mirror of
https://github.com/google/brotli.git
synced 2024-11-25 13:00:06 +00:00
78e7bbc3c3
* fix executable mode of decode.js * explain clang-analyser about non-nullability * fix "dead assignment" * rename proguard.cfg -> proguard.pgcfg
267 lines
9.1 KiB
C
267 lines
9.1 KiB
C
/* NOLINT(build/header_guard) */
|
|
/* Copyright 2010 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* template parameters: FN, BUCKET_BITS, BUCKET_SWEEP_BITS, HASH_LEN,
|
|
USE_DICTIONARY
|
|
*/
|
|
|
|
#define HashLongestMatchQuickly HASHER()
|
|
|
|
#define BUCKET_SIZE (1 << BUCKET_BITS)
|
|
#define BUCKET_MASK (BUCKET_SIZE - 1)
|
|
#define BUCKET_SWEEP (1 << BUCKET_SWEEP_BITS)
|
|
#define BUCKET_SWEEP_MASK ((BUCKET_SWEEP - 1) << 3)
|
|
|
|
static BROTLI_INLINE size_t FN(HashTypeLength)(void) { return 8; }
|
|
static BROTLI_INLINE size_t FN(StoreLookahead)(void) { return 8; }
|
|
|
|
/* HashBytes is the function that chooses the bucket to place
|
|
the address in. The HashLongestMatch and HashLongestMatchQuickly
|
|
classes have separate, different implementations of hashing. */
|
|
static uint32_t FN(HashBytes)(const uint8_t* data) {
|
|
const uint64_t h = ((BROTLI_UNALIGNED_LOAD64LE(data) << (64 - 8 * HASH_LEN)) *
|
|
kHashMul64);
|
|
/* The higher bits contain more mixture from the multiplication,
|
|
so we take our results from there. */
|
|
return (uint32_t)(h >> (64 - BUCKET_BITS));
|
|
}
|
|
|
|
/* A (forgetful) hash table to the data seen by the compressor, to
|
|
help create backward references to previous data.
|
|
|
|
This is a hash map of fixed size (BUCKET_SIZE). */
|
|
typedef struct HashLongestMatchQuickly {
|
|
/* Shortcuts. */
|
|
HasherCommon* common;
|
|
|
|
/* --- Dynamic size members --- */
|
|
|
|
uint32_t* buckets_; /* uint32_t[BUCKET_SIZE]; */
|
|
} HashLongestMatchQuickly;
|
|
|
|
static void FN(Initialize)(
|
|
HasherCommon* common, HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
const BrotliEncoderParams* params) {
|
|
self->common = common;
|
|
|
|
BROTLI_UNUSED(params);
|
|
self->buckets_ = (uint32_t*)common->extra;
|
|
}
|
|
|
|
static void FN(Prepare)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self, BROTLI_BOOL one_shot,
|
|
size_t input_size, const uint8_t* BROTLI_RESTRICT data) {
|
|
uint32_t* BROTLI_RESTRICT buckets = self->buckets_;
|
|
/* Partial preparation is 100 times slower (per socket). */
|
|
size_t partial_prepare_threshold = BUCKET_SIZE >> 5;
|
|
if (one_shot && input_size <= partial_prepare_threshold) {
|
|
size_t i;
|
|
for (i = 0; i < input_size; ++i) {
|
|
const uint32_t key = FN(HashBytes)(&data[i]);
|
|
if (BUCKET_SWEEP == 1) {
|
|
buckets[key] = 0;
|
|
} else {
|
|
uint32_t j;
|
|
for (j = 0; j < BUCKET_SWEEP; ++j) {
|
|
buckets[(key + (j << 3)) & BUCKET_MASK] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* It is not strictly necessary to fill this buffer here, but
|
|
not filling will make the results of the compression stochastic
|
|
(but correct). This is because random data would cause the
|
|
system to find accidentally good backward references here and there. */
|
|
memset(buckets, 0, sizeof(uint32_t) * BUCKET_SIZE);
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE size_t FN(HashMemAllocInBytes)(
|
|
const BrotliEncoderParams* params, BROTLI_BOOL one_shot,
|
|
size_t input_size) {
|
|
BROTLI_UNUSED(params);
|
|
BROTLI_UNUSED(one_shot);
|
|
BROTLI_UNUSED(input_size);
|
|
return sizeof(uint32_t) * BUCKET_SIZE;
|
|
}
|
|
|
|
/* Look at 5 bytes at &data[ix & mask].
