mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 05:40:05 +00:00
467 lines
11 KiB
C++
467 lines
11 KiB
C++
|
#include "float_math.h"
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <assert.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
/*----------------------------------------------------------------------
|
||
|
Copyright (c) 2004 Open Dynamics Framework Group
|
||
|
www.physicstools.org
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided
|
||
|
that the following conditions are met:
|
||
|
|
||
|
Redistributions of source code must retain the above copyright notice, this list of conditions
|
||
|
and the following disclaimer.
|
||
|
|
||
|
Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
|
||
|
Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
|
||
|
be used to endorse or promote products derived from this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
||
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
||
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
-----------------------------------------------------------------------*/
|
||
|
|
||
|
// http://codesuppository.blogspot.com
|
||
|
//
|
||
|
// mailto: jratcliff@infiniplex.net
|
||
|
//
|
||
|
// http://www.amillionpixels.us
|
||
|
//
|
||
|
// Geometric Tools, Inc.
|
||
|
// http://www.geometrictools.com
|
||
|
// Copyright (c) 1998-2006. All Rights Reserved
|
||
|
//
|
||
|
// The Wild Magic Library (WM3) source code is supplied under the terms of
|
||
|
// the license agreement
|
||
|
// http://www.geometrictools.com/License/WildMagic3License.pdf
|
||
|
// and may not be copied or disclosed except in accordance with the terms
|
||
|
// of that agreement.
|
||
|
|
||
|
#include "bestfit.h"
|
||
|
|
||
|
namespace BestFit
|
||
|
{
|
||
|
|
||
|
class Vec3
|
||
|
{
|
||
|
public:
|
||
|
Vec3(void) { };
|
||
|
Vec3(float _x,float _y,float _z) { x = _x; y = _y; z = _z; };
|
||
|
|
||
|
|
||
|
float dot(const Vec3 &v)
|
||
|
{
|
||
|
return x*v.x + y*v.y + z*v.z; // the dot product
|
||
|
}
|
||
|
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
};
|
||
|
|
||
|
|
||
|
class Eigen
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
|
||
|
void DecrSortEigenStuff(void)
|
||
|
{
|
||
|
Tridiagonal(); //diagonalize the matrix.
|
||
|
QLAlgorithm(); //
|
||
|
DecreasingSort();
|
||
|
GuaranteeRotation();
|
||
|
}
|
||
|
|
||
|
void Tridiagonal(void)
|
||
|
{
|
||
|
float fM00 = mElement[0][0];
|
||
|
float fM01 = mElement[0][1];
|
||
|
float fM02 = mElement[0][2];
|
||
|
float fM11 = mElement[1][1];
|
||
|
float fM12 = mElement[1][2];
|
||
|
float fM22 = mElement[2][2];
|
||
|
|
||
|
m_afDiag[0] = fM00;
|
||
|
m_afSubd[2] = 0;
|
||
|
if (fM02 != (float)0.0)
|
||
|
{
|
||
|
float fLength = sqrtf(fM01*fM01+fM02*fM02);
|
||
|
float fInvLength = ((float)1.0)/fLength;
|
||
|
fM01 *= fInvLength;
|
||
|
fM02 *= fInvLength;
|
||
|
float fQ = ((float)2.0)*fM01*fM12+fM02*(fM22-fM11);
|
||
|
m_afDiag[1] = fM11+fM02*fQ;
|
||
|
m_afDiag[2] = fM22-fM02*fQ;
|
||
|
m_afSubd[0] = fLength;
|
||
|
m_afSubd[1] = fM12-fM01*fQ;
|
||
