2015-04-29 01:12:49 +00:00
/*
Bullet Continuous Collision Detection and Physics Library
Copyright ( c ) 2003 - 2015 Erwin Coumans http : //bulletphysics.org
This software is provided ' as - is ' , without any express or implied warranty .
In no event will the authors be held liable for any damages arising from the use of this software .
Permission is granted to anyone to use this software for any purpose ,
including commercial applications , and to alter it and redistribute it freely ,
subject to the following restrictions :
1. The origin of this software must not be misrepresented ; you must not claim that you wrote the original software . If you use this software in a product , an acknowledgment in the product documentation would be appreciated but is not required .
2. Altered source versions must be plainly marked as such , and must not be misrepresented as being the original software .
3. This notice may not be removed or altered from any source distribution .
*/
///May 2015: implemented the wheels using the Hinge2Constraint
///todo: add controls for the motors etc.
# include "Hinge2Vehicle.h"
# include "btBulletDynamicsCommon.h"
# include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
# include "BulletDynamics/MLCPSolvers/btDantzigSolver.h"
# include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h"
# include "BulletDynamics/MLCPSolvers/btMLCPSolver.h"
class btVehicleTuning ;
class btCollisionShape ;
# include "BulletDynamics/ConstraintSolver/btHingeConstraint.h"
# include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
# include "../CommonInterfaces/ExampleInterface.h"
# include "LinearMath/btAlignedObjectArray.h"
# include "btBulletCollisionCommon.h"
# include "../CommonInterfaces/CommonGUIHelperInterface.h"
# include "../CommonInterfaces/CommonRenderInterface.h"
# include "../CommonInterfaces/CommonWindowInterface.h"
# include "../CommonInterfaces/CommonGraphicsAppInterface.h"
# include "../CommonInterfaces/CommonRigidBodyBase.h"
class Hinge2Vehicle : public CommonRigidBodyBase
{
public :
/* extra stuff*/
btVector3 m_cameraPosition ;
btRigidBody * m_carChassis ;
btRigidBody * localCreateRigidBody ( btScalar mass , const btTransform & worldTransform , btCollisionShape * colSape ) ;
GUIHelperInterface * m_guiHelper ;
int m_wheelInstances [ 4 ] ;
//----------------------------
btRigidBody * m_liftBody ;
btVector3 m_liftStartPos ;
btHingeConstraint * m_liftHinge ;
btRigidBody * m_forkBody ;
btVector3 m_forkStartPos ;
btSliderConstraint * m_forkSlider ;
btRigidBody * m_loadBody ;
btVector3 m_loadStartPos ;
void lockLiftHinge ( void ) ;
void lockForkSlider ( void ) ;
bool m_useDefaultCamera ;
//----------------------------
class btTriangleIndexVertexArray * m_indexVertexArrays ;
btVector3 * m_vertices ;
btCollisionShape * m_wheelShape ;
float m_cameraHeight ;
float m_minCameraDistance ;
float m_maxCameraDistance ;
Hinge2Vehicle ( struct GUIHelperInterface * helper ) ;
virtual ~ Hinge2Vehicle ( ) ;
virtual void stepSimulation ( float deltaTime ) ;
virtual void resetForklift ( ) ;
virtual void clientResetScene ( ) ;
virtual void displayCallback ( ) ;
///a very basic camera following the vehicle
virtual void updateCamera ( ) ;
virtual void specialKeyboard ( int key , int x , int y ) ;
virtual void specialKeyboardUp ( int key , int x , int y ) ;
virtual bool keyboardCallback ( int key , int state ) ;
virtual void renderScene ( ) ;
virtual void physicsDebugDraw ( int debugFlags ) ;
void initPhysics ( ) ;
void exitPhysics ( ) ;
/*static DemoApplication* Create()
{
Hinge2Vehicle * demo = new Hinge2Vehicle ( ) ;
demo - > myinit ( ) ;
demo - > initPhysics ( ) ;
return demo ;
}
*/
} ;
2015-04-29 18:05:00 +00:00
static btScalar maxMotorImpulse = 4000.f ;
2015-04-29 01:12:49 +00:00
//the sequential impulse solver has difficulties dealing with large mass ratios (differences), between loadMass and the fork parts
static btScalar loadMass = 350.f ; //
//btScalar loadMass = 10.f;//this should work fine for the SI solver
# ifndef M_PI
# define M_PI 3.14159265358979323846
# endif
# ifndef M_PI_2
# define M_PI_2 1.57079632679489661923
# endif
# ifndef M_PI_4
# define M_PI_4 0.785398163397448309616
# endif
//#define LIFT_EPS 0.0000001f
//
// By default, Bullet Vehicle uses Y as up axis.
