brotli/enc/hash.h

954 lines
35 KiB
C++

/* Copyright 2010 Google Inc. All Rights Reserved.
Distributed under MIT license.
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
*/
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
#ifndef BROTLI_ENC_HASH_H_
#define BROTLI_ENC_HASH_H_
#include <sys/types.h>
#include <algorithm>
#include <cstring>
#include <limits>
#include <vector>
#include "./dictionary_hash.h"
#include "./fast_log.h"
#include "./find_match_length.h"
#include "./port.h"
#include "./prefix.h"
#include "./static_dict.h"
#include "./transform.h"
#include "./types.h"
namespace brotli {
static const size_t kMaxTreeSearchDepth = 64;
static const size_t kMaxTreeCompLength = 128;
static const uint32_t kDistanceCacheIndex[] = {
0, 1, 2, 3, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
};
static const int kDistanceCacheOffset[] = {
0, 0, 0, 0, -1, 1, -2, 2, -3, 3, -1, 1, -2, 2, -3, 3
};
static const uint32_t kCutoffTransformsCount = 10;
static const uint8_t kCutoffTransforms[] = {
0, 12, 27, 23, 42, 63, 56, 48, 59, 64
};
// kHashMul32 multiplier has these properties:
// * The multiplier must be odd. Otherwise we may lose the highest bit.
// * No long streaks of 1s or 0s.
// * There is no effort to ensure that it is a prime, the oddity is enough
// for this use.
// * The number has been tuned heuristically against compression benchmarks.
static const uint32_t kHashMul32 = 0x1e35a7bd;
template<int kShiftBits>
inline uint32_t Hash(const uint8_t *data) {
uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
// The higher bits contain more mixture from the multiplication,
// so we take our results from there.
return h >> (32 - kShiftBits);
}
// Usually, we always choose the longest backward reference. This function
// allows for the exception of that rule.
//
// If we choose a backward reference that is further away, it will
// usually be coded with more bits. We approximate this by assuming
// log2(distance). If the distance can be expressed in terms of the
// last four distances, we use some heuristic constants to estimate
// the bits cost. For the first up to four literals we use the bit
// cost of the literals from the literal cost model, after that we
// use the average bit cost of the cost model.
//
// This function is used to sometimes discard a longer backward reference
// when it is not much longer and the bit cost for encoding it is more
// than the saved literals.
//
// backward_reference_offset MUST be positive.
inline double BackwardReferenceScore(size_t copy_length,
size_t backward_reference_offset) {
return 5.4 * static_cast<double>(copy_length) -
1.20 * Log2FloorNonZero(backward_reference_offset);
}
inline double BackwardReferenceScoreUsingLastDistance(size_t copy_length,
size_t distance_short_code) {
static const double kDistanceShortCodeBitCost[16] = {
-0.6, 0.95, 1.17, 1.27,
0.93, 0.93, 0.96, 0.96, 0.99, 0.99,
1.05, 1.05, 1.15, 1.15, 1.25, 1.25
};
return 5.4 * static_cast<double>(copy_length) -
kDistanceShortCodeBitCost[distance_short_code];
}
struct BackwardMatch {
BackwardMatch() : distance(0), length_and_code(0) {}
BackwardMatch(size_t dist, size_t len)
: distance(static_cast<uint32_t>(dist))
, length_and_code(static_cast<uint32_t>(len << 5)) {}
BackwardMatch(size_t dist, size_t len, size_t len_code)
: distance(static_cast<uint32_t>(dist))
, length_and_code(static_cast<uint32_t>(
(len << 5) | (len == len_code ? 0 : len_code))) {}
size_t length() const {
return length_and_code >> 5;
}
size_t length_code() const {
size_t code = length_and_code & 31;
return code ? code : length();
}
uint32_t distance;
uint32_t length_and_code;
};
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
//
// This is a hash map of fixed size (kBucketSize). Starting from the
// given index, kBucketSweep buckets are used to store values of a key.