|
mElement[0][0] = (float)1.0;
|
||
|
mElement[0][1] = (float)0.0;
|
||
|
mElement[0][2] = (float)0.0;
|
||
|
mElement[1][0] = (float)0.0;
|
||
|
mElement[1][1] = fM01;
|
||
|
mElement[1][2] = fM02;
|
||
|
mElement[2][0] = (float)0.0;
|
||
|
mElement[2][1] = fM02;
|
||
|
mElement[2][2] = -fM01;
|
||
|
m_bIsRotation = false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
m_afDiag[1] = fM11;
|
||
|
m_afDiag[2] = fM22;
|
||
|
m_afSubd[0] = fM01;
|
||
|
m_afSubd[1] = fM12;
|
||
|
mElement[0][0] = (float)1.0;
|
||
|
mElement[0][1] = (float)0.0;
|
||
|
mElement[0][2] = (float)0.0;
|
||
|
mElement[1][0] = (float)0.0;
|
||
|
mElement[1][1] = (float)1.0;
|
||
|
mElement[1][2] = (float)0.0;
|
||
|
mElement[2][0] = (float)0.0;
|
||
|
mElement[2][1] = (float)0.0;
|
||
|
mElement[2][2] = (float)1.0;
|
||
|
m_bIsRotation = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool QLAlgorithm(void)
|
||
|
{
|
||
|
const int iMaxIter = 32;
|
||
|
|
||
|
for (int i0 = 0; i0 <3; i0++)
|
||
|
{
|
||
|
int i1;
|
||
|
for (i1 = 0; i1 < iMaxIter; i1++)
|
||
|
{
|
||
|
int i2;
|
||
|
for (i2 = i0; i2 <= (3-2); i2++)
|
||
|
{
|
||
|
float fTmp = fabsf(m_afDiag[i2]) + fabsf(m_afDiag[i2+1]);
|
||
|
if ( fabsf(m_afSubd[i2]) + fTmp == fTmp )
|
||
|
break;
|
||
|
}
|
||
|
if (i2 == i0)
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
float fG = (m_afDiag[i0+1] - m_afDiag[i0])/(((float)2.0) * m_afSubd[i0]);
|
||
|
float fR = sqrtf(fG*fG+(float)1.0);
|
||
|
if (fG < (float)0.0)
|
||
|
{
|
||
|
fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG-fR);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fG = m_afDiag[i2]-m_afDiag[i0]+m_afSubd[i0]/(fG+fR);
|
||
|
}
|
||
|
float fSin = (float)1.0, fCos = (float)1.0, fP = (float)0.0;
|
||
|
for (int i3 = i2-1; i3 >= i0; i3--)
|
||
|
{
|
||
|
float fF = fSin*m_afSubd[i3];
|
||
|
float fB = fCos*m_afSubd[i3];
|
||
|
if (fabsf(fF) >= fabsf(fG))
|
||
|
{
|
||
|
fCos = fG/fF;
|
||
|
fR = sqrtf(fCos*fCos+(float)1.0);
|
||
|
m_afSubd[i3+1] = fF*fR;
|
||
|
fSin = ((float)1.0)/fR;
|
||
|
fCos *= fSin;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fSin = fF/fG;
|
||
|
fR = sqrtf(fSin*fSin+(float)1.0);
|
||
|
m_afSubd[i3+1] = fG*fR;
|
||
|
fCos = ((float)1.0)/fR;
|
||
|
fSin *= fCos;
|
||
|
}
|
||
|
fG = m_afDiag[i3+1]-fP;
|
||
|
fR = (m_afDiag[i3]-fG)*fSin+((float)2.0)*fB*fCos;
|
||
|
fP = fSin*fR;
|
||
|
m_afDiag[i3+1] = fG+fP;
|
||
|
fG = fCos*fR-fB;
|
||
|
for (int i4 = 0; i4 < 3; i4++)
|
||
|
{
|
||
|
fF = mElement[i4][i3+1];
|
||
|
mElement[i4][i3+1] = fSin*mElement[i4][i3]+fCos*fF;
|
||
|
mElement[i4][i3] = fCos*mElement[i4][i3]-fSin*fF;
|
||
|
}
|
||
|
}
|
||
|
m_afDiag[i0] -= fP;
|
||
|
m_afSubd[i0] = fG;
|
||
|
m_afSubd[i2] = (float)0.0;
|
||
|
}
|
||
|
if (i1 == iMaxIter)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void DecreasingSort(void)
|
||
|
{
|
||
|
//sort eigenvalues in decreasing order, e[0] >= ... >= e[iSize-1]
|
||
|
for (int i0 = 0, i1; i0 <= 3-2; i0++)
|
||
|
{
|
||
|
// locate maximum eigenvalue
|
||
|
i1 = i0;
|
||
|
float fMax = m_afDiag[i1];
|
||
|
int i2;
|