// You can override the up axis, for example Z-axis up. Enable this define to see how to:
//#define FORCE_ZAXIS_UP 1
//
# ifdef FORCE_ZAXIS_UP
static int rightIndex = 0 ;
static int upIndex = 2 ;
static int forwardIndex = 1 ;
static btVector3 wheelDirectionCS0 ( 0 , 0 , - 1 ) ;
static btVector3 wheelAxleCS ( 1 , 0 , 0 ) ;
# else
static int rightIndex = 0 ;
static int upIndex = 1 ;
static int forwardIndex = 2 ;
static btVector3 wheelDirectionCS0 ( 0 , - 1 , 0 ) ;
static btVector3 wheelAxleCS ( - 1 , 0 , 0 ) ;
# endif
static bool useMCLPSolver = false ; //true;
# include <stdio.h> //printf debugging
# include "Hinge2Vehicle.h"
static const int maxProxies = 32766 ;
static const int maxOverlap = 65535 ;
static float gEngineForce = 0.f ;
static float defaultBreakingForce = 10.f ;
static float gBreakingForce = 100.f ;
static float maxEngineForce = 1000.f ; //this should be engine/velocity dependent
static float maxBreakingForce = 100.f ;
static float gVehicleSteering = 0.f ;
static float steeringIncrement = 0.04f ;
static float steeringClamp = 0.3f ;
static float wheelRadius = 0.5f ;
static float wheelWidth = 0.4f ;
static float wheelFriction = 1000 ; //BT_LARGE_FLOAT;
static float suspensionStiffness = 20.f ;
static float suspensionDamping = 2.3f ;
static float suspensionCompression = 4.4f ;
static float rollInfluence = 0.1f ; //1.0f;
static btScalar suspensionRestLength ( 0.6 ) ;
# define CUBE_HALF_EXTENTS 1
////////////////////////////////////
Hinge2Vehicle : : Hinge2Vehicle ( struct GUIHelperInterface * helper )
: CommonRigidBodyBase ( helper ) ,
m_guiHelper ( helper ) ,
m_carChassis ( 0 ) ,
m_liftBody ( 0 ) ,
m_forkBody ( 0 ) ,
m_loadBody ( 0 ) ,
m_indexVertexArrays ( 0 ) ,
m_vertices ( 0 ) ,
m_cameraHeight ( 4.f ) ,
m_minCameraDistance ( 3.f ) ,
m_maxCameraDistance ( 10.f )
{
helper - > setUpAxis ( 1 ) ;
m_wheelShape = 0 ;
m_cameraPosition = btVector3 ( 30 , 30 , 30 ) ;
m_useDefaultCamera = false ;
// setTexturing(true);
// setShadows(true);
}
void Hinge2Vehicle : : exitPhysics ( )
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i ;
for ( i = m_dynamicsWorld - > getNumCollisionObjects ( ) - 1 ; i > = 0 ; i - - )
{
btCollisionObject * obj = m_dynamicsWorld - > getCollisionObjectArray ( ) [ i ] ;
btRigidBody * body = btRigidBody : : upcast ( obj ) ;
if ( body & & body - > getMotionState ( ) )
{
while ( body - > getNumConstraintRefs ( ) )
{
btTypedConstraint * constraint = body - > getConstraintRef ( 0 ) ;
m_dynamicsWorld - > removeConstraint ( constraint ) ;
delete constraint ;
}
delete body - > getMotionState ( ) ;
m_dynamicsWorld - > removeRigidBody ( body ) ;
} else
{
m_dynamicsWorld - > removeCollisionObject ( obj ) ;
}
delete obj ;
}
//delete collision shapes
for ( int j = 0 ; j < m_collisionShapes . size ( ) ; j + + )
{
btCollisionShape * shape = m_collisionShapes [ j ] ;
delete shape ;
}
m_collisionShapes . clear ( ) ;
delete m_indexVertexArrays ;
delete m_vertices ;
//delete dynamics world
delete m_dynamicsWorld ;
m_dynamicsWorld = 0 ;
delete m_wheelShape ;
m_wheelShape = 0 ;
//delete solver
delete m_solver ;
m_solver = 0 ;
//delete broadphase
delete m_broadphase ;
m_broadphase = 0 ;
//delete dispatcher
delete m_dispatcher ;
m_dispatcher = 0 ;
delete m_collisionConfiguration ;
m_collisionConfiguration = 0 ;
}
Hinge2Vehicle : : ~ Hinge2Vehicle ( )
{
//exitPhysics();
}
extern float shadowMapWorldSize ;
void Hinge2Vehicle : : initPhysics ( )
{
shadowMapWorldSize = 10 ;
# ifdef FORCE_ZAXIS_UP
m_cameraUp = btVector3 ( 0 , 0 , 1 ) ;
m_forwardAxis = 1 ;
# endif
btCollisionShape * groundShape = new btBoxShape ( btVector3 ( 50 , 3 , 50 ) ) ;
m_collisionShapes . push_back ( groundShape ) ;
m_collisionConfiguration = new btDefaultCollisionConfiguration ( ) ;
m_dispatcher = new btCollisionDispatcher ( m_collisionConfiguration ) ;
btVector3 worldMin ( - 1000 , - 1000 , - 1000 ) ;
btVector3 worldMax ( 1000 , 1000 , 1000 ) ;
m_broadphase = new btAxisSweep3 ( worldMin , worldMax ) ;
if ( useMCLPSolver )
{
btDantzigSolver * mlcp = new btDantzigSolver ( ) ;
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
btMLCPSolver * sol = new btMLCPSolver ( mlcp ) ;
m_solver = sol ;
} else
{
m_solver = new btSequentialImpulseConstraintSolver ( ) ;
}
m_dynamicsWorld = new btDiscreteDynamicsWorld ( m_dispatcher , m_broadphase , m_solver , m_collisionConfiguration ) ;
if ( useMCLPSolver )
{
m_dynamicsWorld - > getSolverInfo ( ) . m_minimumSolverBatchSize = 1 ; //for direct solver it is better to have a small A matrix
} else
{
m_dynamicsWorld - > getSolverInfo ( ) . m_minimumSolverBatchSize = 128 ; //for direct solver, it is better to solve multiple objects together, small batches have high overhead
