bullet3/examples/OpenGLWindow/SimpleOpenGL2Renderer.cpp

667 lines
19 KiB
C++
Raw Normal View History

#include "SimpleOpenGL2Renderer.h"
#include "OpenGL2Include.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "GLInstanceGraphicsShape.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Common/b3ResizablePool.h"
B3_ATTRIBUTE_ALIGNED16(struct)
SimpleGL2Shape
{
B3_DECLARE_ALIGNED_ALLOCATOR();
int m_textureIndex;
int m_primitiveType;
b3AlignedObjectArray<int> m_indices;
b3AlignedObjectArray<GLInstanceVertex> m_vertices;
b3Vector3 m_scaling;
};
B3_ATTRIBUTE_ALIGNED16(struct)
SimpleGL2Instance
{
B3_DECLARE_ALIGNED_ALLOCATOR();
int m_shapeIndex;
b3Vector3 m_position;
b3Quaternion orn;
b3Vector4 m_rgbColor;
b3Vector3 m_scaling;
void clear()
{
}
};
struct InternalTextureHandle2
{
GLuint m_glTexture;
int m_width;
int m_height;
};
typedef b3PoolBodyHandle<SimpleGL2Instance> SimpleGL2InstanceHandle;
struct SimpleOpenGL2RendererInternalData
{
int m_width;
int m_height;
SimpleCamera m_camera;
b3AlignedObjectArray<SimpleGL2Shape*> m_shapes;
//b3AlignedObjectArray<SimpleGL2Instance> m_graphicsInstances1;
b3ResizablePool<SimpleGL2InstanceHandle> m_graphicsInstancesPool;
b3AlignedObjectArray<InternalTextureHandle2> m_textureHandles;
};
SimpleOpenGL2Renderer::SimpleOpenGL2Renderer(int width, int height)
{
m_data = new SimpleOpenGL2RendererInternalData;
m_data->m_width = width;
m_data->m_height = height;
}
SimpleOpenGL2Renderer::~SimpleOpenGL2Renderer()
{
delete m_data;
}
void SimpleOpenGL2Renderer::init()
{
}
2015-04-16 22:16:13 +00:00
const CommonCameraInterface* SimpleOpenGL2Renderer::getActiveCamera() const
{
return &m_data->m_camera;
2015-04-16 22:16:13 +00:00
}
CommonCameraInterface* SimpleOpenGL2Renderer::getActiveCamera()
{
return &m_data->m_camera;
2015-04-16 22:16:13 +00:00
}
void SimpleOpenGL2Renderer::setActiveCamera(CommonCameraInterface* cam)
{
b3Assert(0); //not supported yet
2015-04-16 22:16:13 +00:00
}
void SimpleOpenGL2Renderer::setLightPosition(const float lightPos[3])
{
}
void SimpleOpenGL2Renderer::setLightPosition(const double lightPos[3])
{
}
void SimpleOpenGL2Renderer::updateCamera(int upAxis)
{
float projection[16];
float view[16];
getActiveCamera()->setAspectRatio((float)m_data->m_width / (float)m_data->m_height);
getActiveCamera()->setCameraUpAxis(upAxis);
m_data->m_camera.update(); //??
getActiveCamera()->getCameraProjectionMatrix(projection);
getActiveCamera()->getCameraViewMatrix(view);
GLfloat projMat[16];
GLfloat viewMat[16];
for (int i = 0; i < 16; i++)
{
viewMat[i] = view[i];
projMat[i] = projection[i];
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMultMatrixf(projMat);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glMultMatrixf(viewMat);
}
void SimpleOpenGL2Renderer::removeAllInstances()
{
for (int i = 0; i < m_data->m_shapes.size(); i++)
{
delete m_data->m_shapes[i];
}
m_data->m_shapes.clear();
m_data->m_graphicsInstancesPool.exitHandles();
m_data->m_graphicsInstancesPool.initHandles();
//also destroy textures?