template <int kBucketBits, int kBucketSweep, bool kUseDictionary>
class HashLongestMatchQuickly {
public:
HashLongestMatchQuickly() {
Reset();
}
void Reset() {
need_init_ = true;
num_dict_lookups_ = 0;
num_dict_matches_ = 0;
}
void Init() {
if (need_init_) {
// It is not strictly necessary to fill this buffer here, but
// not filling will make the results of the compression stochastic
// (but correct). This is because random data would cause the
// system to find accidentally good backward references here and there.
memset(&buckets_[0], 0, sizeof(buckets_));
need_init_ = false;
}
}
void InitForData(const uint8_t* data, size_t num) {
for (size_t i = 0; i < num; ++i) {
const uint32_t key = HashBytes(&data[i]);
memset(&buckets_[key], 0, kBucketSweep * sizeof(buckets_[0]));
need_init_ = false;
}
}
// Look at 4 bytes at data.
// Compute a hash from these, and store the value somewhere within
// [ix .. ix+3].
inline void Store(const uint8_t *data, const uint32_t ix) {
const uint32_t key = HashBytes(data);
// Wiggle the value with the bucket sweep range.
const uint32_t off = (ix >> 3) % kBucketSweep;
buckets_[key + off] = ix;
}
// Find a longest backward match of &ring_buffer[cur_ix & ring_buffer_mask]
// up to the length of max_length and stores the position cur_ix in the
// hash table.
//
// Does not look for matches longer than max_length.
// Does not look for matches further away than max_backward.
// Writes the best found match length into best_len_out.
// Writes the index (&data[index]) of the start of the best match into
// best_distance_out.
inline bool FindLongestMatch(const uint8_t * __restrict ring_buffer,
const size_t ring_buffer_mask,
const int* __restrict distance_cache,
const size_t cur_ix,
const size_t max_length,
const size_t max_backward,
size_t * __restrict best_len_out,
size_t * __restrict best_len_code_out,
size_t * __restrict best_distance_out,
double* __restrict best_score_out) {
const size_t best_len_in = *best_len_out;
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
const uint32_t key = HashBytes(&ring_buffer[cur_ix_masked]);
int compare_char = ring_buffer[cur_ix_masked + best_len_in];
double best_score = *best_score_out;
size_t best_len = best_len_in;
size_t cached_backward = static_cast<size_t>(distance_cache[0]);
size_t prev_ix = cur_ix - cached_backward;
bool match_found = false;
if (prev_ix < cur_ix) {
prev_ix &= static_cast<uint32_t>(ring_buffer_mask);
if (compare_char == ring_buffer[prev_ix + best_len]) {
size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix],
&ring_buffer[cur_ix_masked],
max_length);
if (len >= 4) {
best_score = BackwardReferenceScoreUsingLastDistance(len, 0);
best_len = len;
*best_len_out = len;
*best_len_code_out = len;
*best_distance_out = cached_backward;
*best_score_out = best_score;
compare_char = ring_buffer[cur_ix_masked + best_len];
if (kBucketSweep == 1) {
buckets_[key] = static_cast<uint32_t>(cur_ix);
return true;
} else {
match_found = true;
}
}
}
}
if (kBucketSweep == 1) {
// Only one to look for, don't bother to prepare for a loop.
