bullet3/BulletDynamics/Dynamics/ContactJoint.cpp

271 lines
6.6 KiB
C++
Raw Normal View History

2006-05-25 19:18:29 +00:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "ContactJoint.h"
#include "RigidBody.h"
#include "NarrowPhaseCollision/PersistentManifold.h"
//this constant needs to be set up so different solvers give 'similar' results
#define FRICTION_CONSTANT 120.f
ContactJoint::ContactJoint(PersistentManifold* manifold,int index,bool swap,RigidBody* body0,RigidBody* body1)
:m_manifold(manifold),
m_index(index),
m_swapBodies(swap),
m_body0(body0),
m_body1(body1)
{
}
int m_numRows = 3;
void ContactJoint::GetInfo1(Info1 *info)
{
info->m = m_numRows;
//friction adds another 2...
info->nub = 0;
}
#define dCROSS(a,op,b,c) \
(a)[0] op ((b)[1]*(c)[2] - (b)[2]*(c)[1]); \
(a)[1] op ((b)[2]*(c)[0] - (b)[0]*(c)[2]); \
(a)[2] op ((b)[0]*(c)[1] - (b)[1]*(c)[0]);
#define M_SQRT12 SimdScalar(0.7071067811865475244008443621048490)
#define dRecipSqrt(x) ((float)(1.0f/SimdSqrt(float(x)))) /* reciprocal square root */
void dPlaneSpace1 (const dVector3 n, dVector3 p, dVector3 q)
{
if (SimdFabs(n[2]) > M_SQRT12) {
// choose p in y-z plane
SimdScalar a = n[1]*n[1] + n[2]*n[2];
SimdScalar k = dRecipSqrt (a);
p[0] = 0;
p[1] = -n[2]*k;
p[2] = n[1]*k;
// set q = n x p
q[0] = a*k;
q[1] = -n[0]*p[2];
q[2] = n[0]*p[1];
}
else {
// choose p in x-y plane
SimdScalar a = n[0]*n[0] + n[1]*n[1];
SimdScalar k = dRecipSqrt (a);
p[0] = -n[1]*k;
p[1] = n[0]*k;
p[2] = 0;
// set q = n x p
q[0] = -n[2]*p[1];
q[1] = n[2]*p[0];
q[2] = a*k;
}
}
void ContactJoint::GetInfo2(Info2 *info)
{
int s = info->rowskip;
int s2 = 2*s;
float swapFactor = m_swapBodies ? -1.f : 1.f;
// get normal, with sign adjusted for body1/body2 polarity
dVector3 normal;
ManifoldPoint& point = m_manifold->GetContactPoint(m_index);
normal[0] = swapFactor*point.m_normalWorldOnB[0];
normal[1] = swapFactor*point.m_normalWorldOnB[1];
normal[2] = swapFactor*point.m_normalWorldOnB[2];
normal[3] = 0; // @@@ hmmm
// if (GetBody0())
SimdVector3 relativePositionA;
{
relativePositionA = point.GetPositionWorldOnA() - m_body0->getCenterOfMassPosition();
dVector3 c1;
c1[0] = relativePositionA[0];
c1[1] = relativePositionA[1];
c1[2] = relativePositionA[2];
// set jacobian for normal
info->J1l[0] = normal[0];
info->J1l[1] = normal[1];
info->J1l[2] = normal[2];
dCROSS (info->J1a,=,c1,normal);
}
// if (GetBody1())
SimdVector3 relativePositionB;
{
dVector3 c2;
relativePositionB = point.GetPositionWorldOnB() - m_body1->getCenterOfMassPosition();
// for (i=0; i<3; i++) c2[i] = j->contact.geom.pos[i] -
// j->node[1].body->pos[i];
c2[0] = relativePositionB[0];
c2[1] = relativePositionB[1];
c2[2] = relativePositionB[2];
info->J2l[0] = -normal[0];
info->J2l[1] = -normal[1];
info->J2l[2] = -normal[2];