m_data->m_textureHandles.clear();
}
void SimpleOpenGL2Renderer::removeGraphicsInstance(int instanceUid)
{
m_data->m_graphicsInstancesPool.freeHandle(instanceUid);
}
bool SimpleOpenGL2Renderer::readSingleInstanceTransformToCPU(float* position, float* orientation, int srcIndex)
{
return false;
}
void SimpleOpenGL2Renderer::writeSingleInstanceColorToCPU(const float* color, int srcIndex)
{
}
void SimpleOpenGL2Renderer::writeSingleInstanceColorToCPU(const double* color, int srcIndex)
{
}
void SimpleOpenGL2Renderer::writeSingleInstanceScaleToCPU(const float* scale, int srcIndex)
{
}
void SimpleOpenGL2Renderer::writeSingleInstanceScaleToCPU(const double* scale, int srcIndex)
{
}
int SimpleOpenGL2Renderer::getTotalNumInstances() const
{
return m_data->m_graphicsInstancesPool.getNumHandles();
}
void SimpleOpenGL2Renderer::getCameraViewMatrix(float viewMat[16]) const
{
b3Assert(0);
}
void SimpleOpenGL2Renderer::getCameraProjectionMatrix(float projMat[16]) const
{
b3Assert(0);
}
void SimpleOpenGL2Renderer::drawOpenGL(int instanceIndex)
{
const SimpleGL2Instance* instPtr = m_data->m_graphicsInstancesPool.getHandle(instanceIndex);
if (0 == instPtr)
{
b3Assert(0);
return;
}
const SimpleGL2Instance& inst = *instPtr;
const SimpleGL2Shape* shape = m_data->m_shapes[inst.m_shapeIndex];
if (inst.m_rgbColor[3] == 0)
{
return;
}
glPushMatrix();
b3Transform tr;
tr.setOrigin(b3MakeVector3(inst.m_position[0], inst.m_position[1], inst.m_position[2]));
tr.setRotation(b3Quaternion(inst.orn[0], inst.orn[1], inst.orn[2], inst.orn[3]));
b3Scalar m[16];
tr.getOpenGLMatrix(m);
#ifdef B3_USE_DOUBLE_PRECISION
glMultMatrixd(m);
#else
glMultMatrixf(m);
#endif
#if 0
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(0.025f,0.025f,0.025f);
glMatrixMode(GL_MODELVIEW);
static const GLfloat planex[]={1,0,0,0};
// static const GLfloat planey[]={0,1,0,0};
static const GLfloat planez[]={0,0,1,0};
glTexGenfv(GL_S,GL_OBJECT_PLANE,planex);
glTexGenfv(GL_T,GL_OBJECT_PLANE,planez);
glTexGeni(GL_S,GL_TEXTURE_GEN_MODE,GL_OBJECT_LINEAR);
glTexGeni(GL_T,GL_TEXTURE_GEN_MODE,GL_OBJECT_LINEAR);
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
m_textureinitialized=true;
#endif
//drawCoordSystem();
//glPushMatrix();
// glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
// glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
// glMatrixMode(GL_TEXTURE);
// glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
glEnable(GL_COLOR_MATERIAL);
if (shape->m_textureIndex >= 0)
{
glEnable(GL_TEXTURE_2D);
activateTexture(shape->m_textureIndex);
}
else
{
glDisable(GL_TEXTURE_2D);
}
glColor3f(inst.m_rgbColor[0], inst.m_rgbColor[1], inst.m_rgbColor[2]);
glScalef(inst.m_scaling[0], inst.m_scaling[1], inst.m_scaling[2]);
glShadeModel(GL_SMOOTH);
glBegin(GL_TRIANGLES);
for (int i = 0; i < shape->m_indices.size(); i += 3)
{
for (int v = 0; v < 3; v++)
{
const GLInstanceVertex& vtx0 = shape->m_vertices[shape->m_indices[i + v]];
glNormal3f(vtx0.normal[0], vtx0.normal[1], vtx0.normal[2]);
glTexCoord2f(vtx0.uv[0], vtx0.uv[1]);
glVertex3f(vtx0.xyzw[0], vtx0.xyzw[1], vtx0.xyzw[2]);
}
}
glEnd();
glPopMatrix();
}
void SimpleOpenGL2Renderer::drawSceneInternal(int pass, int cameraUpAxis)
{