}
m_dynamicsWorld - > getSolverInfo ( ) . m_numIterations = 100 ;
m_guiHelper - > createPhysicsDebugDrawer ( m_dynamicsWorld ) ;
# ifdef FORCE_ZAXIS_UP
m_dynamicsWorld - > setGravity ( btVector3 ( 0 , 0 , - 10 ) ) ;
# endif
//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr ;
tr . setIdentity ( ) ;
tr . setOrigin ( btVector3 ( 0 , - 3 , 0 ) ) ;
//either use heightfield or triangle mesh
//create ground object
localCreateRigidBody ( 0 , tr , groundShape ) ;
# ifdef FORCE_ZAXIS_UP
// indexRightAxis = 0;
// indexUpAxis = 2;
// indexForwardAxis = 1;
btCollisionShape * chassisShape = new btBoxShape ( btVector3 ( 1.f , 2.f , 0.5f ) ) ;
btCompoundShape * compound = new btCompoundShape ( ) ;
btTransform localTrans ;
localTrans . setIdentity ( ) ;
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans . setOrigin ( btVector3 ( 0 , 0 , 1 ) ) ;
# else
btCollisionShape * chassisShape = new btBoxShape ( btVector3 ( 1.f , 0.5f , 2.f ) ) ;
m_collisionShapes . push_back ( chassisShape ) ;
btCompoundShape * compound = new btCompoundShape ( ) ;
m_collisionShapes . push_back ( compound ) ;
btTransform localTrans ;
localTrans . setIdentity ( ) ;
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans . setOrigin ( btVector3 ( 0 , 1 , 0 ) ) ;
# endif
compound - > addChildShape ( localTrans , chassisShape ) ;
{
btCollisionShape * suppShape = new btBoxShape ( btVector3 ( 0.5f , 0.1f , 0.5f ) ) ;
btTransform suppLocalTrans ;
suppLocalTrans . setIdentity ( ) ;
//localTrans effectively shifts the center of mass with respect to the chassis
suppLocalTrans . setOrigin ( btVector3 ( 0 , 1.0 , 2.5 ) ) ;
compound - > addChildShape ( suppLocalTrans , suppShape ) ;
}
tr . setOrigin ( btVector3 ( 0 , 0.f , 0 ) ) ;
btScalar chassisMass = 800 ;
m_carChassis = localCreateRigidBody ( chassisMass , tr , compound ) ; //chassisShape);
//m_carChassis->setDamping(0.2,0.2);
//m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
m_wheelShape = new btCylinderShapeX ( btVector3 ( wheelWidth , wheelRadius , wheelRadius ) ) ;
const float position [ 4 ] = { 0 , 10 , 10 , 0 } ;
const float quaternion [ 4 ] = { 0 , 0 , 0 , 1 } ;
const float color [ 4 ] = { 0 , 1 , 0 , 1 } ;
const float scaling [ 4 ] = { 1 , 1 , 1 , 1 } ;
btVector3 wheelPos [ 4 ] = {
btVector3 ( btScalar ( - 1. ) , btScalar ( - 0.25 ) , btScalar ( 1.25 ) ) ,
btVector3 ( btScalar ( 1. ) , btScalar ( - 0.25 ) , btScalar ( 1.25 ) ) ,
btVector3 ( btScalar ( 1. ) , btScalar ( - 0.25 ) , btScalar ( - 1.25 ) ) ,
btVector3 ( btScalar ( - 1. ) , btScalar ( - 0.25 ) , btScalar ( - 1.25 ) )
} ;
for ( int i = 0 ; i < 4 ; i + + )
{
// create a Hinge2 joint
// create two rigid bodies
// static bodyA (parent) on top:
btRigidBody * pBodyA = this - > m_carChassis ; //m_chassis;//createRigidBody( 0.0, tr, m_wheelShape);
pBodyA - > setActivationState ( DISABLE_DEACTIVATION ) ;
// dynamic bodyB (child) below it :
btTransform tr ;
tr . setIdentity ( ) ;
tr . setOrigin ( wheelPos [ i ] ) ;
btRigidBody * pBodyB = createRigidBody ( 10.0 , tr , m_wheelShape ) ;
pBodyB - > setFriction ( 1110 ) ;
pBodyB - > setActivationState ( DISABLE_DEACTIVATION ) ;
// add some data to build constraint frames
btVector3 parentAxis ( 0.f , 1.f , 0.f ) ;
btVector3 childAxis ( 1.f , 0.f , 0.f ) ;
btVector3 anchor = tr . getOrigin ( ) ; //(0.f, 0.f, 0.f);
btHinge2Constraint * pHinge2 = new btHinge2Constraint ( * pBodyA , * pBodyB , anchor , parentAxis , childAxis ) ;
//m_guiHelper->get2dCanvasInterface();
pHinge2 - > setLowerLimit ( - SIMD_HALF_PI * 0.5f ) ;
pHinge2 - > setUpperLimit ( SIMD_HALF_PI * 0.5f ) ;
// add constraint to world
m_dynamicsWorld - > addConstraint ( pHinge2 , true ) ;
// draw constraint frames and limits for debugging
{
int motorAxis = 3 ;
pHinge2 - > enableMotor ( motorAxis , true ) ;
pHinge2 - > setMaxMotorForce ( motorAxis , 1000 ) ;
pHinge2 - > setTargetVelocity ( motorAxis , - 1 ) ;
}
{
int motorAxis = 5 ;
pHinge2 - > enableMotor ( motorAxis , true ) ;
pHinge2 - > setMaxMotorForce ( motorAxis , 1000 ) ;
pHinge2 - > setTargetVelocity ( motorAxis , 0 ) ;
}
pHinge2 - > setDbgDrawSize ( btScalar ( 5.f ) ) ;
}
{
btCollisionShape * liftShape = new btBoxShape ( btVector3 ( 0.5f , 2.0f , 0.05f ) ) ;
m_collisionShapes . push_back ( liftShape ) ;
btTransform liftTrans ;
m_liftStartPos = btVector3 ( 0.0f , 2.5f , 3.05f ) ;
liftTrans . setIdentity ( ) ;
liftTrans . setOrigin ( m_liftStartPos ) ;
m_liftBody = localCreateRigidBody ( 10 , liftTrans , liftShape ) ;
btTransform localA , localB ;
localA . setIdentity ( ) ;
localB . setIdentity ( ) ;