|
|
Compute a hash from these, and store the value somewhere within
|
|
[ix .. ix+3]. */
|
|
static BROTLI_INLINE void FN(Store)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
const uint8_t* BROTLI_RESTRICT data, const size_t mask, const size_t ix) {
|
|
const uint32_t key = FN(HashBytes)(&data[ix & mask]);
|
|
if (BUCKET_SWEEP == 1) {
|
|
self->buckets_[key] = (uint32_t)ix;
|
|
} else {
|
|
/* Wiggle the value with the bucket sweep range. */
|
|
const uint32_t off = ix & BUCKET_SWEEP_MASK;
|
|
self->buckets_[(key + off) & BUCKET_MASK] = (uint32_t)ix;
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE void FN(StoreRange)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
const uint8_t* BROTLI_RESTRICT data, const size_t mask,
|
|
const size_t ix_start, const size_t ix_end) {
|
|
size_t i;
|
|
for (i = ix_start; i < ix_end; ++i) {
|
|
FN(Store)(self, data, mask, i);
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE void FN(StitchToPreviousBlock)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
size_t num_bytes, size_t position,
|
|
const uint8_t* ringbuffer, size_t ringbuffer_mask) {
|
|
if (num_bytes >= FN(HashTypeLength)() - 1 && position >= 3) {
|
|
/* Prepare the hashes for three last bytes of the last write.
|
|
These could not be calculated before, since they require knowledge
|
|
of both the previous and the current block. */
|
|
FN(Store)(self, ringbuffer, ringbuffer_mask, position - 3);
|
|
FN(Store)(self, ringbuffer, ringbuffer_mask, position - 2);
|
|
FN(Store)(self, ringbuffer, ringbuffer_mask, position - 1);
|
|
}
|
|
}
|
|
|
|
static BROTLI_INLINE void FN(PrepareDistanceCache)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
int* BROTLI_RESTRICT distance_cache) {
|
|
BROTLI_UNUSED(self);
|
|
BROTLI_UNUSED(distance_cache);
|
|
}
|
|
|
|
/* Find a longest backward match of &data[cur_ix & ring_buffer_mask]
|
|
up to the length of max_length and stores the position cur_ix in the
|
|
hash table.
|
|
|
|
Does not look for matches longer than max_length.
|
|
Does not look for matches further away than max_backward.
|
|
Writes the best match into |out|.