b3AlignedObjectArray<int> usedHandles;
m_data->m_graphicsInstancesPool.getUsedHandles(usedHandles);
for (int i = 0; i < usedHandles.size(); i++)
{
drawOpenGL(usedHandles[i]);
}
#if 0
b3Scalar m[16];
b3Matrix3x3 rot;rot.setIdentity();
const int numObjects=dynamicsWorld->getNumCollisionObjects();
btVector3 wireColor(1,0,0);
//glDisable(GL_CULL_FACE);
for(int i=0;i<numObjects;i++)
{
const btCollisionObject* colObj=dynamicsWorld->getCollisionObjectArray()[i];
const btRigidBody* body=btRigidBody::upcast(colObj);
if(body&&body->getMotionState())
{
btDefaultMotionState* myMotionState = (btDefaultMotionState*)body->getMotionState();
myMotionState->m_graphicsWorldTrans.getOpenGLMatrix(m);
rot=myMotionState->m_graphicsWorldTrans.getBasis();
}
else
{
colObj->getWorldTransform().getOpenGLMatrix(m);
rot=colObj->getWorldTransform().getBasis();
}
btVector3 wireColor(1.f,1.0f,0.5f); //wants deactivation
if(i&1) wireColor=btVector3(0.f,0.0f,1.f);
///color differently for active, sleeping, wantsdeactivation states
if (colObj->getActivationState() == 1) //active
{
if (i & 1)
{
wireColor += btVector3 (1.f,0.f,0.f);
}
else
{
wireColor += btVector3 (.5f,0.f,0.f);
}
}
if(colObj->getActivationState()==2) //ISLAND_SLEEPING
{
if(i&1)
{
wireColor += btVector3 (0.f,1.f, 0.f);
}
else
{
wireColor += btVector3 (0.f,0.5f,0.f);
}
}
btVector3 aabbMin(0,0,0),aabbMax(0,0,0);
//m_dynamicsWorld->getBroadphase()->getBroadphaseAabb(aabbMin,aabbMax);
aabbMin-=btVector3(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT);
aabbMax+=btVector3(BT_LARGE_FLOAT,BT_LARGE_FLOAT,BT_LARGE_FLOAT);
// printf("aabbMin=(%f,%f,%f)\n",aabbMin.getX(),aabbMin.getY(),aabbMin.getZ());
// printf("aabbMax=(%f,%f,%f)\n",aabbMax.getX(),aabbMax.getY(),aabbMax.getZ());
// m_dynamicsWorld->getDebugDrawer()->drawAabb(aabbMin,aabbMax,btVector3(1,1,1));
//switch(pass)
//if (!(getDebugMode()& btIDebugDraw::DBG_DrawWireframe))
int debugMode = 0;//getDebugMode()
//btVector3 m_sundirection(-1,-1,-1);
btVector3 m_sundirection(btVector3(1,-2,1)*1000);
if (cameraUpAxis==2)
{
m_sundirection = btVector3(1,1,-2)*1000;
}
switch(pass)
{
case 0: drawOpenGL(m,colObj->getCollisionShape(),wireColor,debugMode,aabbMin,aabbMax);break;
case 1: drawShadow(m,m_sundirection*rot,colObj->getCollisionShape(),aabbMin,aabbMax);break;
case 2: drawOpenGL(m,colObj->getCollisionShape(),wireColor*b3Scalar(0.3),0,aabbMin,aabbMax);break;
}
}
#endif
}
void SimpleOpenGL2Renderer::renderScene()
{
GLfloat light_ambient[] = {b3Scalar(0.2), b3Scalar(0.2), b3Scalar(0.2), b3Scalar(1.0)};
GLfloat light_diffuse[] = {b3Scalar(1.0), b3Scalar(1.0), b3Scalar(1.0), b3Scalar(1.0)};
GLfloat light_specular[] = {b3Scalar(1.0), b3Scalar(1.0), b3Scalar(1.0), b3Scalar(1.0)};
/* light_position is NOT default value */
GLfloat light_position0[] = {b3Scalar(1.0), b3Scalar(10.0), b3Scalar(1.0), b3Scalar(0.0)};
GLfloat light_position1[] = {b3Scalar(-1.0), b3Scalar(-10.0), b3Scalar(-1.0), b3Scalar(0.0)};
glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT0, GL_POSITION, light_position0);
glLightfv(GL_LIGHT1, GL_AMBIENT, light_ambient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, light_diffuse);
glLightfv(GL_LIGHT1, GL_SPECULAR, light_specular);