prev_ix = buckets_[key];
buckets_[key] = static_cast<uint32_t>(cur_ix);
size_t backward = cur_ix - prev_ix;
prev_ix &= static_cast<uint32_t>(ring_buffer_mask);
if (compare_char != ring_buffer[prev_ix + best_len_in]) {
return false;
}
if (PREDICT_FALSE(backward == 0 || backward > max_backward)) {
return false;
}
const size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix],
&ring_buffer[cur_ix_masked],
max_length);
if (len >= 4) {
*best_len_out = len;
*best_len_code_out = len;
*best_distance_out = backward;
*best_score_out = BackwardReferenceScore(len, backward);
return true;
}
} else {
uint32_t *bucket = buckets_ + key;
prev_ix = *bucket++;
for (int i = 0; i < kBucketSweep; ++i, prev_ix = *bucket++) {
const size_t backward = cur_ix - prev_ix;
prev_ix &= static_cast<uint32_t>(ring_buffer_mask);
if (compare_char != ring_buffer[prev_ix + best_len]) {
continue;
}
if (PREDICT_FALSE(backward == 0 || backward > max_backward)) {
continue;
}
const size_t len = FindMatchLengthWithLimit(&ring_buffer[prev_ix],
&ring_buffer[cur_ix_masked],
max_length);
if (len >= 4) {
const double score = BackwardReferenceScore(len, backward);
if (best_score < score) {
best_score = score;
best_len = len;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = backward;
*best_score_out = score;
compare_char = ring_buffer[cur_ix_masked + best_len];
match_found = true;
}
}
}
}
if (kUseDictionary && !match_found &&
num_dict_matches_ >= (num_dict_lookups_ >> 7)) {
++num_dict_lookups_;
const uint32_t dict_key = Hash<14>(&ring_buffer[cur_ix_masked]) << 1;
const uint16_t v = kStaticDictionaryHash[dict_key];
if (v > 0) {
const uint32_t len = v & 31;
const uint32_t dist = v >> 5;
const size_t offset =
kBrotliDictionaryOffsetsByLength[len] + len * dist;
if (len <= max_length) {
const size_t matchlen =
FindMatchLengthWithLimit(&ring_buffer[cur_ix_masked],
&kBrotliDictionary[offset], len);
if (matchlen + kCutoffTransformsCount > len && matchlen > 0) {
const size_t transform_id = kCutoffTransforms[len - matchlen];
const size_t word_id =
transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) +
dist;
const size_t backward = max_backward + word_id + 1;
const double score = BackwardReferenceScore(matchlen, backward);
if (best_score < score) {
++num_dict_matches_;
best_score = score;
best_len = matchlen;
*best_len_out = best_len;
*best_len_code_out = len;
*best_distance_out = backward;
*best_score_out = best_score;
match_found = true;
}
}
}
}
}
const uint32_t off = (cur_ix >> 3) % kBucketSweep;
buckets_[key + off] = static_cast<uint32_t>(cur_ix);
return match_found;
}
enum { kHashLength = 5 };
enum { kHashTypeLength = 8 };
// HashBytes is the function that chooses the bucket to place
// the address in. The HashLongestMatch and HashLongestMatchQuickly
// classes have separate, different implementations of hashing.
static uint32_t HashBytes(const uint8_t *data) {
// Computing a hash based on 5 bytes works much better for
// qualities 1 and 3, where the next hash value is likely to replace
uint64_t h = (BROTLI_UNALIGNED_LOAD64(data) << 24) * kHashMul32;
// The higher bits contain more mixture from the multiplication,
// so we take our results from there.
return static_cast<uint32_t>(h >> (64 - kBucketBits));
}
enum { kHashMapSize = 4 << kBucketBits };
private:
static const uint32_t kBucketSize = 1 << kBucketBits;
uint32_t buckets_[kBucketSize + kBucketSweep];
// True if buckets_ array needs to be initialized.
bool need_init_;
size_t num_dict_lookups_;
size_t num_dict_matches_;
};
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
//
// This is a hash map of fixed size (kBucketSize) to a ring buffer of
// fixed size (kBlockSize). The ring buffer contains the last kBlockSize
// index positions of the given hash key in the compressed data.
template <int kBucketBits,
int kBlockBits,
int kNumLastDistancesToCheck>
class HashLongestMatch {
public:
HashLongestMatch() {
Reset();
}
void Reset() {
need_init_ = true;
num_dict_lookups_ = 0;
num_dict_matches_ = 0;
}
void Init() {
if (need_init_) {
memset(&num_[0], 0, sizeof(num_));
need_init_ = false;
}
}
void InitForData(const uint8_t* data, size_t num) {
for (size_t i = 0; i < num; ++i) {
const uint32_t key = HashBytes(&data[i]);
num_[key] = 0;
need_init_ = false;
}
}
// Look at 3 bytes at data.
