mirror of
https://github.com/google/brotli.git
synced 2024-11-29 14:41:05 +00:00
c6b9c7c5c8
This commit contains a batch of changes that were made to the Brotli compression algorithm in the last three weeks. Most important changes: * Added UTF8 context model for good text compression. * Simplified context modeling by having only 4 context modes. * Per-block context mode selection. * Faster backward copying and bit reading functions. * More efficient histogram coding. * Streaming support for the decoder and encoder.
400 lines
11 KiB
C++
400 lines
11 KiB
C++
// Copyright 2010 Google Inc. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// Entropy encoding (Huffman) utilities.
|
|
|
|
#include "./entropy_encode.h"
|
|
|
|
#include <stdint.h>
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "./histogram.h"
|
|
|
|
namespace brotli {
|
|
|
|
namespace {
|
|
|
|
struct HuffmanTree {
|
|
HuffmanTree();
|
|
HuffmanTree(int count, int16_t left, int16_t right)
|
|
: total_count_(count),
|
|
index_left_(left),
|
|
index_right_or_value_(right) {
|
|
}
|
|
int total_count_;
|
|
int16_t index_left_;
|
|
int16_t index_right_or_value_;
|
|
};
|
|
|
|
HuffmanTree::HuffmanTree() {}
|
|
|
|
// Sort the root nodes, least popular first.
|
|
bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
|
|
if (v0.total_count_ == v1.total_count_) {
|
|
return v0.index_right_or_value_ > v1.index_right_or_value_;
|
|
}
|
|
return v0.total_count_ < v1.total_count_;
|
|
}
|
|
|
|
void SetDepth(const HuffmanTree &p,
|
|
HuffmanTree *pool,
|
|
uint8_t *depth,
|
|
int level) {
|
|
if (p.index_left_ >= 0) {
|
|
++level;
|
|
SetDepth(pool[p.index_left_], pool, depth, level);
|
|
SetDepth(pool[p.index_right_or_value_], pool, depth, level);
|
|
} else {
|
|
depth[p.index_right_or_value_] = level;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// This function will create a Huffman tree.
|
|
//
|
|
// The catch here is that the tree cannot be arbitrarily deep.
|
|
// Brotli specifies a maximum depth of 15 bits for "code trees"
|
|
// and 7 bits for "code length code trees."
|
|
//
|
|
// count_limit is the value that is to be faked as the minimum value
|
|
// and this minimum value is raised until the tree matches the
|
|
// maximum length requirement.
|
|
//
|
|
// This algorithm is not of excellent performance for very long data blocks,
|
|
// especially when population counts are longer than 2**tree_limit, but
|
|
// we are not planning to use this with extremely long blocks.
|
|
//
|
|
// See http://en.wikipedia.org/wiki/Huffman_coding
|
|
void CreateHuffmanTree(const int *data,
|
|
const int length,
|
|
const int tree_limit,
|
|
uint8_t *depth) {
|
|
// For block sizes below 64 kB, we never need to do a second iteration
|
|
// of this loop. Probably all of our block sizes will be smaller than
|
|
// that, so this loop is mostly of academic interest. If we actually
|
|
// would need this, we would be better off with the Katajainen algorithm.
|
|
for (int count_limit = 1; ; count_limit *= 2) {
|
|
std::vector<HuffmanTree> tree;
|
|
tree.reserve(2 * length + 1);
|
|
|
|
for (int i = 0; i < length; ++i) {
|
|
if (data[i]) {
|
|
const int count = std::max(data[i], count_limit);
|
|
tree.push_back(HuffmanTree(count, -1, i));
|
|
}
|
|
}
|
|
|
|
const int n = tree.size();
|
|
if (n == 1) {
|
|
depth[tree[0].index_right_or_value_] = 1; // Only one element.
|
|
break;
|
|
}
|
|
|
|
std::sort(tree.begin(), tree.end(), SortHuffmanTree);
|
|
|
|
// The nodes are:
|
|
// [0, n): the sorted leaf nodes that we start with.
|
|
// [n]: we add a sentinel here.
|
|
// [n + 1, 2n): new parent nodes are added here, starting from
|
|
// (n+1). These are naturally in ascending order.
|
|
// [2n]: we add a sentinel at the end as well.
|
|
// There will be (2n+1) elements at the end.
|
|
const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
|
|
tree.push_back(sentinel);
|
|
tree.push_back(sentinel);
|
|
|
|
int i = 0; // Points to the next leaf node.