localA . getBasis ( ) . setEulerZYX ( 0 , M_PI_2 , 0 ) ;
localA . setOrigin ( btVector3 ( 0.0 , 1.0 , 3.05 ) ) ;
localB . getBasis ( ) . setEulerZYX ( 0 , M_PI_2 , 0 ) ;
localB . setOrigin ( btVector3 ( 0.0 , - 1.5 , - 0.05 ) ) ;
m_liftHinge = new btHingeConstraint ( * m_carChassis , * m_liftBody , localA , localB ) ;
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_liftHinge - > setLimit ( 0.0f , 0.0f ) ;
m_dynamicsWorld - > addConstraint ( m_liftHinge , true ) ;
btCollisionShape * forkShapeA = new btBoxShape ( btVector3 ( 1.0f , 0.1f , 0.1f ) ) ;
m_collisionShapes . push_back ( forkShapeA ) ;
btCompoundShape * forkCompound = new btCompoundShape ( ) ;
m_collisionShapes . push_back ( forkCompound ) ;
btTransform forkLocalTrans ;
forkLocalTrans . setIdentity ( ) ;
forkCompound - > addChildShape ( forkLocalTrans , forkShapeA ) ;
btCollisionShape * forkShapeB = new btBoxShape ( btVector3 ( 0.1f , 0.02f , 0.6f ) ) ;
m_collisionShapes . push_back ( forkShapeB ) ;
forkLocalTrans . setIdentity ( ) ;
forkLocalTrans . setOrigin ( btVector3 ( - 0.9f , - 0.08f , 0.7f ) ) ;
forkCompound - > addChildShape ( forkLocalTrans , forkShapeB ) ;
btCollisionShape * forkShapeC = new btBoxShape ( btVector3 ( 0.1f , 0.02f , 0.6f ) ) ;
m_collisionShapes . push_back ( forkShapeC ) ;
forkLocalTrans . setIdentity ( ) ;
forkLocalTrans . setOrigin ( btVector3 ( 0.9f , - 0.08f , 0.7f ) ) ;
forkCompound - > addChildShape ( forkLocalTrans , forkShapeC ) ;
btTransform forkTrans ;
m_forkStartPos = btVector3 ( 0.0f , 0.6f , 3.2f ) ;
forkTrans . setIdentity ( ) ;
forkTrans . setOrigin ( m_forkStartPos ) ;
m_forkBody = localCreateRigidBody ( 5 , forkTrans , forkCompound ) ;
localA . setIdentity ( ) ;
localB . setIdentity ( ) ;
localA . getBasis ( ) . setEulerZYX ( 0 , 0 , M_PI_2 ) ;
localA . setOrigin ( btVector3 ( 0.0f , - 1.9f , 0.05f ) ) ;
localB . getBasis ( ) . setEulerZYX ( 0 , 0 , M_PI_2 ) ;
localB . setOrigin ( btVector3 ( 0.0 , 0.0 , - 0.1 ) ) ;
m_forkSlider = new btSliderConstraint ( * m_liftBody , * m_forkBody , localA , localB , true ) ;
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 0.1f ) ;
// m_forkSlider->setLowerAngLimit(-LIFT_EPS);
// m_forkSlider->setUpperAngLimit(LIFT_EPS);
m_forkSlider - > setLowerAngLimit ( 0.0f ) ;
m_forkSlider - > setUpperAngLimit ( 0.0f ) ;
m_dynamicsWorld - > addConstraint ( m_forkSlider , true ) ;
btCompoundShape * loadCompound = new btCompoundShape ( ) ;
m_collisionShapes . push_back ( loadCompound ) ;
btCollisionShape * loadShapeA = new btBoxShape ( btVector3 ( 2.0f , 0.5f , 0.5f ) ) ;
m_collisionShapes . push_back ( loadShapeA ) ;
btTransform loadTrans ;
loadTrans . setIdentity ( ) ;
loadCompound - > addChildShape ( loadTrans , loadShapeA ) ;
btCollisionShape * loadShapeB = new btBoxShape ( btVector3 ( 0.1f , 1.0f , 1.0f ) ) ;
m_collisionShapes . push_back ( loadShapeB ) ;
loadTrans . setIdentity ( ) ;
loadTrans . setOrigin ( btVector3 ( 2.1f , 0.0f , 0.0f ) ) ;
loadCompound - > addChildShape ( loadTrans , loadShapeB ) ;
btCollisionShape * loadShapeC = new btBoxShape ( btVector3 ( 0.1f , 1.0f , 1.0f ) ) ;
m_collisionShapes . push_back ( loadShapeC ) ;
loadTrans . setIdentity ( ) ;
loadTrans . setOrigin ( btVector3 ( - 2.1f , 0.0f , 0.0f ) ) ;
loadCompound - > addChildShape ( loadTrans , loadShapeC ) ;
loadTrans . setIdentity ( ) ;
m_loadStartPos = btVector3 ( 0.0f , 3.5f , 7.0f ) ;
loadTrans . setOrigin ( m_loadStartPos ) ;
m_loadBody = localCreateRigidBody ( loadMass , loadTrans , loadCompound ) ;
}
#if 0
/// create vehicle
{
///never deactivate the vehicle
m_carChassis - > setActivationState ( DISABLE_DEACTIVATION ) ;
float connectionHeight = 1.2f ;
bool isFrontWheel = true ;
# ifdef FORCE_ZAXIS_UP
btVector3 connectionPointCS0 ( CUBE_HALF_EXTENTS - ( 0.3 * wheelWidth ) , 2 * CUBE_HALF_EXTENTS - wheelRadius , connectionHeight ) ;
# else
btVector3 connectionPointCS0 ( CUBE_HALF_EXTENTS - ( 0.3 * wheelWidth ) , connectionHeight , 2 * CUBE_HALF_EXTENTS - wheelRadius ) ;
# endif
m_vehicle - > addWheel ( connectionPointCS0 , wheelDirectionCS0 , wheelAxleCS , suspensionRestLength , wheelRadius , m_tuning , isFrontWheel ) ;
# ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3 ( - CUBE_HALF_EXTENTS + ( 0.3 * wheelWidth ) , 2 * CUBE_HALF_EXTENTS - wheelRadius , connectionHeight ) ;
# else
connectionPointCS0 = btVector3 ( - CUBE_HALF_EXTENTS + ( 0.3 * wheelWidth ) , connectionHeight , 2 * CUBE_HALF_EXTENTS - wheelRadius ) ;
# endif
m_vehicle - > addWheel ( connectionPointCS0 , wheelDirectionCS0 , wheelAxleCS , suspensionRestLength , wheelRadius , m_tuning , isFrontWheel ) ;
# ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3 ( - CUBE_HALF_EXTENTS + ( 0.3 * wheelWidth ) , - 2 * CUBE_HALF_EXTENTS + wheelRadius , connectionHeight ) ;
# else
connectionPointCS0 = btVector3 ( - CUBE_HALF_EXTENTS + ( 0.3 * wheelWidth ) , connectionHeight , - 2 * CUBE_HALF_EXTENTS + wheelRadius ) ;
# endif //FORCE_ZAXIS_UP
isFrontWheel = false ;
m_vehicle - > addWheel ( connectionPointCS0 , wheelDirectionCS0 , wheelAxleCS , suspensionRestLength , wheelRadius , m_tuning , isFrontWheel ) ;
# ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3 ( CUBE_HALF_EXTENTS - ( 0.3 * wheelWidth ) , - 2 * CUBE_HALF_EXTENTS + wheelRadius , connectionHeight ) ;
# else
connectionPointCS0 = btVector3 ( CUBE_HALF_EXTENTS - ( 0.3 * wheelWidth ) , connectionHeight , - 2 * CUBE_HALF_EXTENTS + wheelRadius ) ;
# endif
m_vehicle - > addWheel ( connectionPointCS0 , wheelDirectionCS0 , wheelAxleCS , suspensionRestLength , wheelRadius , m_tuning , isFrontWheel ) ;
for ( int i = 0 ; i < m_vehicle - > getNumWheels ( ) ; i + + )
{
btWheelInfo & wheel = m_vehicle - > getWheelInfo ( i ) ;
wheel . m_suspensionStiffness = suspensionStiffness ;
wheel . m_wheelsDampingRelaxation = suspensionDamping ;
wheel . m_wheelsDampingCompression = suspensionCompression ;
wheel . m_frictionSlip = wheelFriction ;
wheel . m_rollInfluence = rollInfluence ;
}
}
# endif
resetForklift ( ) ;
// setCameraDistance(26.f);
m_guiHelper - > autogenerateGraphicsObjects ( m_dynamicsWorld ) ;
}
void Hinge2Vehicle : : physicsDebugDraw ( int debugFlags )
{
if ( m_dynamicsWorld & & m_dynamicsWorld - > getDebugDrawer ( ) )
{
m_dynamicsWorld - > getDebugDrawer ( ) - > setDebugMode ( debugFlags ) ;
m_dynamicsWorld - > debugDrawWorld ( ) ;
}
}
//to be implemented by the demo
void Hinge2Vehicle : : renderScene ( )
{
m_guiHelper - > syncPhysicsToGraphics ( m_dynamicsWorld ) ;
#if 0
for ( int i = 0 ; i < m_vehicle - > getNumWheels ( ) ; i + + )
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle - > updateWheelTransform ( i , true ) ;
CommonRenderInterface * renderer = m_guiHelper - > getRenderInterface ( ) ;
if ( renderer )
{
btTransform tr = m_vehicle - > getWheelInfo ( i ) . m_worldTransform ;
btVector3 pos = tr . getOrigin ( ) ;
btQuaternion orn = tr . getRotation ( ) ;
renderer - > writeSingleInstanceTransformToCPU ( pos , orn , m_wheelInstances [ i ] ) ;
}
}
# endif
updateCamera ( ) ;
m_guiHelper - > render ( m_dynamicsWorld ) ;
ATTRIBUTE_ALIGNED16 ( btScalar ) m [ 16 ] ;
int i ;
btVector3 wheelColor ( 1 , 0 , 0 ) ;
btVector3 worldBoundsMin , worldBoundsMax ;
getDynamicsWorld ( ) - > getBroadphase ( ) - > getBroadphaseAabb ( worldBoundsMin , worldBoundsMax ) ;
#if 0
int lineWidth = 400 ;
int xStart = m_glutScreenWidth - lineWidth ;
int yStart = 20 ;
if ( ( getDebugMode ( ) & btIDebugDraw : : DBG_NoHelpText ) = = 0 )
{
setOrthographicProjection ( ) ;
glDisable ( GL_LIGHTING ) ;
glColor3f ( 0 , 0 , 0 ) ;
char buf [ 124 ] ;
sprintf ( buf , " SHIFT+Cursor Left/Right - rotate lift " ) ;
GLDebugDrawString ( xStart , 20 , buf ) ;
yStart + = 20 ;
sprintf ( buf , " SHIFT+Cursor UP/Down - fork up/down " ) ;
yStart + = 20 ;
GLDebugDrawString ( xStart , yStart , buf ) ;
if ( m_useDefaultCamera )
{
sprintf ( buf , " F5 - camera mode (free) " ) ;
} else
{
sprintf ( buf , " F5 - camera mode (follow) " ) ;
}
yStart + = 20 ;
GLDebugDrawString ( xStart , yStart , buf ) ;
yStart + = 20 ;
if ( m_dynamicsWorld - > getConstraintSolver ( ) - > getSolverType ( ) = = BT_MLCP_SOLVER )
{
sprintf ( buf , " F6 - solver (direct MLCP) " ) ;
} else
{
sprintf ( buf , " F6 - solver (sequential impulse) " ) ;
}
GLDebugDrawString ( xStart , yStart , buf ) ;
btDiscreteDynamicsWorld * world = ( btDiscreteDynamicsWorld * ) m_dynamicsWorld ;
if ( world - > getLatencyMotionStateInterpolation ( ) )
{
sprintf ( buf , " F7 - motionstate interpolation (on) " ) ;
} else
{
sprintf ( buf , " F7 - motionstate interpolation (off) " ) ;
}
yStart + = 20 ;
GLDebugDrawString ( xStart , yStart , buf ) ;
sprintf ( buf , " Click window for keyboard focus " ) ;
yStart + = 20 ;
GLDebugDrawString ( xStart , yStart , buf ) ;
resetPerspectiveProjection ( ) ;
glEnable ( GL_LIGHTING ) ;
}
# endif
}
void Hinge2Vehicle : : stepSimulation ( float deltaTime )
{
//glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#if 0
{
int wheelIndex = 2 ;
m_vehicle - > applyEngineForce ( gEngineForce , wheelIndex ) ;
m_vehicle - > setBrake ( gBreakingForce , wheelIndex ) ;
wheelIndex = 3 ;
m_vehicle - > applyEngineForce ( gEngineForce , wheelIndex ) ;
m_vehicle - > setBrake ( gBreakingForce , wheelIndex ) ;
wheelIndex = 0 ;
m_vehicle - > setSteeringValue ( gVehicleSteering , wheelIndex ) ;
wheelIndex = 1 ;