glLightfv(GL_LIGHT1, GL_POSITION, light_position1);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
glShadeModel(GL_SMOOTH);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LESS);
drawSceneInternal(0, 0);
}
int SimpleOpenGL2Renderer::registerTexture(const unsigned char* texels, int width, int height, bool flipTexelsY)
{
b3Assert(glGetError() == GL_NO_ERROR);
glActiveTexture(GL_TEXTURE0);
int textureIndex = m_data->m_textureHandles.size();
// const GLubyte* image= (const GLubyte*)texels;
GLuint textureHandle;
glGenTextures(1, (GLuint*)&textureHandle);
glBindTexture(GL_TEXTURE_2D, textureHandle);
b3Assert(glGetError() == GL_NO_ERROR);
InternalTextureHandle2 h;
h.m_glTexture = textureHandle;
h.m_width = width;
h.m_height = height;
m_data->m_textureHandles.push_back(h);
updateTexture(textureIndex, texels, flipTexelsY);
return textureIndex;
}
void SimpleOpenGL2Renderer::updateTexture(int textureIndex, const unsigned char* texels, bool flipTexelsY)
{
if (textureIndex >= 0)
{
glActiveTexture(GL_TEXTURE0);
b3Assert(glGetError() == GL_NO_ERROR);
InternalTextureHandle2& h = m_data->m_textureHandles[textureIndex];
glBindTexture(GL_TEXTURE_2D, h.m_glTexture);
b3Assert(glGetError() == GL_NO_ERROR);
if (flipTexelsY)
{
//textures need to be flipped for OpenGL...
b3AlignedObjectArray<unsigned char> flippedTexels;
flippedTexels.resize(h.m_width * h.m_height * 3);
for (int i = 0; i < h.m_width; i++)
{
for (int j = 0; j < h.m_height; j++)
{
flippedTexels[(i + j * h.m_width) * 3] = texels[(i + (h.m_height - 1 - j) * h.m_width) * 3];
flippedTexels[(i + j * h.m_width) * 3 + 1] = texels[(i + (h.m_height - 1 - j) * h.m_width) * 3 + 1];
flippedTexels[(i + j * h.m_width) * 3 + 2] = texels[(i + (h.m_height - 1 - j) * h.m_width) * 3 + 2];
}
}
// const GLubyte* image= (const GLubyte*)texels;
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, h.m_width, h.m_height, 0, GL_RGB, GL_UNSIGNED_BYTE, &flippedTexels[0]);
}
else
{
// const GLubyte* image= (const GLubyte*)texels;
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, h.m_width, h.m_height, 0, GL_RGB, GL_UNSIGNED_BYTE, &texels[0]);
}
b3Assert(glGetError() == GL_NO_ERROR);
//glGenerateMipmap(GL_TEXTURE_2D);
b3Assert(glGetError() == GL_NO_ERROR);
}
}
void SimpleOpenGL2Renderer::removeTexture(int textureIndex)
{
if ((textureIndex >= 0) && (textureIndex < m_data->m_textureHandles.size()))
{
glDeleteTextures(1, &m_data->m_textureHandles[textureIndex].m_glTexture);
}
}
void SimpleOpenGL2Renderer::activateTexture(int textureIndex)
{
glActiveTexture(GL_TEXTURE0);
if (textureIndex >= 0)
{
glBindTexture(GL_TEXTURE_2D, m_data->m_textureHandles[textureIndex].m_glTexture);
}
else
{
glBindTexture(GL_TEXTURE_2D, 0);
}
}
int SimpleOpenGL2Renderer::registerGraphicsInstance(int shapeIndex, const double* position, const double* quaternion, const double* color, const double* scaling)
{
int newHandle = m_data->m_graphicsInstancesPool.allocHandle();
// int sz = m_data->m_graphicsInstances.size();
SimpleGL2Instance& instance = *m_data->m_graphicsInstancesPool.getHandle(newHandle);
instance.m_shapeIndex = shapeIndex;
instance.m_position[0] = position[0];
instance.m_position[1] = position[1];
instance.m_position[2] = position[2];