// Compute a hash from these, and store the value of ix at that position.
inline void Store(const uint8_t *data, const uint32_t ix) {
const uint32_t key = HashBytes(data);
const int minor_ix = num_[key] & kBlockMask;
buckets_[key][minor_ix] = ix;
++num_[key];
}
// Find a longest backward match of &data[cur_ix] up to the length of
// max_length and stores the position cur_ix in the hash table.
//
// Does not look for matches longer than max_length.
// Does not look for matches further away than max_backward.
// Writes the best found match length into best_len_out.
// Writes the index (&data[index]) offset from the start of the best match
// into best_distance_out.
// Write the score of the best match into best_score_out.
bool FindLongestMatch(const uint8_t * __restrict data,
const size_t ring_buffer_mask,
const int* __restrict distance_cache,
const size_t cur_ix,
const size_t max_length,
const size_t max_backward,
size_t * __restrict best_len_out,
size_t * __restrict best_len_code_out,
size_t * __restrict best_distance_out,
double * __restrict best_score_out) {
*best_len_code_out = 0;
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
bool match_found = false;
// Don't accept a short copy from far away.
double best_score = *best_score_out;
size_t best_len = *best_len_out;
*best_len_out = 0;
// Try last distance first.
for (size_t i = 0; i < kNumLastDistancesToCheck; ++i) {
const size_t idx = kDistanceCacheIndex[i];
const size_t backward =
static_cast<size_t>(distance_cache[idx] + kDistanceCacheOffset[i]);
size_t prev_ix = static_cast<size_t>(cur_ix - backward);
if (prev_ix >= cur_ix) {
continue;
}
if (PREDICT_FALSE(backward > max_backward)) {
continue;
}
prev_ix &= ring_buffer_mask;
if (cur_ix_masked + best_len > ring_buffer_mask ||
prev_ix + best_len > ring_buffer_mask ||
data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
continue;
}
const size_t len = FindMatchLengthWithLimit(&data[prev_ix],
&data[cur_ix_masked],
max_length);
if (len >= 3 || (len == 2 && i < 2)) {
// Comparing for >= 2 does not change the semantics, but just saves for
// a few unnecessary binary logarithms in backward reference score,
// since we are not interested in such short matches.
double score = BackwardReferenceScoreUsingLastDistance(len, i);
if (best_score < score) {
best_score = score;
best_len = len;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = backward;
*best_score_out = best_score;
match_found = true;
}
}
}
const uint32_t key = HashBytes(&data[cur_ix_masked]);
const uint32_t * __restrict const bucket = &buckets_[key][0];
const size_t down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0;
for (size_t i = num_[key]; i > down;) {
--i;
size_t prev_ix = bucket[i & kBlockMask];
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward == 0 || backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (cur_ix_masked + best_len > ring_buffer_mask ||
prev_ix + best_len > ring_buffer_mask ||
data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
continue;
}
const size_t len = FindMatchLengthWithLimit(&data[prev_ix],
&data[cur_ix_masked],
max_length);
if (len >= 4) {
// Comparing for >= 3 does not change the semantics, but just saves
// for a few unnecessary binary logarithms in backward reference
// score, since we are not interested in such short matches.