m_vehicle - > setSteeringValue ( gVehicleSteering , wheelIndex ) ;
}
# endif
float dt = deltaTime ;
if ( m_dynamicsWorld )
{
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = 2 ;
int numSimSteps ;
numSimSteps = m_dynamicsWorld - > stepSimulation ( dt , maxSimSubSteps ) ;
if ( m_dynamicsWorld - > getConstraintSolver ( ) - > getSolverType ( ) = = BT_MLCP_SOLVER )
{
btMLCPSolver * sol = ( btMLCPSolver * ) m_dynamicsWorld - > getConstraintSolver ( ) ;
int numFallbacks = sol - > getNumFallbacks ( ) ;
if ( numFallbacks )
{
static int totalFailures = 0 ;
totalFailures + = numFallbacks ;
printf ( " MLCP solver failed %d times, falling back to btSequentialImpulseSolver (SI) \n " , totalFailures ) ;
}
sol - > setNumFallbacks ( 0 ) ;
}
//#define VERBOSE_FEEDBACK
# ifdef VERBOSE_FEEDBACK
if ( ! numSimSteps )
printf ( " Interpolated transforms \n " ) ;
else
{
if ( numSimSteps > maxSimSubSteps )
{
//detect dropping frames
printf ( " Dropped (%i) simulation steps out of %i \n " , numSimSteps - maxSimSubSteps , numSimSteps ) ;
} else
{
printf ( " Simulated (%i) steps \n " , numSimSteps ) ;
}
}
# endif //VERBOSE_FEEDBACK
}
}
void Hinge2Vehicle : : displayCallback ( void )
{
// glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//renderme();
//optional but useful: debug drawing
if ( m_dynamicsWorld )
m_dynamicsWorld - > debugDrawWorld ( ) ;
// glFlush();
// glutSwapBuffers();
}
void Hinge2Vehicle : : clientResetScene ( )
{
exitPhysics ( ) ;
initPhysics ( ) ;
}
void Hinge2Vehicle : : resetForklift ( )
{
gVehicleSteering = 0.f ;
gBreakingForce = defaultBreakingForce ;
gEngineForce = 0.f ;
m_carChassis - > setCenterOfMassTransform ( btTransform : : getIdentity ( ) ) ;
m_carChassis - > setLinearVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
m_carChassis - > setAngularVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
m_dynamicsWorld - > getBroadphase ( ) - > getOverlappingPairCache ( ) - > cleanProxyFromPairs ( m_carChassis - > getBroadphaseHandle ( ) , getDynamicsWorld ( ) - > getDispatcher ( ) ) ;
#if 0
if ( m_vehicle )
{
m_vehicle - > resetSuspension ( ) ;
for ( int i = 0 ; i < m_vehicle - > getNumWheels ( ) ; i + + )
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle - > updateWheelTransform ( i , true ) ;
}
}
# endif
btTransform liftTrans ;
liftTrans . setIdentity ( ) ;
liftTrans . setOrigin ( m_liftStartPos ) ;
m_liftBody - > activate ( ) ;
m_liftBody - > setCenterOfMassTransform ( liftTrans ) ;
m_liftBody - > setLinearVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
m_liftBody - > setAngularVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
btTransform forkTrans ;
forkTrans . setIdentity ( ) ;
forkTrans . setOrigin ( m_forkStartPos ) ;
m_forkBody - > activate ( ) ;
m_forkBody - > setCenterOfMassTransform ( forkTrans ) ;
m_forkBody - > setLinearVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
m_forkBody - > setAngularVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
// m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_liftHinge - > setLimit ( 0.0f , 0.0f ) ;
m_liftHinge - > enableAngularMotor ( false , 0 , 0 ) ;
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 0.1f ) ;
m_forkSlider - > setPoweredLinMotor ( false ) ;
btTransform loadTrans ;
loadTrans . setIdentity ( ) ;
loadTrans . setOrigin ( m_loadStartPos ) ;
m_loadBody - > activate ( ) ;
m_loadBody - > setCenterOfMassTransform ( loadTrans ) ;
m_loadBody - > setLinearVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
m_loadBody - > setAngularVelocity ( btVector3 ( 0 , 0 , 0 ) ) ;
}
bool Hinge2Vehicle : : keyboardCallback ( int key , int state )
{
bool handled = false ;
bool isShiftPressed = m_guiHelper - > getAppInterface ( ) - > m_window - > isModifierKeyPressed ( B3G_SHIFT ) ;
if ( state )
{
if ( isShiftPressed )
{
switch ( key )
{
case B3G_LEFT_ARROW :
{
m_liftHinge - > setLimit ( - M_PI / 16.0f , M_PI / 8.0f ) ;
m_liftHinge - > enableAngularMotor ( true , - 0.1 , maxMotorImpulse ) ;
handled = true ;
break ;
}
case B3G_RIGHT_ARROW :
{
m_liftHinge - > setLimit ( - M_PI / 16.0f , M_PI / 8.0f ) ;
m_liftHinge - > enableAngularMotor ( true , 0.1 , maxMotorImpulse ) ;
handled = true ;
break ;
}
case B3G_UP_ARROW :
{
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 3.9f ) ;
m_forkSlider - > setPoweredLinMotor ( true ) ;
m_forkSlider - > setMaxLinMotorForce ( maxMotorImpulse ) ;
m_forkSlider - > setTargetLinMotorVelocity ( 1.0 ) ;
handled = true ;
break ;
}
case B3G_DOWN_ARROW :
{
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 3.9f ) ;
m_forkSlider - > setPoweredLinMotor ( true ) ;
m_forkSlider - > setMaxLinMotorForce ( maxMotorImpulse ) ;