instance.orn[0] = quaternion[0];
instance.orn[1] = quaternion[1];
instance.orn[2] = quaternion[2];
instance.orn[3] = quaternion[3];
instance.m_rgbColor[0] = color[0];
instance.m_rgbColor[1] = color[1];
instance.m_rgbColor[2] = color[2];
instance.m_rgbColor[3] = color[3];
instance.m_scaling[0] = scaling[0];
instance.m_scaling[1] = scaling[1];
instance.m_scaling[2] = scaling[2];
return newHandle;
}
int SimpleOpenGL2Renderer::registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling)
{
int newHandle = m_data->m_graphicsInstancesPool.allocHandle();
SimpleGL2Instance& instance = *m_data->m_graphicsInstancesPool.getHandle(newHandle);
instance.m_shapeIndex = shapeIndex;
instance.m_position[0] = position[0];
instance.m_position[1] = position[1];
instance.m_position[2] = position[2];
instance.orn[0] = quaternion[0];
instance.orn[1] = quaternion[1];
instance.orn[2] = quaternion[2];
instance.orn[3] = quaternion[3];
instance.m_rgbColor[0] = color[0];
instance.m_rgbColor[1] = color[1];
instance.m_rgbColor[2] = color[2];
instance.m_rgbColor[3] = color[3];
instance.m_scaling[0] = scaling[0];
instance.m_scaling[1] = scaling[1];
instance.m_scaling[2] = scaling[2];
return newHandle;
}
void SimpleOpenGL2Renderer::drawLines(const float* positions, const float color[4], int numPoints, int pointStrideInBytes, const unsigned int* indices, int numIndices, float pointDrawSize)
{
int pointStrideInFloats = pointStrideInBytes / 4;
glLineWidth(pointDrawSize);
for (int i = 0; i < numIndices; i += 2)
{
int index0 = indices[i];
int index1 = indices[i + 1];
b3Vector3 fromColor = b3MakeVector3(color[0], color[1], color[2]);
b3Vector3 toColor = b3MakeVector3(color[0], color[1], color[2]);
b3Vector3 from = b3MakeVector3(positions[index0 * pointStrideInFloats], positions[index0 * pointStrideInFloats + 1], positions[index0 * pointStrideInFloats + 2]);
b3Vector3 to = b3MakeVector3(positions[index1 * pointStrideInFloats], positions[index1 * pointStrideInFloats + 1], positions[index1 * pointStrideInFloats + 2]);
glBegin(GL_LINES);
glColor3f(fromColor.getX(), fromColor.getY(), fromColor.getZ());
glVertex3d(from.getX(), from.getY(), from.getZ());
glColor3f(toColor.getX(), toColor.getY(), toColor.getZ());
glVertex3d(to.getX(), to.getY(), to.getZ());
glEnd();
}
}
void SimpleOpenGL2Renderer::drawLine(const float from[4], const float to[4], const float color[4], float lineWidth)
{
glLineWidth(lineWidth);
glBegin(GL_LINES);
glColor3f(color[0], color[1], color[2]);
glVertex3d(from[0], from[1], from[2]);
glVertex3d(to[0], to[1], to[2]);
glEnd();
}
int SimpleOpenGL2Renderer::registerShape(const float* vertices, int numvertices, const int* indices, int numIndices, int primitiveType, int textureIndex)
{
SimpleGL2Shape* shape = new SimpleGL2Shape();
shape->m_textureIndex = textureIndex;
shape->m_indices.resize(numIndices);
for (int i = 0; i < numIndices; i++)
{
shape->m_indices[i] = indices[i];
}
shape->m_vertices.resize(numvertices);
for (int v = 0; v < numvertices; v++)
{
GLInstanceVertex& vtx = shape->m_vertices[v];
vtx.xyzw[0] = vertices[9 * v + 0];
vtx.xyzw[1] = vertices[9 * v + 1];
vtx.xyzw[2] = vertices[9 * v + 2];
vtx.xyzw[3] = vertices[9 * v + 3];
vtx.normal[0] = vertices[9 * v + 4];
