bullet3/data/dinnerware/generate.py

254 lines
7.6 KiB
Python
Raw Normal View History

from __future__ import print_function
import numpy as np
class Obj:
def __init__(self, fn):
self.ind_v = 0
self.ind_vt = 0
self.ind_vn = 0
self.fn = fn
self.out = open(fn + ".tmp", "w")
self.out.write("mtllib dinnerware.mtl\n")
def __del__(self):
self.out.close()
import shutil
shutil.move(self.fn + ".tmp", self.fn)
def push_v(self, v):
self.out.write("v %f %f %f\n" % (v[0], v[1], v[2]))
self.ind_v += 1
return self.ind_v
def push_vt(self, vt):
self.out.write("vt %f %f\n" % (vt[0], vt[1]))
self.ind_vt += 1
return self.ind_vt
def push_vn(self, vn):
vn /= np.linalg.norm(vn)
self.out.write("vn %f %f %f\n" % (vn[0], vn[1], vn[2]))
self.ind_vn += 1
return self.ind_vn
def convex_hull(points, vind, nind, tind, obj):
"super ineffective"
cnt = len(points)
for a in range(cnt):
for b in range(a + 1, cnt):
for c in range(b + 1, cnt):
vec1 = points[a] - points[b]
vec2 = points[a] - points[c]
n = np.cross(vec1, vec2)
n /= np.linalg.norm(n)
C = np.dot(n, points[a])
inner = np.inner(n, points)
pos = (inner <= C + 0.0001).all()
neg = (inner >= C - 0.0001).all()
if not pos and not neg: continue
obj.out.write("f %i//%i %i//%i %i//%i\n" %
((vind[a], nind[a], vind[b], nind[b], vind[c], nind[c]) if
(inner - C).sum() < 0 else
(vind[a], nind[a], vind[c], nind[c], vind[b], nind[b])))
#obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
# (vind[a], tind[a], nind[a], vind[b], tind[b], nind[b], vind[c], tind[c], nind[c])
# if (inner - C).sum() < 0 else
# (vind[a], tind[a], nind[a], vind[c], tind[c], nind[c], vind[b], tind[b], nind[b]) ) )
def test_convex_hull():
obj = Obj("convex_test.obj")
vlist = np.random.uniform(low=-0.1, high=+0.1, size=(100, 3))
nlist = vlist.copy()
tlist = np.random.uniform(low=0, high=+1, size=(100, 2))
vind = [obj.push_v(xyz) for xyz in vlist]
nind = [obj.push_vn(xyz) for xyz in nlist]
tind = [obj.push_vt(uv) for uv in tlist]
convex_hull(vlist, vind, nind, tind, obj)
class Contour:
def __init__(self):
self.vprev_vind = None
def f(self, obj, vlist_vind, vlist_tind, vlist_nind):
cnt = len(vlist_vind)
for i1 in range(cnt):
i2 = i1 - 1
obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
vlist_vind[i2],
vlist_tind[i2],
vlist_nind[i2],
vlist_vind[i1],
vlist_tind[i1],
vlist_nind[i1],
self.vprev_vind[i1],
self.vprev_tind[i1],
self.vprev_nind[i1],
))
obj.out.write("f %i/%i/%i %i/%i/%i %i/%i/%i\n" % (
vlist_vind[i2],
vlist_tind[i2],
vlist_nind[i2],
self.vprev_vind[i1],
self.vprev_tind[i1],
self.vprev_nind[i1],
self.vprev_vind[i2],
self.vprev_tind[i2],
self.vprev_nind[i2],
))
def belt(self, obj, vlist, nlist, tlist):
vlist_vind = [obj.push_v(xyz) for xyz in vlist]
vlist_tind = [obj.push_vt(xyz) for xyz in tlist]
vlist_nind = [obj.push_vn(xyz) for xyz in nlist]
if self.vprev_vind:
self.f(obj, vlist_vind, vlist_tind, vlist_nind)
else:
self.first_vind = vlist_vind
self.first_tind = vlist_tind
self.first_nind = vlist_nind
self.vprev_vind = vlist_vind
self.vprev_tind = vlist_tind
self.vprev_nind = vlist_nind
def finish(self, obj):
self.f(obj, self.first_vind, self.first_tind, self.first_nind)
def test_contour():
RAD1 = 2.0
RAD2 = 1.5
obj = Obj("torus.obj")
obj.out.write("usemtl porcelain\n")
contour = Contour()
for step in range(100):
angle = step / 100.0 * 2 * np.pi
belt_v = []
belt_n = []
belt_t = []