double score = BackwardReferenceScore(len, backward);
if (best_score < score) {
best_score = score;
best_len = len;
*best_len_out = best_len;
*best_len_code_out = best_len;
*best_distance_out = backward;
*best_score_out = best_score;
match_found = true;
}
}
}
buckets_[key][num_[key] & kBlockMask] = static_cast<uint32_t>(cur_ix);
++num_[key];
if (!match_found && num_dict_matches_ >= (num_dict_lookups_ >> 7)) {
size_t dict_key = Hash<14>(&data[cur_ix_masked]) << 1;
for (int k = 0; k < 2; ++k, ++dict_key) {
++num_dict_lookups_;
const uint16_t v = kStaticDictionaryHash[dict_key];
if (v > 0) {
const size_t len = v & 31;
const size_t dist = v >> 5;
const size_t offset =
kBrotliDictionaryOffsetsByLength[len] + len * dist;
if (len <= max_length) {
const size_t matchlen =
FindMatchLengthWithLimit(&data[cur_ix_masked],
&kBrotliDictionary[offset], len);
if (matchlen + kCutoffTransformsCount > len && matchlen > 0) {
const size_t transform_id = kCutoffTransforms[len - matchlen];
const size_t word_id =
transform_id * (1 << kBrotliDictionarySizeBitsByLength[len]) +
dist;
const size_t backward = max_backward + word_id + 1;
double score = BackwardReferenceScore(matchlen, backward);
if (best_score < score) {
++num_dict_matches_;
best_score = score;
best_len = matchlen;
*best_len_out = best_len;
*best_len_code_out = len;
*best_distance_out = backward;
*best_score_out = best_score;
match_found = true;
}
}
}
}
}
}
return match_found;
}
// Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the
// length of max_length and stores the position cur_ix in the hash table.
//
// Sets *num_matches to the number of matches found, and stores the found
// matches in matches[0] to matches[*num_matches - 1]. The matches will be
// sorted by strictly increasing length and (non-strictly) increasing
// distance.
size_t FindAllMatches(const uint8_t* data,
const size_t ring_buffer_mask,
const size_t cur_ix,
const size_t max_length,
const size_t max_backward,
BackwardMatch* matches) {
BackwardMatch* const orig_matches = matches;
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
size_t best_len = 1;
size_t stop = cur_ix - 64;
if (cur_ix < 64) { stop = 0; }
for (size_t i = cur_ix - 1; i > stop && best_len <= 2; --i) {
size_t prev_ix = i;
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (data[cur_ix_masked] != data[prev_ix] ||
data[cur_ix_masked + 1] != data[prev_ix + 1]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
max_length);
if (len > best_len) {
best_len = len;
*matches++ = BackwardMatch(backward, len);
}
}
const uint32_t key = HashBytes(&data[cur_ix_masked]);
const uint32_t * __restrict const bucket = &buckets_[key][0];
const size_t down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0;
for (size_t i = num_[key]; i > down;) {
--i;
size_t prev_ix = bucket[i & kBlockMask];
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward == 0 || backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (cur_ix_masked + best_len > ring_buffer_mask ||
prev_ix + best_len > ring_buffer_mask ||
data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
max_length);
if (len > best_len) {
best_len = len;
*matches++ = BackwardMatch(backward, len);
}
}
buckets_[key][num_[key] & kBlockMask] = static_cast<uint32_t>(cur_ix);
++num_[key];
std::vector<uint32_t> dict_matches(kMaxDictionaryMatchLen + 1,
kInvalidMatch);
size_t minlen = std::max<size_t>(4, best_len + 1);
if (FindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen, max_length,
&dict_matches[0])) {
size_t maxlen = std::min<size_t>(kMaxDictionaryMatchLen, max_length);
for (size_t l = minlen; l <= maxlen; ++l) {
uint32_t dict_id = dict_matches[l];
if (dict_id < kInvalidMatch) {
*matches++ = BackwardMatch(max_backward + (dict_id >> 5) + 1, l,
dict_id & 31);
}
}
}
return static_cast<size_t>(matches - orig_matches);
}
enum { kHashLength = 4 };
enum { kHashTypeLength = 4 };
// HashBytes is the function that chooses the bucket to place
// the address in. The HashLongestMatch and HashLongestMatchQuickly
// classes have separate, different implementations of hashing.
static uint32_t HashBytes(const uint8_t *data) {
uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
// The higher bits contain more mixture from the multiplication,
// so we take our results from there.
return h >> (32 - kBucketBits);
}
enum { kHashMapSize = 2 << kBucketBits };
static const size_t kMaxNumMatches = 64 + (1 << kBlockBits);
private:
// Number of hash buckets.
static const uint32_t kBucketSize = 1 << kBucketBits;
// Only kBlockSize newest backward references are kept,
// and the older are forgotten.