|
|
int j = n + 1; // Points to the next non-leaf node.
|
|
for (int k = n - 1; k > 0; --k) {
|
|
int left, right;
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
left = i;
|
|
++i;
|
|
} else {
|
|
left = j;
|
|
++j;
|
|
}
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
right = i;
|
|
++i;
|
|
} else {
|
|
right = j;
|
|
++j;
|
|
}
|
|
|
|
// The sentinel node becomes the parent node.
|
|
int j_end = tree.size() - 1;
|
|
tree[j_end].total_count_ =
|
|
tree[left].total_count_ + tree[right].total_count_;
|
|
tree[j_end].index_left_ = left;
|
|
tree[j_end].index_right_or_value_ = right;
|
|
|
|
// Add back the last sentinel node.
|
|
tree.push_back(sentinel);
|
|
}
|
|
SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
|
|
|
|
// We need to pack the Huffman tree in tree_limit bits.
|
|
// If this was not successful, add fake entities to the lowest values
|
|
// and retry.
|
|
if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WriteHuffmanTreeRepetitions(
|
|
const int previous_value,
|
|
const int value,
|
|
int repetitions,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits,
|
|
int* tree_size) {
|
|
if (previous_value != value) {
|
|
tree[*tree_size] = value;
|
|
extra_bits[*tree_size] = 0;
|
|
++(*tree_size);
|
|
--repetitions;
|
|
}
|
|
while (repetitions >= 1) {
|
|
if (repetitions < 3) {
|
|
for (int i = 0; i < repetitions; ++i) {
|
|
tree[*tree_size] = value;
|
|
extra_bits[*tree_size] = 0;
|
|
++(*tree_size);
|
|
}
|
|
return;
|
|
} else if (repetitions < 7) {
|
|
// 3 to 6 left.
|
|
tree[*tree_size] = 16;
|
|
extra_bits[*tree_size] = repetitions - 3;
|
|
++(*tree_size);
|
|
return;
|
|
} else {
|
|
tree[*tree_size] = 16;
|
|
extra_bits[*tree_size] = 3;
|
|
++(*tree_size);
|
|
repetitions -= 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WriteHuffmanTreeRepetitionsZeros(
|
|
int repetitions,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits,
|
|
int* tree_size) {
|
|
while (repetitions >= 1) {
|
|
if (repetitions < 3) {
|
|
for (int i = 0; i < repetitions; ++i) {
|
|
tree[*tree_size] = 0;
|
|
extra_bits[*tree_size] = 0;
|
|
++(*tree_size);
|
|
}
|
|
return;
|
|
} else if (repetitions < 11) {
|
|
tree[*tree_size] = 17;
|
|
extra_bits[*tree_size] = repetitions - 3;
|
|
++(*tree_size);
|
|
return;
|
|
} else if (repetitions < 139) {
|
|
tree[*tree_size] = 18;
|
|
extra_bits[*tree_size] = repetitions - 11;
|
|
++(*tree_size);
|
|
return;
|
|
} else {
|
|
tree[*tree_size] = 18;
|
|
extra_bits[*tree_size] = 0x7f; // 138 repeated 0s
|
|
++(*tree_size);
|
|
repetitions -= 138;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Heuristics for selecting the stride ranges to collapse.
|
|
int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
|
|
return abs(a - b) < 4;
|
|
}
|
|
|
|
int OptimizeHuffmanCountsForRle(int length, int* counts) {
|
|
int stride;
|
|
int limit;
|
|
int sum;
|
|
uint8_t* good_for_rle;
|
|
// Let's make the Huffman code more compatible with rle encoding.
|
|
int i;
|
|
for (; length >= 0; --length) {
|
|
if (length == 0) {
|
|
return 1; // All zeros.
|
|
}
|
|
if (counts[length - 1] != 0) {
|
|
// Now counts[0..length - 1] does not have trailing zeros.
|
|
break;
|
|
}
|
|
}
|
|
// 2) Let's mark all population counts that already can be encoded
|
|
// with an rle code.
|
|
good_for_rle = (uint8_t*)calloc(length, 1);
|
|
if (good_for_rle == NULL) {
|
|
return 0;
|
|
}
|
|
{
|
|
// Let's not spoil any of the existing good rle codes.
