2016-11-17 23:15:52 +00:00
|
|
|
|
|
|
|
#make sure to compile pybullet with PYBULLET_USE_NUMPY enabled, otherwise use testrender.py (slower but compatible without numpy)
|
|
|
|
|
2016-09-11 10:09:10 +00:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import pybullet
|
|
|
|
import time
|
|
|
|
|
|
|
|
pybullet.connect(pybullet.DIRECT)
|
|
|
|
pybullet.loadURDF("r2d2.urdf")
|
|
|
|
|
|
|
|
camTargetPos = [0,0,0]
|
|
|
|
cameraUp = [0,0,1]
|
|
|
|
cameraPos = [1,1,1]
|
|
|
|
yaw = 40
|
|
|
|
pitch = 10.0
|
|
|
|
|
|
|
|
roll=0
|
|
|
|
upAxisIndex = 2
|
|
|
|
camDistance = 4
|
|
|
|
pixelWidth = 1920
|
|
|
|
pixelHeight = 1080
|
|
|
|
nearPlane = 0.01
|
|
|
|
farPlane = 1000
|
|
|
|
|
|
|
|
fov = 60
|
|
|
|
|
|
|
|
main_start = time.time()
|
|
|
|
for pitch in range (0,360,10) :
|
2016-11-17 23:15:52 +00:00
|
|
|
start = time.time()
|
|
|
|
viewMatrix = pybullet.computeViewMatrixFromYawPitchRoll(camTargetPos, camDistance, yaw, pitch, roll, upAxisIndex)
|
|
|
|
aspect = pixelWidth / pixelHeight;
|
|
|
|
projectionMatrix = pybullet.computeProjectionMatrixFOV(fov, aspect, nearPlane, farPlane);
|
|
|
|
img_arr = pybullet.getCameraImage(pixelWidth, pixelHeight, viewMatrix,projectionMatrix, [0,1,0])
|
|
|
|
stop = time.time()
|
|
|
|
print ("renderImage %f" % (stop - start))
|
|
|
|
|
|
|
|
w=img_arr[0] #width of the image, in pixels
|
|
|
|
h=img_arr[1] #height of the image, in pixels
|
|
|
|
rgb=img_arr[2] #color data RGB
|
|
|
|
dep=img_arr[3] #depth data
|
|
|
|
|
|
|
|
print 'width = %d height = %d' % (w,h)
|
|
|
|
|
|
|
|
#note that sending the data to matplotlib is really slow
|
|
|
|
#show
|
|
|
|
plt.imshow(rgb,interpolation='none')
|
|
|
|
#plt.show()
|
|
|
|
plt.pause(0.01)
|
2016-09-11 10:09:10 +00:00
|
|
|
|
|
|
|
main_stop = time.time()
|
2016-11-17 23:15:52 +00:00
|
|
|
|
|
|
|
print ("Total time %f" % (main_stop - main_start))
|
2016-09-11 10:09:10 +00:00
|
|
|
|
|
|
|
pybullet.resetSimulation()
|