static const uint32_t kBlockSize = 1 << kBlockBits;
// Mask for accessing entries in a block (in a ringbuffer manner).
static const uint32_t kBlockMask = (1 << kBlockBits) - 1;
// Number of entries in a particular bucket.
uint16_t num_[kBucketSize];
// Buckets containing kBlockSize of backward references.
uint32_t buckets_[kBucketSize][kBlockSize];
// True if num_ array needs to be initialized.
bool need_init_;
size_t num_dict_lookups_;
size_t num_dict_matches_;
};
// A (forgetful) hash table where each hash bucket contains a binary tree of
// sequences whose first 4 bytes share the same hash code.
// Each sequence is kMaxTreeCompLength long and is identified by its starting
// position in the input data. The binary tree is sorted by the lexicographic
// order of the sequences, and it is also a max-heap with respect to the
// starting positions.
class HashToBinaryTree {
public:
HashToBinaryTree() : forest_(NULL) {
Reset();
}
~HashToBinaryTree() {
delete[] forest_;
}
void Reset() {
need_init_ = true;
}
void Init(int lgwin, size_t position, size_t bytes, bool is_last) {
if (need_init_) {
window_mask_ = (1u << lgwin) - 1u;
invalid_pos_ = static_cast<uint32_t>(-window_mask_);
for (uint32_t i = 0; i < kBucketSize; i++) {
buckets_[i] = invalid_pos_;
}
size_t num_nodes = (position == 0 && is_last) ? bytes : window_mask_ + 1;
forest_ = new uint32_t[2 * num_nodes];
need_init_ = false;
}
}
// Finds all backward matches of &data[cur_ix & ring_buffer_mask] up to the
// length of max_length and stores the position cur_ix in the hash table.
//
// Sets *num_matches to the number of matches found, and stores the found
// matches in matches[0] to matches[*num_matches - 1]. The matches will be
// sorted by strictly increasing length and (non-strictly) increasing
// distance.
size_t FindAllMatches(const uint8_t* data,
const size_t ring_buffer_mask,
const size_t cur_ix,
const size_t max_length,
const size_t max_backward,
BackwardMatch* matches) {
BackwardMatch* const orig_matches = matches;
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
size_t best_len = 1;
size_t stop = cur_ix - 64;
if (cur_ix < 64) { stop = 0; }
for (size_t i = cur_ix - 1; i > stop && best_len <= 2; --i) {
size_t prev_ix = i;
const size_t backward = cur_ix - prev_ix;
if (PREDICT_FALSE(backward > max_backward)) {
break;
}
prev_ix &= ring_buffer_mask;
if (data[cur_ix_masked] != data[prev_ix] ||
data[cur_ix_masked + 1] != data[prev_ix + 1]) {
continue;
}
const size_t len =
FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
max_length);
if (len > best_len) {
best_len = len;
*matches++ = BackwardMatch(backward, len);
}
}
if (best_len < max_length) {
matches = StoreAndFindMatches(data, cur_ix, ring_buffer_mask,
max_length, &best_len, matches);
}
std::vector<uint32_t> dict_matches(kMaxDictionaryMatchLen + 1,
kInvalidMatch);
size_t minlen = std::max<size_t>(4, best_len + 1);
if (FindAllStaticDictionaryMatches(&data[cur_ix_masked], minlen, max_length,
&dict_matches[0])) {
size_t maxlen = std::min<size_t>(kMaxDictionaryMatchLen, max_length);
for (size_t l = minlen; l <= maxlen; ++l) {
uint32_t dict_id = dict_matches[l];
if (dict_id < kInvalidMatch) {
*matches++ = BackwardMatch(max_backward + (dict_id >> 5) + 1, l,
dict_id & 31);
}
}
}
return static_cast<size_t>(matches - orig_matches);
}
// Stores the hash of the next 4 bytes and re-roots the binary tree at the
// current sequence, without returning any matches.
void Store(const uint8_t* data,
const size_t ring_buffer_mask,
const size_t cur_ix,
const size_t max_length) {
size_t best_len = 0;
StoreAndFindMatches(data, cur_ix, ring_buffer_mask, max_length,
&best_len, NULL);
}
static const size_t kMaxNumMatches = 64 + kMaxTreeSearchDepth;
private:
// Stores the hash of the next 4 bytes and in a single tree-traversal, the
// hash bucket's binary tree is searched for matches and is re-rooted at the
// current position.