for b in range(50):
beta = b / 50.0 * 2 * np.pi
r = RAD2 * np.cos(beta) + RAD1
z = RAD2 * np.sin(beta)
belt_v.append(np.array([np.cos(angle) * r, np.sin(angle) * r, z]))
belt_n.append(
np.array([np.cos(angle) * np.cos(beta),
np.sin(angle) * np.cos(beta),
np.sin(beta)]))
belt_t.append((0, 0))
contour.belt(obj, belt_v, belt_n, belt_t)
contour.finish(obj)
#test_convex_hull()
#test_contour()
class RotationFigureParams:
pass
def generate_plate(p, obj, collision_prefix):
contour = Contour()
belt_vlist_3d_prev = None
for step in range(p.N_VIZ + 1):
angle = step / float(p.N_VIZ) * 2 * np.pi
if step % p.COLLISION_EVERY == 0:
vlist_3d = []
for x, y in p.belt_simple:
vlist_3d.append([np.cos(angle) * x * 1.06, np.sin(angle) * x * 1.06, y])
if belt_vlist_3d_prev:
obj2 = Obj(collision_prefix % (step / p.COLLISION_EVERY))
obj2.out.write("usemtl pan_tefal\n")
vlist = np.array(vlist_3d + belt_vlist_3d_prev)
vlist[len(vlist_3d):] *= 1.01 # break points on one plane
vlist[0, 0:2] += 0.01 * vlist[len(vlist_3d), 0:2]
vlist[len(vlist_3d), 0:2] += 0.01 * vlist[0, 0:2]
nlist = np.random.uniform(low=-1, high=+1, size=vlist.shape)
tlist = np.random.uniform(low=0, high=+1, size=(len(vlist), 2))
vind = [obj2.push_v(xyz) for xyz in vlist]
nind = [obj2.push_vn(xyz) for xyz in nlist]
convex_hull(vlist, vind, nind, None, obj2)
belt_vlist_3d_prev = vlist_3d
if step == p.N_VIZ: break
belt_v = []
belt_n = []
belt_t = []
for x, y, nx, ny in p.belt:
belt_v.append(np.array([np.cos(angle) * x, np.sin(angle) * x, y]))
belt_n.append(np.array([np.cos(angle) * nx, np.sin(angle) * nx, ny]))
if ny - nx >= 0:
belt_t.append((127.0 / 512 + np.cos(angle) * x / p.RAD_HIGH * 105 / 512,
(512 - 135.0) / 512 + np.sin(angle) * x / p.RAD_HIGH * 105 / 512))
else:
belt_t.append((382.0 / 512 + np.cos(angle) * x / p.RAD_HIGH * 125 / 512,
(512 - 380.0) / 512 + np.sin(angle) * x / p.RAD_HIGH * 125 / 512))
contour.belt(obj, belt_v, belt_n, belt_t)
contour.finish(obj)
def tefal():
p = RotationFigureParams()
p.RAD_LOW = 0.240 / 2
p.RAD_HIGH = 0.255 / 2
p.H = 0.075
p.THICK = 0.005
p.N_VIZ = 30
p.COLLISION_EVERY = 5
p.belt = [
(p.RAD_HIGH - p.THICK, p.H, -1, 0), # x y norm
(p.RAD_HIGH, p.H, 0, 1),
(p.RAD_HIGH + p.THICK, p.H, +1, 0),
(p.RAD_LOW + p.THICK, p.THICK, +1, 0),
(p.RAD_LOW, 0, 0, -1),
(0, 0, 0, -1),
(0, p.THICK, 0, 1),
(p.RAD_LOW - p.THICK, p.THICK, 0, 1),
(p.RAD_LOW - p.THICK, 3 * p.THICK, -1, 0),
]
p.belt.reverse()
p.belt_simple = [(p.RAD_HIGH - p.THICK, p.H), (p.RAD_HIGH + p.THICK, p.H), (p.RAD_LOW, 0),
(p.RAD_LOW - p.THICK, 0)]
obj = Obj("pan_tefal.obj")
obj.out.write("usemtl pan_tefal\n")
generate_plate(p, obj, "pan_tefal-collision%02i.obj")
def plate():
p = RotationFigureParams()
p.RAD_LOW = 0.110 / 2
p.RAD_HIGH = 0.190 / 2
p.H = 0.060
p.THICK = 0.003
p.N_VIZ = 30
p.COLLISION_EVERY = 5
p.belt = [
(p.RAD_HIGH - p.THICK, p.H, -0.9, 0.5), # x y norm
(p.RAD_HIGH, p.H, 0, 1),
(p.RAD_HIGH + p.THICK, p.H, +1, 0),
(p.RAD_LOW + p.THICK, p.THICK, +1, 0),
(p.RAD_LOW, 0, 0, -1),
(0, 0, 0, -1),
(0, p.THICK, 0, 1),
(p.RAD_LOW - 3 * p.THICK, p.THICK, 0, 1),
(p.RAD_LOW - p.THICK, 3 * p.THICK, -0.5, 1.0),
]
p.belt.reverse()
p.belt_simple = [(p.RAD_HIGH - p.THICK, p.H), (p.RAD_HIGH + p.THICK, p.H), (p.RAD_LOW, 0),
(p.RAD_LOW - p.THICK, 0)]
obj = Obj("plate.obj")
obj.out.write("usemtl solid_color\n")
generate_plate(p, obj, "plate-collision%02i.obj")
plate()