bullet3/examples/TinyRenderer/TinyRenderer.cpp

278 lines
9.0 KiB
C++
Raw Normal View History

#include "TinyRenderer.h"
#include <vector>
#include <limits>
#include <iostream>
#include "tgaimage.h"
#include "model.h"
#include "geometry.h"
#include "our_gl.h"
2016-04-27 04:08:02 +00:00
#include "../Utils/b3ResourcePath.h"
#include "Bullet3Common/b3MinMax.h"
#include "../OpenGLWindow/ShapeData.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btVector3.h"
Vec3f light_dir_world(1,1,1);
struct Shader : public IShader {
Model* m_model;
Vec3f m_light_dir_local;
Matrix& m_modelMat;
Matrix& m_modelView1;
Matrix& m_projectionMatrix;
mat<2,3,float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader
mat<4,3,float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS
mat<3,3,float> varying_nrm; // normal per vertex to be interpolated by FS
mat<3,3,float> ndc_tri; // triangle in normalized device coordinates
Shader(Model* model, Vec3f light_dir_local, Matrix& modelView, Matrix& projectionMatrix, Matrix& modelMat)
:m_model(model),
m_light_dir_local(light_dir_local),
m_modelView1(modelView),
m_projectionMatrix(projectionMatrix),
m_modelMat(modelMat)
{
}
virtual Vec4f vertex(int iface, int nthvert) {
Vec2f uv = m_model->uv(iface, nthvert);
//printf("uv = %f,%f\n", uv.x,uv.y);
varying_uv.set_col(nthvert, uv);
//varying_nrm.set_col(nthvert, proj<3>((m_projectionMatrix*m_modelView).invert_transpose()*embed<4>(m_model->normal(iface, nthvert), 0.f)));
varying_nrm.set_col(nthvert, proj<3>((m_modelMat).invert_transpose()*embed<4>(m_model->normal(iface, nthvert), 0.f)));
Vec4f gl_Vertex = m_projectionMatrix*m_modelView1*embed<4>(m_model->vert(iface, nthvert));
varying_tri.set_col(nthvert, gl_Vertex);
ndc_tri.set_col(nthvert, proj<3>(gl_Vertex/gl_Vertex[3]));
return gl_Vertex;
}
virtual bool fragment(Vec3f bar, TGAColor &color) {
Vec3f bn = (varying_nrm*bar).normalize();
Vec2f uv = varying_uv*bar;
mat<3,3,float> A;
A[0] = ndc_tri.col(1) - ndc_tri.col(0);
A[1] = ndc_tri.col(2) - ndc_tri.col(0);
A[2] = bn;
mat<3,3,float> AI = A.invert();
Vec3f i = AI * Vec3f(varying_uv[0][1] - varying_uv[0][0], varying_uv[0][2] - varying_uv[0][0], 0);
Vec3f j = AI * Vec3f(varying_uv[1][1] - varying_uv[1][0], varying_uv[1][2] - varying_uv[1][0], 0);
mat<3,3,float> B;
B.set_col(0, i.normalize());
B.set_col(1, j.normalize());
B.set_col(2, bn);
Vec3f n = (B*m_model->normal(uv)).normalize();
//float diff = 1;//b3Min(b3Max(0.f, n*0.3f),1.f);
float diff = b3Min(b3Max(0.f, bn*light_dir_world+0.3f),1.f);
//float diff = b3Max(0.f, n*m_light_dir_local);
color = m_model->diffuse(uv)*diff;
return false;
}
};
TinyRenderObjectData::TinyRenderObjectData(int width, int height,TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer)
:m_width(width),
m_height(height),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_model(0),
m_userData(0),
m_userIndex(-1)
{
Vec3f eye(1,1,3);
Vec3f center(0,0,0);
Vec3f up(0,0,1);
m_modelMatrix = Matrix::identity();
m_viewMatrix = lookat(eye, center, up);
//m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
//m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
m_viewportMatrix = viewport(0,0,width,height);
m_projectionMatrix = projection(-1.f/(eye-center).norm());
}
void TinyRenderObjectData::loadModel(const char* fileName)
{
//todo(erwincoumans) move the file loading out of here
char relativeFileName[1024];
if (!b3ResourcePath::findResourcePath(fileName, relativeFileName, 1024))
{
printf("Cannot find file %s\n", fileName);
} else
{
m_model = new Model(relativeFileName);
}
}