||
|
for (i2 = i0+1; i2 < 3; i2++)
|
||
|
{
|
||
|
if (m_afDiag[i2] > fMax)
|
||
|
{
|
||
|
i1 = i2;
|
||
|
fMax = m_afDiag[i1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (i1 != i0)
|
||
|
{
|
||
|
// swap eigenvalues
|
||
|
m_afDiag[i1] = m_afDiag[i0];
|
||
|
m_afDiag[i0] = fMax;
|
||
|
// swap eigenvectors
|
||
|
for (i2 = 0; i2 < 3; i2++)
|
||
|
{
|
||
|
float fTmp = mElement[i2][i0];
|
||
|
mElement[i2][i0] = mElement[i2][i1];
|
||
|
mElement[i2][i1] = fTmp;
|
||
|
m_bIsRotation = !m_bIsRotation;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void GuaranteeRotation(void)
|
||
|
{
|
||
|
if (!m_bIsRotation)
|
||
|
{
|
||
|
// change sign on the first column
|
||
|
for (int iRow = 0; iRow <3; iRow++)
|
||
|
{
|
||
|
mElement[iRow][0] = -mElement[iRow][0];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float mElement[3][3];
|
||
|
float m_afDiag[3];
|
||
|
float m_afSubd[3];
|
||
|
bool m_bIsRotation;
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
using namespace BestFit;
|
||
|
|
||
|
|
||
|
bool getBestFitPlane(unsigned int vcount,
|
||
|
const float *points,
|
||
|
unsigned int vstride,
|
||
|
const float *weights,
|
||
|
unsigned int wstride,
|
||
|
float *plane)
|
||
|
{
|
||
|
bool ret = false;
|
||
|
|
||
|
Vec3 kOrigin(0,0,0);
|
||
|
|
||
|
float wtotal = 0;
|
||
|
|
||
|
if ( 1 )
|
||
|
{
|
||
|
const char *source = (const char *) points;
|
||
|
const char *wsource = (const char *) weights;
|
||
|
|
||
|
for (unsigned int i=0; i<vcount; i++)
|
||
|
{
|
||
|
|
||
|
const float *p = (const float *) source;
|
||
|
|
||
|
float w = 1;
|
||
|
|
||
|
if ( wsource )
|
||
|
{
|
||
|
const float *ws = (const float *) wsource;
|
||
|
w = *ws; //
|
||
|
wsource+=wstride;
|
||
|
}
|
||
|
|
||
|
kOrigin.x+=p[0]*w;
|
||
|
kOrigin.y+=p[1]*w;
|
||
|
kOrigin.z+=p[2]*w;
|
||
|
|
||
|
wtotal+=w;
|
||
|
|
||
|
source+=vstride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float recip = 1.0f / wtotal; // reciprocol of total weighting
|
||
|
|
||
|
kOrigin.x*=recip;
|
||
|
kOrigin.y*=recip;
|
||
|
kOrigin.z*=recip;
|
||
|
|
||
|
|
||
|
float fSumXX=0;
|
||
|
float fSumXY=0;
|
||
|
float fSumXZ=0;
|
||
|
|
||
|
float fSumYY=0;
|
||
|
float fSumYZ=0;
|
||
|
float fSumZZ=0;
|
||
|
|
||
|
|
||
|
if ( 1 )
|
||
|
{
|
||
|
const char *source = (const char *) points;
|
||
|
const char *wsource = (const char *) weights;
|
||
|
|
||
|
for (unsigned int i=0; i<vcount; i++)
|
||
|
{
|
||
|
|
||
|
const float *p = (const float *) source;
|
||
|
|
||
|
float w = 1;
|
||
|
|
||
|
if ( wsource )
|
||
|
{
|
||
|
const float *ws = (const float *) wsource;
|
||
|
w = *ws; //
|
||
|
wsource+=wstride;
|
||
|
}
|
||
|
|
||
|
Vec3 kDiff;
|
||
|
|
||
|
kDiff.x = w*(p[0] - kOrigin.x); // apply vertex weighting!
|
||
|
kDiff.y = w*(p[1] - kOrigin.y);
|
||
|
kDiff.z = w*(p[2] - kOrigin.z);
|
||
|
|
||
|
fSumXX+= kDiff.x * kDiff.x; // sume of the squares of the differences.
|
||
|
fSumXY+= kDiff.x * kDiff.y; // sume of the squares of the differences.
|
||
|
fSumXZ+= kDiff.x * kDiff.z; // sume of the squares of the differences.