m_forkSlider - > setTargetLinMotorVelocity ( - 1.0 ) ;
handled = true ;
break ;
}
}
} else
{
switch ( key )
{
case B3G_LEFT_ARROW :
{
handled = true ;
gVehicleSteering + = steeringIncrement ;
if ( gVehicleSteering > steeringClamp )
gVehicleSteering = steeringClamp ;
break ;
}
case B3G_RIGHT_ARROW :
{
handled = true ;
gVehicleSteering - = steeringIncrement ;
if ( gVehicleSteering < - steeringClamp )
gVehicleSteering = - steeringClamp ;
break ;
}
case B3G_UP_ARROW :
{
handled = true ;
gEngineForce = maxEngineForce ;
gBreakingForce = 0.f ;
break ;
}
case B3G_DOWN_ARROW :
{
handled = true ;
gEngineForce = - maxEngineForce ;
gBreakingForce = 0.f ;
break ;
}
case B3G_F7 :
{
handled = true ;
btDiscreteDynamicsWorld * world = ( btDiscreteDynamicsWorld * ) m_dynamicsWorld ;
world - > setLatencyMotionStateInterpolation ( ! world - > getLatencyMotionStateInterpolation ( ) ) ;
printf ( " world latencyMotionStateInterpolation = %d \n " , world - > getLatencyMotionStateInterpolation ( ) ) ;
break ;
}
case B3G_F6 :
{
handled = true ;
//switch solver (needs demo restart)
useMCLPSolver = ! useMCLPSolver ;
printf ( " switching to useMLCPSolver = %d \n " , useMCLPSolver ) ;
delete m_solver ;
if ( useMCLPSolver )
{
btDantzigSolver * mlcp = new btDantzigSolver ( ) ;
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
btMLCPSolver * sol = new btMLCPSolver ( mlcp ) ;
m_solver = sol ;
} else
{
m_solver = new btSequentialImpulseConstraintSolver ( ) ;
}
m_dynamicsWorld - > setConstraintSolver ( m_solver ) ;
//exitPhysics();
//initPhysics();
break ;
}
case B3G_F5 :
handled = true ;
m_useDefaultCamera = ! m_useDefaultCamera ;
break ;
default :
break ;
}
}
} else
{
switch ( key )
{
case B3G_UP_ARROW :
{
lockForkSlider ( ) ;
gEngineForce = 0.f ;
gBreakingForce = defaultBreakingForce ;
handled = true ;
break ;
}
case B3G_DOWN_ARROW :
{
lockForkSlider ( ) ;
gEngineForce = 0.f ;
gBreakingForce = defaultBreakingForce ;
handled = true ;
break ;
}
case B3G_LEFT_ARROW :
case B3G_RIGHT_ARROW :
{
lockLiftHinge ( ) ;
handled = true ;
break ;
}
default :
break ;
}
}
return handled ;
}
void Hinge2Vehicle : : specialKeyboardUp ( int key , int x , int y )
{
#if 0
# endif
}
void Hinge2Vehicle : : specialKeyboard ( int key , int x , int y )
{
#if 0
if ( key = = GLUT_KEY_END )
return ;
// printf("key = %i x=%i y=%i\n",key,x,y);
int state ;
state = glutGetModifiers ( ) ;
if ( state & GLUT_ACTIVE_SHIFT )
{
switch ( key )
{
case GLUT_KEY_LEFT :
{
m_liftHinge - > setLimit ( - M_PI / 16.0f , M_PI / 8.0f ) ;
m_liftHinge - > enableAngularMotor ( true , - 0.1 , maxMotorImpulse ) ;
break ;
}
case GLUT_KEY_RIGHT :
{
m_liftHinge - > setLimit ( - M_PI / 16.0f , M_PI / 8.0f ) ;
m_liftHinge - > enableAngularMotor ( true , 0.1 , maxMotorImpulse ) ;
break ;
}
case GLUT_KEY_UP :
{
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 3.9f ) ;
m_forkSlider - > setPoweredLinMotor ( true ) ;
m_forkSlider - > setMaxLinMotorForce ( maxMotorImpulse ) ;
m_forkSlider - > setTargetLinMotorVelocity ( 1.0 ) ;
break ;
}
case GLUT_KEY_DOWN :
{
m_forkSlider - > setLowerLinLimit ( 0.1f ) ;
m_forkSlider - > setUpperLinLimit ( 3.9f ) ;
m_forkSlider - > setPoweredLinMotor ( true ) ;
m_forkSlider - > setMaxLinMotorForce ( maxMotorImpulse ) ;
m_forkSlider - > setTargetLinMotorVelocity ( - 1.0 ) ;
break ;
}
default :
DemoApplication : : specialKeyboard ( key , x , y ) ;
break ;
}
} else
{
switch ( key )
{
case GLUT_KEY_LEFT :
{
gVehicleSteering + = steeringIncrement ;
if ( gVehicleSteering > steeringClamp )
gVehicleSteering = steeringClamp ;
break ;
}
case GLUT_KEY_RIGHT :
{
gVehicleSteering - = steeringIncrement ;
if ( gVehicleSteering < - steeringClamp )
gVehicleSteering = - steeringClamp ;
break ;
}
case GLUT_KEY_UP :
{
gEngineForce = maxEngineForce ;
gBreakingForce = 0.f ;
break ;
}
case GLUT_KEY_DOWN :
{
gEngineForce = - maxEngineForce ;
gBreakingForce = 0.f ;
break ;
}
case GLUT_KEY_F7 :
{
btDiscreteDynamicsWorld * world = ( btDiscreteDynamicsWorld * ) m_dynamicsWorld ;
world - > setLatencyMotionStateInterpolation ( ! world - > getLatencyMotionStateInterpolation ( ) ) ;
printf ( " world latencyMotionStateInterpolation = %d \n " , world - > getLatencyMotionStateInterpolation ( ) ) ;
break ;
}
case GLUT_KEY_F6 :
{
//switch solver (needs demo restart)
useMCLPSolver = ! useMCLPSolver ;
printf ( " switching to useMLCPSolver = %d \n " , useMCLPSolver ) ;
delete m_solver ;
if ( useMCLPSolver )
{
btDantzigSolver * mlcp = new btDantzigSolver ( ) ;
//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
btMLCPSolver * sol = new btMLCPSolver ( mlcp ) ;
m_solver = sol ;
} else
{