//
// If less than kMaxTreeCompLength data is available, the hash bucket of the
// current position is searched for matches, but the state of the hash table
// is not changed, since we can not know the final sorting order of the
// current (incomplete) sequence.
//
// This function must be called with increasing cur_ix positions.
BackwardMatch* StoreAndFindMatches(const uint8_t* const __restrict data,
const size_t cur_ix,
const size_t ring_buffer_mask,
const size_t max_length,
size_t* const __restrict best_len,
BackwardMatch* __restrict matches) {
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
const size_t max_backward = window_mask_ - 15;
const size_t max_comp_len = std::min(max_length, kMaxTreeCompLength);
const bool reroot_tree = max_length >= kMaxTreeCompLength;
const uint32_t key = HashBytes(&data[cur_ix_masked]);
size_t prev_ix = buckets_[key];
// The forest index of the rightmost node of the left subtree of the new
// root, updated as we traverse and reroot the tree of the hash bucket.
size_t node_left = LeftChildIndex(cur_ix);
// The forest index of the leftmost node of the right subtree of the new
// root, updated as we traverse and reroot the tree of the hash bucket.
size_t node_right = RightChildIndex(cur_ix);
// The match length of the rightmost node of the left subtree of the new
// root, updated as we traverse and reroot the tree of the hash bucket.
size_t best_len_left = 0;
// The match length of the leftmost node of the right subtree of the new
// root, updated as we traverse and reroot the tree of the hash bucket.
size_t best_len_right = 0;
if (reroot_tree) {
buckets_[key] = static_cast<uint32_t>(cur_ix);
}
for (size_t depth_remaining = kMaxTreeSearchDepth; ; --depth_remaining) {
const size_t backward = cur_ix - prev_ix;
const size_t prev_ix_masked = prev_ix & ring_buffer_mask;
if (backward == 0 || backward > max_backward || depth_remaining == 0) {
if (reroot_tree) {
forest_[node_left] = invalid_pos_;
forest_[node_right] = invalid_pos_;
}
break;
}
const size_t cur_len = std::min(best_len_left, best_len_right);
const size_t len = cur_len +
FindMatchLengthWithLimit(&data[cur_ix_masked + cur_len],
&data[prev_ix_masked + cur_len],
max_length - cur_len);
if (len > *best_len) {
*best_len = len;
if (matches) {
*matches++ = BackwardMatch(backward, len);
}
if (len >= max_comp_len) {
if (reroot_tree) {
forest_[node_left] = forest_[LeftChildIndex(prev_ix)];
forest_[node_right] = forest_[RightChildIndex(prev_ix)];
}
break;
}
}
if (data[cur_ix_masked + len] > data[prev_ix_masked + len]) {
best_len_left = len;
if (reroot_tree) {
forest_[node_left] = static_cast<uint32_t>(prev_ix);
}
node_left = RightChildIndex(prev_ix);
prev_ix = forest_[node_left];
} else {
best_len_right = len;
if (reroot_tree) {
forest_[node_right] = static_cast<uint32_t>(prev_ix);
}
node_right = LeftChildIndex(prev_ix);
prev_ix = forest_[node_right];
}
}
return matches;
}
inline size_t LeftChildIndex(const size_t pos) {
return 2 * (pos & window_mask_);
}
inline size_t RightChildIndex(const size_t pos) {
return 2 * (pos & window_mask_) + 1;
}
static uint32_t HashBytes(const uint8_t *data) {
uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
// The higher bits contain more mixture from the multiplication,
// so we take our results from there.