|
|
|out|->score is updated only if a better match is found. */
|
|
static BROTLI_INLINE void FN(FindLongestMatch)(
|
|
HashLongestMatchQuickly* BROTLI_RESTRICT self,
|
|
const BrotliEncoderDictionary* dictionary,
|
|
const uint8_t* BROTLI_RESTRICT data,
|
|
const size_t ring_buffer_mask, const int* BROTLI_RESTRICT distance_cache,
|
|
const size_t cur_ix, const size_t max_length, const size_t max_backward,
|
|
const size_t dictionary_distance, const size_t max_distance,
|
|
HasherSearchResult* BROTLI_RESTRICT out) {
|
|
uint32_t* BROTLI_RESTRICT buckets = self->buckets_;
|
|
const size_t best_len_in = out->len;
|
|
const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
|
|
int compare_char = data[cur_ix_masked + best_len_in];
|
|
size_t key = FN(HashBytes)(&data[cur_ix_masked]);
|
|
size_t key_out;
|
|
score_t min_score = out->score;
|
|
score_t best_score = out->score;
|
|
size_t best_len = best_len_in;
|
|
size_t cached_backward = (size_t)distance_cache[0];
|
|
size_t prev_ix = cur_ix - cached_backward;
|
|
out->len_code_delta = 0;
|
|
if (prev_ix < cur_ix) {
|
|
prev_ix &= (uint32_t)ring_buffer_mask;
|
|
if (compare_char == data[prev_ix + best_len]) {
|
|
const size_t len = FindMatchLengthWithLimit(
|
|
&data[prev_ix], &data[cur_ix_masked], max_length);
|
|
if (len >= 4) {
|
|
const score_t score = BackwardReferenceScoreUsingLastDistance(len);
|
|
if (best_score < score) {
|
|
out->len = len;
|
|
out->distance = cached_backward;
|
|
out->score = score;
|
|
if (BUCKET_SWEEP == 1) {
|
|
buckets[key] = (uint32_t)cur_ix;
|
|
return;
|
|
} else {
|
|
best_len = len;
|
|
best_score = score;
|
|
compare_char = data[cur_ix_masked + len];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (BUCKET_SWEEP == 1) {
|
|
size_t backward;
|
|
size_t len;
|
|
/* Only one to look for, don't bother to prepare for a loop. */
|
|
prev_ix = buckets[key];
|
|
buckets[key] = (uint32_t)cur_ix;
|
|
backward = cur_ix - prev_ix;
|
|
prev_ix &= (uint32_t)ring_buffer_mask;
|
|
if (compare_char != data[prev_ix + best_len_in]) {
|
|
return;
|
|
}
|
|
if (BROTLI_PREDICT_FALSE(backward == 0 || backward > max_backward)) {
|
|
return;
|
|
}
|
|
len = FindMatchLengthWithLimit(&data[prev_ix],
|
|
&data[cur_ix_masked],
|
|
max_length);
|
|
if (len >= 4) {
|
|
const score_t score = BackwardReferenceScore(len, backward);
|
|
if (best_score < score) {
|
|
out->len = len;
|
|
out->distance = backward;
|
|
out->score = score;
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
size_t keys[BUCKET_SWEEP];
|
|
size_t i;
|
|
for (i = 0; i < BUCKET_SWEEP; ++i) {
|
|
keys[i] = (key + (i << 3)) & BUCKET_MASK;
|
|
}
|
|
key_out = keys[(cur_ix & BUCKET_SWEEP_MASK) >> 3];
|
|
for (i = 0; i < BUCKET_SWEEP; ++i) {
|
|
size_t len;
|
|
size_t backward;
|
|
prev_ix = buckets[keys[i]];
|
|
backward = cur_ix - prev_ix;
|
|
prev_ix &= (uint32_t)ring_buffer_mask;
|
|
if (compare_char != data[prev_ix + best_len]) {
|
|
continue;
|
|
}
|
|
if (BROTLI_PREDICT_FALSE(backward == 0 || backward > max_backward)) {
|
|
continue;
|
|
}
|
|
len = FindMatchLengthWithLimit(&data[prev_ix],
|
|
&data[cur_ix_masked],
|
|
max_length);
|
|
if (len >= 4) {
|
|
const score_t score = BackwardReferenceScore(len, backward);
|
|
if (best_score < score) {
|
|
best_len = len;
|
|
out->len = len;
|
|
compare_char = data[cur_ix_masked + len];
|
|
best_score = score;
|
|
out->score = score;
|
|
out->distance = backward;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (USE_DICTIONARY && min_score == out->score) {
|
|
SearchInStaticDictionary(dictionary,
|
|
self->common, &data[cur_ix_masked], max_length, dictionary_distance,
|
|
max_distance, out, BROTLI_TRUE);
|
|
}
|
|
if (BUCKET_SWEEP != 1) {
|
|
buckets[key_out] = (uint32_t)cur_ix;
|
|
}
|
|
}
|
|
|
|
#undef BUCKET_SWEEP_MASK
|
|
#undef BUCKET_SWEEP
|
|
#undef BUCKET_MASK
|
|
#undef BUCKET_SIZE
|
|
|
|
#undef HashLongestMatchQuickly
|