|
|
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
|
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
|
|
int symbol = counts[0];
|
|
int stride = 0;
|
|
for (i = 0; i < length + 1; ++i) {
|
|
if (i == length || counts[i] != symbol) {
|
|
if ((symbol == 0 && stride >= 5) ||
|
|
(symbol != 0 && stride >= 7)) {
|
|
int k;
|
|
for (k = 0; k < stride; ++k) {
|
|
good_for_rle[i - k - 1] = 1;
|
|
}
|
|
}
|
|
stride = 1;
|
|
if (i != length) {
|
|
symbol = counts[i];
|
|
}
|
|
} else {
|
|
++stride;
|
|
}
|
|
}
|
|
}
|
|
// 3) Let's replace those population counts that lead to more rle codes.
|
|
stride = 0;
|
|
limit = (counts[0] + counts[1] + counts[2]) / 3 + 1;
|
|
sum = 0;
|
|
for (i = 0; i < length + 1; ++i) {
|
|
if (i == length || good_for_rle[i] ||
|
|
(i != 0 && good_for_rle[i - 1]) ||
|
|
!ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
|
|
if (stride >= 4 || (stride >= 3 && sum == 0)) {
|
|
int k;
|
|
// The stride must end, collapse what we have, if we have enough (4).
|
|
int count = (sum + stride / 2) / stride;
|
|
if (count < 1) {
|
|
count = 1;
|
|
}
|
|
if (sum == 0) {
|
|
// Don't make an all zeros stride to be upgraded to ones.
|
|
count = 0;
|
|
}
|
|
for (k = 0; k < stride; ++k) {
|
|
// We don't want to change value at counts[i],
|
|
// that is already belonging to the next stride. Thus - 1.
|
|
counts[i - k - 1] = count;
|
|
}
|
|
}
|
|
stride = 0;
|
|
sum = 0;
|
|
if (i < length - 2) {
|
|
// All interesting strides have a count of at least 4,
|
|
// at least when non-zeros.
|
|
limit = (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 1;
|
|
} else if (i < length) {
|
|
limit = counts[i];
|
|
} else {
|
|
limit = 0;
|
|
}
|
|
}
|
|
++stride;
|
|
if (i != length) {
|
|
sum += counts[i];
|
|
if (stride >= 4) {
|
|
limit = (sum + stride / 2) / stride;
|
|
}
|
|
}
|
|
}
|
|
free(good_for_rle);
|
|
return 1;
|
|
}
|
|
|
|
|
|
void WriteHuffmanTree(const uint8_t* depth, const int length,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits_data,
|
|
int* huffman_tree_size) {
|
|
int previous_value = 8;
|
|
for (uint32_t i = 0; i < length;) {
|
|
const int value = depth[i];
|
|
int reps = 1;
|
|
for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
|
|
++reps;
|
|
}
|
|
if (value == 0) {
|
|
WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data,
|
|
huffman_tree_size);
|
|
} else {
|
|
WriteHuffmanTreeRepetitions(previous_value, value, reps, tree,
|
|
extra_bits_data, huffman_tree_size);
|
|
previous_value = value;
|
|
}
|
|
i += reps;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
uint16_t ReverseBits(int num_bits, uint16_t bits) {
|
|
static const size_t kLut[16] = { // Pre-reversed 4-bit values.
|
|
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
|
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
|
};
|
|
size_t retval = kLut[bits & 0xf];
|
|
for (int i = 4; i < num_bits; i += 4) {
|
|
retval <<= 4;
|
|
bits >>= 4;
|
|
retval |= kLut[bits & 0xf];
|
|
}
|
|
retval >>= (-num_bits & 0x3);
|
|
return retval;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
|
|
// In Brotli, all bit depths are [1..15]
|
|
// 0 bit depth means that the symbol does not exist.
|
|
const int kMaxBits = 16; // 0..15 are values for bits
|
|
uint16_t bl_count[kMaxBits] = { 0 };
|
|
{
|
|
for (int i = 0; i < len; ++i) {
|
|
++bl_count[depth[i]];
|
|
}
|
|
bl_count[0] = 0;
|
|
}
|
|
uint16_t next_code[kMaxBits];
|
|
next_code[0] = 0;
|
|
{
|
|
int code = 0;
|
|
for (int bits = 1; bits < kMaxBits; ++bits) {
|
|
code = (code + bl_count[bits - 1]) << 1;
|
|
next_code[bits] = code;
|
|
}
|
|
}
|
|
for (int i = 0; i < len; ++i) {
|
|
if (depth[i]) {
|
|
bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace brotli
|