void TinyRenderObjectData::registerMeshShape(const float* vertices, int numVertices,const int* indices, int numIndices,
unsigned char* textureImage, int textureWidth, int textureHeight)
{
if (0==m_model)
{
m_model = new Model();
if (textureImage)
{
m_model->setDiffuseTextureFromData(textureImage,textureWidth,textureHeight);
} else
{
char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
}
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(vertices[i*9],
vertices[i*9+1],
vertices[i*9+2],
vertices[i*9+4],
vertices[i*9+5],
vertices[i*9+6],
vertices[i*9+7],
vertices[i*9+8]);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(indices[i],indices[i],indices[i],
indices[i+1],indices[i+1],indices[i+1],
indices[i+2],indices[i+2],indices[i+2]);
}
}
}
void TinyRenderObjectData::registerMesh2(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& normals,btAlignedObjectArray<int>& indices)
{
if (0==m_model)
{
int numVertices = vertices.size();
int numIndices = indices.size();
m_model = new Model();
char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(vertices[i].x(),
vertices[i].y(),
vertices[i].z(),
normals[i].x(),
normals[i].y(),
normals[i].z(),
0.5,0.5);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(indices[i],indices[i],indices[i],
indices[i+1],indices[i+1],indices[i+1],
indices[i+2],indices[i+2],indices[i+2]);
}
}
}
void TinyRenderObjectData::createCube(float halfExtentsX,float halfExtentsY,float halfExtentsZ)
{
m_model = new Model();
char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
int strideInBytes = 9*sizeof(float);
int numVertices = sizeof(cube_vertices_textured)/strideInBytes;
int numIndices = sizeof(cube_indices)/sizeof(int);
for (int i=0;i<numVertices;i++)
{
m_model->addVertex(halfExtentsX*cube_vertices_textured[i*9],
halfExtentsY*cube_vertices_textured[i*9+1],
halfExtentsY*cube_vertices_textured[i*9+2],
cube_vertices_textured[i*9+4],
cube_vertices_textured[i*9+5],
cube_vertices_textured[i*9+6],
cube_vertices_textured[i*9+7],
cube_vertices_textured[i*9+8]);
}
for (int i=0;i<numIndices;i+=3)
{
m_model->addTriangle(cube_indices[i],cube_indices[i],cube_indices[i],
cube_indices[i+1],cube_indices[i+1],cube_indices[i+1],
cube_indices[i+2],cube_indices[i+2],cube_indices[i+2]);
}
}
TinyRenderObjectData::~TinyRenderObjectData()
{
delete m_model;
}
void TinyRenderer::renderObject(TinyRenderObjectData& renderData)
{
Model* model = renderData.m_model;
if (0==model)
return;
Vec3f eye(renderData.m_eye[0],renderData.m_eye[1],renderData.m_eye[2]);
Vec3f center(renderData.m_center[0],renderData.m_center[1],renderData.m_center[2]);
Vec3f up(0,0,1);
//renderData.m_viewMatrix = lookat(eye, center, up);
int width = renderData.m_width;
int height = renderData.m_height;
//renderData.m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
renderData.m_viewportMatrix = viewport(0,0,renderData.m_width,renderData.m_height);
//renderData.m_projectionMatrix = projection(-1.f/(eye-center).norm());
b3AlignedObjectArray<float>& zbuffer = renderData.m_depthBuffer;
TGAImage& frame = renderData.m_rgbColorBuffer;
Vec3f light_dir_local = proj<3>((renderData.m_projectionMatrix*renderData.m_viewMatrix*renderData.m_modelMatrix*embed<4>(light_dir_world, 0.f))).normalize();
{
Matrix modelViewMatrix = renderData.m_viewMatrix*renderData.m_modelMatrix;
Shader shader(model, light_dir_local, modelViewMatrix, renderData.m_projectionMatrix,renderData.m_modelMatrix);
for (int i=0; i<model->nfaces(); i++) {
for (int j=0; j<3; j++) {
shader.vertex(i, j);
}
triangle(shader.varying_tri, shader, frame, &zbuffer[0], renderData.m_viewportMatrix);
}
}
}