|
||
|
|
||
|
fSumYY+= kDiff.y * kDiff.y;
|
||
|
fSumYZ+= kDiff.y * kDiff.z;
|
||
|
fSumZZ+= kDiff.z * kDiff.z;
|
||
|
|
||
|
|
||
|
source+=vstride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
fSumXX *= recip;
|
||
|
fSumXY *= recip;
|
||
|
fSumXZ *= recip;
|
||
|
fSumYY *= recip;
|
||
|
fSumYZ *= recip;
|
||
|
fSumZZ *= recip;
|
||
|
|
||
|
// setup the eigensolver
|
||
|
Eigen kES;
|
||
|
|
||
|
kES.mElement[0][0] = fSumXX;
|
||
|
kES.mElement[0][1] = fSumXY;
|
||
|
kES.mElement[0][2] = fSumXZ;
|
||
|
|
||
|
kES.mElement[1][0] = fSumXY;
|
||
|
kES.mElement[1][1] = fSumYY;
|
||
|
kES.mElement[1][2] = fSumYZ;
|
||
|
|
||
|
kES.mElement[2][0] = fSumXZ;
|
||
|
kES.mElement[2][1] = fSumYZ;
|
||
|
kES.mElement[2][2] = fSumZZ;
|
||
|
|
||
|
// compute eigenstuff, smallest eigenvalue is in last position
|
||
|
kES.DecrSortEigenStuff();
|
||
|
|
||
|
Vec3 kNormal;
|
||
|
|
||
|
kNormal.x = kES.mElement[0][2];
|
||
|
kNormal.y = kES.mElement[1][2];
|
||
|
kNormal.z = kES.mElement[2][2];
|
||
|
|
||
|
// the minimum energy
|
||
|
plane[0] = kNormal.x;
|
||
|
plane[1] = kNormal.y;
|
||
|
plane[2] = kNormal.z;
|
||
|
|
||
|
plane[3] = 0 - kNormal.dot(kOrigin);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
float getBoundingRegion(unsigned int vcount,const float *points,unsigned int pstride,float *bmin,float *bmax) // returns the diagonal distance
|
||
|
{
|
||
|
|
||
|
const unsigned char *source = (const unsigned char *) points;
|
||
|
|
||
|
bmin[0] = points[0];
|
||
|
bmin[1] = points[1];
|
||
|
bmin[2] = points[2];
|
||
|
|
||
|
bmax[0] = points[0];
|
||
|
bmax[1] = points[1];
|
||
|
bmax[2] = points[2];
|
||
|
|
||
|
|
||
|
for (unsigned int i=1; i<vcount; i++)
|
||
|
{
|
||
|
source+=pstride;
|
||
|
const float *p = (const float *) source;
|
||
|
|
||
|
if ( p[0] < bmin[0] ) bmin[0] = p[0];
|
||
|
if ( p[1] < bmin[1] ) bmin[1] = p[1];
|
||
|
if ( p[2] < bmin[2] ) bmin[2] = p[2];
|
||
|
|
||
|
if ( p[0] > bmax[0] ) bmax[0] = p[0];
|
||
|
if ( p[1] > bmax[1] ) bmax[1] = p[1];
|
||
|
if ( p[2] > bmax[2] ) bmax[2] = p[2];
|
||
|
|
||
|
}
|
||
|
|
||
|
float dx = bmax[0] - bmin[0];
|
||
|
float dy = bmax[1] - bmin[1];
|
||
|
float dz = bmax[2] - bmin[2];
|
||
|
|
||
|
return sqrtf( dx*dx + dy*dy + dz*dz );
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
bool overlapAABB(const float *bmin1,const float *bmax1,const float *bmin2,const float *bmax2) // return true if the two AABB's overlap.
|
||
|
{
|
||
|
if ( bmax2[0] < bmin1[0] ) return false; // if the maximum is less than our minimum on any axis
|
||
|
if ( bmax2[1] < bmin1[1] ) return false;
|
||
|
if ( bmax2[2] < bmin1[2] ) return false;
|
||
|
|
||
|
if ( bmin2[0] > bmax1[0] ) return false; // if the minimum is greater than our maximum on any axis
|
||
|
if ( bmin2[1] > bmax1[1] ) return false; // if the minimum is greater than our maximum on any axis
|
||
|
if ( bmin2[2] > bmax1[2] ) return false; // if the minimum is greater than our maximum on any axis
|
||
|
|
||
|
|
||
|
return true; // the extents overlap
|
||
|
}
|
||
|
|
||
|
|