vtx.normal[1] = vertices[9 * v + 5];
vtx.normal[2] = vertices[9 * v + 6];
vtx.uv[0] = vertices[9 * v + 7];
vtx.uv[1] = vertices[9 * v + 8];
}
int sz = m_data->m_shapes.size();
m_data->m_shapes.push_back(shape);
return sz;
}
void SimpleOpenGL2Renderer::writeSingleInstanceTransformToCPU(const float* position, const float* orientation, int srcIndex)
{
SimpleGL2Instance& graphicsInstance = *m_data->m_graphicsInstancesPool.getHandle(srcIndex);
graphicsInstance.m_position[0] = position[0];
graphicsInstance.m_position[1] = position[1];
graphicsInstance.m_position[2] = position[2];
graphicsInstance.orn[0] = orientation[0];
graphicsInstance.orn[1] = orientation[1];
graphicsInstance.orn[2] = orientation[2];
graphicsInstance.orn[3] = orientation[3];
}
void SimpleOpenGL2Renderer::writeSingleInstanceTransformToCPU(const double* position, const double* orientation, int srcIndex)
{
SimpleGL2Instance& graphicsInstance = *m_data->m_graphicsInstancesPool.getHandle(srcIndex);
graphicsInstance.m_position[0] = position[0];
graphicsInstance.m_position[1] = position[1];
graphicsInstance.m_position[2] = position[2];
graphicsInstance.orn[0] = orientation[0];
graphicsInstance.orn[1] = orientation[1];
graphicsInstance.orn[2] = orientation[2];
graphicsInstance.orn[3] = orientation[3];
}
void SimpleOpenGL2Renderer::writeTransforms()
{
}
void SimpleOpenGL2Renderer::resize(int width, int height)
{
m_data->m_width = width;
m_data->m_height = height;
}
int SimpleOpenGL2Renderer::getScreenWidth()
{
return m_data->m_width;
}
int SimpleOpenGL2Renderer::getScreenHeight()
{
return m_data->m_height;
}
void SimpleOpenGL2Renderer::drawLine(const double from[4], const double to[4], const double color[4], double lineWidth)
{
glLineWidth(lineWidth);
glBegin(GL_LINES);
glColor3f(color[0], color[1], color[2]);
glVertex3d(from[0], from[1], from[2]);
glVertex3d(to[0], to[1], to[2]);
glEnd();
}
void SimpleOpenGL2Renderer::drawPoint(const float* position, const float color[4], float pointDrawSize)
{
}
void SimpleOpenGL2Renderer::drawPoint(const double* position, const double color[4], double pointDrawSize)
{
}
* add textured models of ball.vtk (obj/mtl) and torus (obj/mtl) and cloth. 1) allow to render deformables in 'getCameraImage', for TinyRenderer (tested OK) and EGL (untested) 2) allow to have textures for deformables. See deformable_ball.py, deformable_anchor.py and deformable_torus.py for examples 3) deformables: allow to request simulation mesh data (even if there is a render mesh) See deformable_anchor.py for an example usage data = p.getMeshData(clothId, -1, flags=p.MESH_DATA_SIMULATION_MESH) 4) fix deletion of deformables, thanks to Fychuyan, https://github.com/bulletphysics/bullet3/pull/3048 5) allow to enable and disable double-sided rendering, p.changeVisualShape(objectUid, linkIndex, flags=p.VISUAL_SHAPE_DOUBLE_SIDED) 6) fix GripperGraspExample, model not found 7) Fix deformable anchor not attaching to multibody with object unique id of 0 8) Fix issue with assignment of unique ids in TinyRenderer/EGL renderer (always use broadphase uid) 9) Avoid crash/issue of simulation with pinned vertices (mass 0) in btDeformableBackwardEulerObjective::applyExplicitForce 