dCROSS (info->J2a,= -,c2,normal);
}
SimdScalar k = info->fps * info->erp;
float depth = -point.GetDistance();
// if (depth < 0.f)
// depth = 0.f;
info->c[0] = k * depth;
//float maxvel = .2f;
// if (info->c[0] > maxvel)
// info->c[0] = maxvel;
//can override it, not necessary
// info->cfm[0] = 0.f;
// info->cfm[1] = 0.f;
// info->cfm[2] = 0.f;
// set LCP limits for normal
info->lo[0] = 0;
info->hi[0] = 1e30f;//dInfinity;
info->lo[1] = 0;
info->hi[1] = 0.f;
info->lo[2] = 0.f;
info->hi[2] = 0.f;
#define DO_THE_FRICTION_2
#ifdef DO_THE_FRICTION_2
// now do jacobian for tangential forces
dVector3 t1,t2; // two vectors tangential to normal
dVector3 c1;
c1[0] = relativePositionA[0];
c1[1] = relativePositionA[1];
c1[2] = relativePositionA[2];
dVector3 c2;
c2[0] = relativePositionB[0];
c2[1] = relativePositionB[1];
c2[2] = relativePositionB[2];
float friction = FRICTION_CONSTANT*m_body0->getFriction() * m_body1->getFriction();
// first friction direction
if (m_numRows >= 2)
{
dPlaneSpace1 (normal,t1,t2);
info->J1l[s+0] = t1[0];
info->J1l[s+1] = t1[1];
info->J1l[s+2] = t1[2];
dCROSS (info->J1a+s,=,c1,t1);
if (1) { //j->node[1].body) {
info->J2l[s+0] = -t1[0];
info->J2l[s+1] = -t1[1];
info->J2l[s+2] = -t1[2];
dCROSS (info->J2a+s,= -,c2,t1);
}
// set right hand side
if (0) {//j->contact.surface.mode & dContactMotion1) {
//info->c[1] = j->contact.surface.motion1;
}
// set LCP bounds and friction index. this depends on the approximation
// mode
//1e30f
info->lo[1] = -friction;//-j->contact.surface.mu;
info->hi[1] = friction;//j->contact.surface.mu;
if (1)//j->contact.surface.mode & dContactApprox1_1)
info->findex[1] = 0;
// set slip (constraint force mixing)
if (0)//j->contact.surface.mode & dContactSlip1)
{
// info->cfm[1] = j->contact.surface.slip1;
} else
{
//info->cfm[1] = 0.f;
}
}
// second friction direction
if (m_numRows >= 3) {
info->J1l[s2+0] = t2[0];
info->J1l[s2+1] = t2[1];
info->J1l[s2+2] = t2[2];
dCROSS (info->J1a+s2,=,c1,t2);
if (1) { //j->node[1].body) {
info->J2l[s2+0] = -t2[0];
info->J2l[s2+1] = -t2[1];
info->J2l[s2+2] = -t2[2];
dCROSS (info->J2a+s2,= -,c2,t2);
}
// set right hand side
if (0){//j->contact.surface.mode & dContactMotion2) {
//info->c[2] = j->contact.surface.motion2;
}
// set LCP bounds and friction index. this depends on the approximation
// mode
if (0){//j->contact.surface.mode & dContactMu2) {
//info->lo[2] = -j->contact.surface.mu2;
//info->hi[2] = j->contact.surface.mu2;
}
else {
info->lo[2] = -friction;
info->hi[2] = friction;
}
if (0)//j->contact.surface.mode & dContactApprox1_2)
{
info->findex[2] = 0;
}
// set slip (constraint force mixing)
if (0) //j->contact.surface.mode & dContactSlip2)
{
//info->cfm[2] = j->contact.surface.slip2;
}
}
#endif //DO_THE_FRICTION_2
}