return h >> (32 - kBucketBits);
}
static const int kBucketBits = 17;
static const size_t kBucketSize = 1 << kBucketBits;
// The window size minus 1
size_t window_mask_;
// Hash table that maps the 4-byte hashes of the sequence to the last
// position where this hash was found, which is the root of the binary
// tree of sequences that share this hash bucket.
uint32_t buckets_[kBucketSize];
// The union of the binary trees of each hash bucket. The root of the tree
// corresponding to a hash is a sequence starting at buckets_[hash] and
// the left and right children of a sequence starting at pos are
// forest_[2 * pos] and forest_[2 * pos + 1].
uint32_t* forest_;
// A position used to mark a non-existent sequence, i.e. a tree is empty if
// its root is at invalid_pos_ and a node is a leaf if both its children
// are at invalid_pos_.
uint32_t invalid_pos_;
bool need_init_;
};
struct Hashers {
// For kBucketSweep == 1, enabling the dictionary lookup makes compression
// a little faster (0.5% - 1%) and it compresses 0.15% better on small text
// and html inputs.
typedef HashLongestMatchQuickly<16, 1, true> H2;
typedef HashLongestMatchQuickly<16, 2, false> H3;
typedef HashLongestMatchQuickly<17, 4, true> H4;
typedef HashLongestMatch<14, 4, 4> H5;
typedef HashLongestMatch<14, 5, 4> H6;
typedef HashLongestMatch<15, 6, 10> H7;
typedef HashLongestMatch<15, 7, 10> H8;
typedef HashLongestMatch<15, 8, 16> H9;
typedef HashToBinaryTree H10;
Hashers() : hash_h2(0), hash_h3(0), hash_h4(0), hash_h5(0),
hash_h6(0), hash_h7(0), hash_h8(0), hash_h9(0), hash_h10(0) {}
~Hashers() {
delete hash_h2;
delete hash_h3;
delete hash_h4;
delete hash_h5;
delete hash_h6;
delete hash_h7;
delete hash_h8;
delete hash_h9;
delete hash_h10;
}
void Init(int type) {
switch (type) {
case 2: hash_h2 = new H2; break;
case 3: hash_h3 = new H3; break;
case 4: hash_h4 = new H4; break;
case 5: hash_h5 = new H5; break;
case 6: hash_h6 = new H6; break;
case 7: hash_h7 = new H7; break;
case 8: hash_h8 = new H8; break;
case 9: hash_h9 = new H9; break;
case 10: hash_h10 = new H10; break;
default: break;
}
}
template<typename Hasher>
void WarmupHash(const size_t size, const uint8_t* dict, Hasher* hasher) {
hasher->Init();
for (size_t i = 0; i + Hasher::kHashTypeLength - 1 < size; i++) {
hasher->Store(&dict[i], static_cast<uint32_t>(i));
}
}
// Custom LZ77 window.
void PrependCustomDictionary(
int type, int lgwin, const size_t size, const uint8_t* dict) {
switch (type) {
case 2: WarmupHash(size, dict, hash_h2); break;
case 3: WarmupHash(size, dict, hash_h3); break;
case 4: WarmupHash(size, dict, hash_h4); break;
case 5: WarmupHash(size, dict, hash_h5); break;
case 6: WarmupHash(size, dict, hash_h6); break;
case 7: WarmupHash(size, dict, hash_h7); break;
case 8: WarmupHash(size, dict, hash_h8); break;
case 9: WarmupHash(size, dict, hash_h9); break;
case 10:
hash_h10->Init(lgwin, 0, size, false);
for (size_t i = 0; i + kMaxTreeCompLength - 1 < size; ++i) {
hash_h10->Store(dict, std::numeric_limits<size_t>::max(),
i, size - i);
}
break;
default: break;
}
}
H2* hash_h2;
H3* hash_h3;
H4* hash_h4;
H5* hash_h5;
H6* hash_h6;
H7* hash_h7;
H8* hash_h8;
H9* hash_h9;
H10* hash_h10;
};
} // namespace brotli
#endif // BROTLI_ENC_HASH_H_