m_solver = new btSequentialImpulseConstraintSolver ( ) ;
}
m_dynamicsWorld - > setConstraintSolver ( m_solver ) ;
//exitPhysics();
//initPhysics();
break ;
}
case GLUT_KEY_F5 :
m_useDefaultCamera = ! m_useDefaultCamera ;
break ;
default :
DemoApplication : : specialKeyboard ( key , x , y ) ;
break ;
}
}
// glutPostRedisplay();
# endif
}
void Hinge2Vehicle : : updateCamera ( )
{
#if 0
//#define DISABLE_CAMERA 1
if ( m_useDefaultCamera )
{
DemoApplication : : updateCamera ( ) ;
return ;
}
glMatrixMode ( GL_PROJECTION ) ;
glLoadIdentity ( ) ;
btTransform chassisWorldTrans ;
//look at the vehicle
m_carChassis - > getMotionState ( ) - > getWorldTransform ( chassisWorldTrans ) ;
m_cameraTargetPosition = chassisWorldTrans . getOrigin ( ) ;
//interpolate the camera height
# ifdef FORCE_ZAXIS_UP
m_cameraPosition [ 2 ] = ( 15.0 * m_cameraPosition [ 2 ] + m_cameraTargetPosition [ 2 ] + m_cameraHeight ) / 16.0 ;
# else
m_cameraPosition [ 1 ] = ( 15.0 * m_cameraPosition [ 1 ] + m_cameraTargetPosition [ 1 ] + m_cameraHeight ) / 16.0 ;
# endif
btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition ;
//keep distance between min and max distance
float cameraDistance = camToObject . length ( ) ;
float correctionFactor = 0.f ;
if ( cameraDistance < m_minCameraDistance )
{
correctionFactor = 0.15 * ( m_minCameraDistance - cameraDistance ) / cameraDistance ;
}
if ( cameraDistance > m_maxCameraDistance )
{
correctionFactor = 0.15 * ( m_maxCameraDistance - cameraDistance ) / cameraDistance ;
}
m_cameraPosition - = correctionFactor * camToObject ;
//update OpenGL camera settings
btScalar aspect = m_glutScreenWidth / ( btScalar ) m_glutScreenHeight ;
glFrustum ( - aspect , aspect , - 1.0 , 1.0 , 1.0 , 10000.0 ) ;
glMatrixMode ( GL_MODELVIEW ) ;
glLoadIdentity ( ) ;
gluLookAt ( m_cameraPosition [ 0 ] , m_cameraPosition [ 1 ] , m_cameraPosition [ 2 ] ,
m_cameraTargetPosition [ 0 ] , m_cameraTargetPosition [ 1 ] , m_cameraTargetPosition [ 2 ] ,
m_cameraUp . getX ( ) , m_cameraUp . getY ( ) , m_cameraUp . getZ ( ) ) ;
# endif
}
void Hinge2Vehicle : : lockLiftHinge ( void )
{
btScalar hingeAngle = m_liftHinge - > getHingeAngle ( ) ;
btScalar lowLim = m_liftHinge - > getLowerLimit ( ) ;
btScalar hiLim = m_liftHinge - > getUpperLimit ( ) ;
m_liftHinge - > enableAngularMotor ( false , 0 , 0 ) ;
if ( hingeAngle < lowLim )
{
// m_liftHinge->setLimit(lowLim, lowLim + LIFT_EPS);
m_liftHinge - > setLimit ( lowLim , lowLim ) ;
}
else if ( hingeAngle > hiLim )
{
// m_liftHinge->setLimit(hiLim - LIFT_EPS, hiLim);
m_liftHinge - > setLimit ( hiLim , hiLim ) ;
}
else
{
// m_liftHinge->setLimit(hingeAngle - LIFT_EPS, hingeAngle + LIFT_EPS);
m_liftHinge - > setLimit ( hingeAngle , hingeAngle ) ;
}
return ;
} // Hinge2Vehicle::lockLiftHinge()
void Hinge2Vehicle : : lockForkSlider ( void )
{
btScalar linDepth = m_forkSlider - > getLinearPos ( ) ;
btScalar lowLim = m_forkSlider - > getLowerLinLimit ( ) ;
btScalar hiLim = m_forkSlider - > getUpperLinLimit ( ) ;
m_forkSlider - > setPoweredLinMotor ( false ) ;
if ( linDepth < = lowLim )
{
m_forkSlider - > setLowerLinLimit ( lowLim ) ;
m_forkSlider - > setUpperLinLimit ( lowLim ) ;
}
else if ( linDepth > hiLim )
{
m_forkSlider - > setLowerLinLimit ( hiLim ) ;
m_forkSlider - > setUpperLinLimit ( hiLim ) ;
}
else
{
m_forkSlider - > setLowerLinLimit ( linDepth ) ;
m_forkSlider - > setUpperLinLimit ( linDepth ) ;
}
return ;
} // Hinge2Vehicle::lockForkSlider()
btRigidBody * Hinge2Vehicle : : localCreateRigidBody ( btScalar mass , const btTransform & startTransform , btCollisionShape * shape )
{
btAssert ( ( ! shape | | shape - > getShapeType ( ) ! = INVALID_SHAPE_PROXYTYPE ) ) ;
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = ( mass ! = 0.f ) ;
btVector3 localInertia ( 0 , 0 , 0 ) ;
if ( isDynamic )
shape - > calculateLocalInertia ( mass , localInertia ) ;
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
# define USE_MOTIONSTATE 1
# ifdef USE_MOTIONSTATE
btDefaultMotionState * myMotionState = new btDefaultMotionState ( startTransform ) ;
btRigidBody : : btRigidBodyConstructionInfo cInfo ( mass , myMotionState , shape , localInertia ) ;
btRigidBody * body = new btRigidBody ( cInfo ) ;
//body->setContactProcessingThreshold(m_defaultContactProcessingThreshold);
# else
btRigidBody * body = new btRigidBody ( mass , 0 , shape , localInertia ) ;
body - > setWorldTransform ( startTransform ) ;
# endif //
m_dynamicsWorld - > addRigidBody ( body ) ;
return body ;
}
ExampleInterface * Hinge2VehicleCreateFunc ( struct PhysicsInterface * pint , struct GUIHelperInterface * helper , int option )
{
return new Hinge2Vehicle ( helper ) ;
}