hashers* self) {
|
|
self->hash_h2 = 0;
|
|
self->hash_h3 = 0;
|
|
self->hash_h4 = 0;
|
|
self->hash_h5 = 0;
|
|
self->hash_h6 = 0;
|
|
self->hash_h7 = 0;
|
|
self->hash_h8 = 0;
|
|
self->hash_h9 = 0;
|
|
self->hash_h10 = 0;
|
|
}
|
|
|
|
static BROTLI_INLINE void DestroyHashers(MemoryManager* m, Hashers* self) {
|
|
BROTLI_FREE(m, self->hash_h2);
|
|
BROTLI_FREE(m, self->hash_h3);
|
|
BROTLI_FREE(m, self->hash_h4);
|
|
BROTLI_FREE(m, self->hash_h5);
|
|
BROTLI_FREE(m, self->hash_h6);
|
|
BROTLI_FREE(m, self->hash_h7);
|
|
BROTLI_FREE(m, self->hash_h8);
|
|
BROTLI_FREE(m, self->hash_h9);
|
|
if (self->hash_h10) CleanupH10(m, self->hash_h10);
|
|
BROTLI_FREE(m, self->hash_h10);
|
|
}
|
|
|
|
static BROTLI_INLINE void HashersSetup(
|
|
MemoryManager* m, Hashers* self, int type) {
|
|
switch (type) {
|
|
case 2:
|
|
self->hash_h2 = BROTLI_ALLOC(m, H2, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH2(self->hash_h2);
|
|
break;
|
|
|
|
case 3:
|
|
self->hash_h3 = BROTLI_ALLOC(m, H3, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH3(self->hash_h3);
|
|
break;
|
|
|
|
case 4:
|
|
self->hash_h4 = BROTLI_ALLOC(m, H4, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH4(self->hash_h4);
|
|
break;
|
|
|
|
case 5:
|
|
self->hash_h5 = BROTLI_ALLOC(m, H5, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH5(self->hash_h5);
|
|
break;
|
|
|
|
case 6:
|
|
self->hash_h6 = BROTLI_ALLOC(m, H6, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH6(self->hash_h6);
|
|
break;
|
|
|
|
case 7:
|
|
self->hash_h7 = BROTLI_ALLOC(m, H7, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH7(self->hash_h7);
|
|
break;
|
|
|
|
case 8:
|
|
self->hash_h8 = BROTLI_ALLOC(m, H8, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH8(self->hash_h8);
|
|
break;
|
|
|
|
case 9:
|
|
self->hash_h9 = BROTLI_ALLOC(m, H9, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
ResetH9(self->hash_h9);
|
|
break;
|
|
|
|
case 10:
|
|
self->hash_h10 = BROTLI_ALLOC(m, H10, 1);
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
InitializeH10(self->hash_h10);
|
|
break;
|
|
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
#define _TEMPLATE(Hasher) \
|
|
static BROTLI_INLINE void WarmupHash ## Hasher(MemoryManager* m, \
|
|
const int lgwin, const size_t size, const uint8_t* dict, Hasher* hasher) { \
|
|
size_t overlap = (StoreLookahead ## Hasher()) - 1; \
|
|
size_t i; \
|
|
Init ## Hasher(m, hasher, dict, lgwin, 0, size, 0); \
|
|
if (BROTLI_IS_OOM(m)) return; \
|
|
for (i = 0; i + overlap < size; i++) { \
|
|
Store ## Hasher(hasher, dict, ~(size_t)0, i); \
|
|
} \
|
|
}
|
|
_TEMPLATE(H2) _TEMPLATE(H3) _TEMPLATE(H4) _TEMPLATE(H5) _TEMPLATE(H6)
|
|
_TEMPLATE(H7) _TEMPLATE(H8) _TEMPLATE(H9) _TEMPLATE(H10)
|
|
#undef _TEMPLATE
|
|
|
|
/* Custom LZ77 window. */
|
|
static BROTLI_INLINE void HashersPrependCustomDictionary(
|
|
MemoryManager* m, Hashers* self, int type, int lgwin, const size_t size,
|
|
const uint8_t* dict) {
|
|
switch (type) {
|
|
case 2: WarmupHashH2(m, lgwin, size, dict, self->hash_h2); break;
|
|
case 3: WarmupHashH3(m, lgwin, size, dict, self->hash_h3); break;
|
|
case 4: WarmupHashH4(m, lgwin, size, dict, self->hash_h4); break;
|
|
case 5: WarmupHashH5(m, lgwin, size, dict, self->hash_h5); break;
|
|
case 6: WarmupHashH6(m, lgwin, size, dict, self->hash_h6); break;
|
|
case 7: WarmupHashH7(m, lgwin, size, dict, self->hash_h7); break;
|
|
case 8: WarmupHashH8(m, lgwin, size, dict, self->hash_h8); break;
|
|
case 9: WarmupHashH9(m, lgwin, size, dict, self->hash_h9); break;
|
|
case 10: WarmupHashH10(m, lgwin, size, dict, self->hash_h10); break;
|
|
default: break;
|
|
}
|
|
if (BROTLI_IS_OOM(m)) return;
|
|
}
|
|
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} /* extern "C" */
|
|
#endif
|
|
|
|
#endif /* BROTLI_ENC_HASH_H_ */
|