10) Store uv/normal in btSoftBody::RenderNode to allow textured meshes 11) (uncomment in btSoftBodyHelpers.cpp): dump vertices and indices in obj wavefront format, when loading a VTK file, for quicker creation of a (textured) surface mesh 12) allow interpolateRenderMesh also for old position-based soft bodies (not only the shiny new FEM deformables) 13) fix a few premake targets 14) update build_visual_studio_vr_pybullet_double_cmake.bat so it suits c:\python37 and installs locally for local install of Bullet, see also this example https://github.com/erwincoumans/hello_bullet_cmake
2020-09-12 08:03:04 +00:00
void SimpleOpenGL2Renderer::updateShape(int shapeIndex, const float* vertices, int numVertices)
{
SimpleGL2Shape* shape = m_data->m_shapes[shapeIndex];
int numvertices = shape->m_vertices.size();
* add textured models of ball.vtk (obj/mtl) and torus (obj/mtl) and cloth. 1) allow to render deformables in 'getCameraImage', for TinyRenderer (tested OK) and EGL (untested) 2) allow to have textures for deformables. See deformable_ball.py, deformable_anchor.py and deformable_torus.py for examples 3) deformables: allow to request simulation mesh data (even if there is a render mesh) See deformable_anchor.py for an example usage data = p.getMeshData(clothId, -1, flags=p.MESH_DATA_SIMULATION_MESH) 4) fix deletion of deformables, thanks to Fychuyan, https://github.com/bulletphysics/bullet3/pull/3048 5) allow to enable and disable double-sided rendering, p.changeVisualShape(objectUid, linkIndex, flags=p.VISUAL_SHAPE_DOUBLE_SIDED) 6) fix GripperGraspExample, model not found 7) Fix deformable anchor not attaching to multibody with object unique id of 0 8) Fix issue with assignment of unique ids in TinyRenderer/EGL renderer (always use broadphase uid) 9) Avoid crash/issue of simulation with pinned vertices (mass 0) in btDeformableBackwardEulerObjective::applyExplicitForce 10) Store uv/normal in btSoftBody::RenderNode to allow textured meshes 11) (uncomment in btSoftBodyHelpers.cpp): dump vertices and indices in obj wavefront format, when loading a VTK file, for quicker creation of a (textured) surface mesh 12) allow interpolateRenderMesh also for old position-based soft bodies (not only the shiny new FEM deformables) 13) fix a few premake targets 14) update build_visual_studio_vr_pybullet_double_cmake.bat so it suits c:\python37 and installs locally for local install of Bullet, see also this example https://github.com/erwincoumans/hello_bullet_cmake
2020-09-12 08:03:04 +00:00
b3Assert(numVertices = numvertices);
if (numVertices != numvertices)
return;
for (int i = 0; i < numvertices; i++)
{
shape->m_vertices[i].xyzw[0] = vertices[9 * i + 0];
shape->m_vertices[i].xyzw[1] = vertices[9 * i + 1];
shape->m_vertices[i].xyzw[2] = vertices[9 * i + 2];
shape->m_vertices[i].xyzw[3] = vertices[9 * i + 3];
shape->m_vertices[i].normal[0] = vertices[9 * i + 4];
shape->m_vertices[i].normal[1] = vertices[9 * i + 5];
shape->m_vertices[i].normal[2] = vertices[9 * i + 6];
shape->m_vertices[i].uv[0] = vertices[9 * i + 7];
shape->m_vertices[i].uv[1] = vertices[9 * i + 8];
}
}
void SimpleOpenGL2Renderer::clearZBuffer()
{
glClear(GL_DEPTH_BUFFER_BIT);
}