bullet3/examples/MultiBody/MultiDofDemo.cpp

446 lines
14 KiB
C++
Raw Normal View History

#include "MultiDofDemo.h"
#include "../OpenGLWindow/SimpleOpenGL3App.h"
#include "btBulletDynamicsCommon.h"
#include "BulletDynamics/Featherstone/btMultiBody.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyLink.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "../OpenGLWindow/GLInstancingRenderer.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class MultiDofDemo : public CommonMultiBodyBase
{
public:
MultiDofDemo(GUIHelperInterface* helper);
virtual ~MultiDofDemo();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 1;
float pitch = 50;
float yaw = 35;
float targetPos[3]={-3,2.8,-2.5};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
btMultiBody* createFeatherstoneMultiBody_testMultiDof(class btMultiBodyDynamicsWorld* world, int numLinks, const btVector3& basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical = false, bool floating = false);
void addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents);
void addBoxes_testMultiDof();
};
static bool g_floatingBase = false;
static bool g_firstInit = true;
static float scaling = 0.4f;
static float friction = 1.;
#define ARRAY_SIZE_X 5
#define ARRAY_SIZE_Y 5
#define ARRAY_SIZE_Z 5
//maximum number of objects (and allow user to shoot additional boxes)
#define MAX_PROXIES (ARRAY_SIZE_X*ARRAY_SIZE_Y*ARRAY_SIZE_Z + 1024)
#define START_POS_X -5
//#define START_POS_Y 12
#define START_POS_Y 2
#define START_POS_Z -3
MultiDofDemo::MultiDofDemo(GUIHelperInterface* helper)
:CommonMultiBodyBase(helper)
{
m_guiHelper->setUpAxis(1);
}
MultiDofDemo::~MultiDofDemo()
{
}
void MultiDofDemo::stepSimulation(float deltaTime)
{
//use a smaller internal timestep, there are stability issues
float internalTimeStep = 1./240.f;
m_dynamicsWorld->stepSimulation(deltaTime,10,internalTimeStep);
}
void MultiDofDemo::initPhysics()
{
m_guiHelper->setUpAxis(1);
if(g_firstInit)
{
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraDistance(btScalar(10.*scaling));
m_guiHelper->getRenderInterface()->getActiveCamera()->setCameraPitch(50);
g_firstInit = false;
}
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
//Use the btMultiBodyConstraintSolver for Featherstone btMultiBody support
btMultiBodyConstraintSolver* sol = new btMultiBodyConstraintSolver;
m_solver = sol;
//use btMultiBodyDynamicsWorld for Featherstone btMultiBody support
btMultiBodyDynamicsWorld* world = new btMultiBodyDynamicsWorld(m_dispatcher,m_broadphase,sol,m_collisionConfiguration);
m_dynamicsWorld = world;
// m_dynamicsWorld->setDebugDrawer(&gDebugDraw);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
btVector3 groundHalfExtents(50,50,50);
btCollisionShape* groundShape = new btBoxShape(groundHalfExtents);
//groundShape->initializePolyhedralFeatures();
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,00));
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
bool damping = true;
bool gyro = true;
int numLinks = 5;
bool spherical = true; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
bool multibodyOnly = false;
bool canSleep = true;
bool selfCollide = false;
bool multibodyConstraint = true;
btVector3 linkHalfExtents(0.05, 0.37, 0.1);
btVector3 baseHalfExtents(0.05, 0.37, 0.1);
btMultiBody* mbC = createFeatherstoneMultiBody_testMultiDof(world, numLinks, btVector3(-0.4f, 3.f, 0.f), linkHalfExtents, baseHalfExtents, spherical, g_floatingBase);
//mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
g_floatingBase = ! g_floatingBase;
mbC->setCanSleep(canSleep);
mbC->setHasSelfCollision(selfCollide);
mbC->setUseGyroTerm(gyro);
//
if(!damping)
{
mbC->setLinearDamping(0.f);
mbC->setAngularDamping(0.f);
}else
{ mbC->setLinearDamping(0.1f);
mbC->setAngularDamping(0.9f);
}
//
m_dynamicsWorld->setGravity(btVector3(0, -9.81 ,0));
//////////////////////////////////////////////
if(numLinks > 0)
{
btScalar q0 = 45.f * SIMD_PI/ 180.f;
if(!spherical)
{
mbC->setJointPosMultiDof(0, &q0);
}
else
{
btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
quat0.normalize();
mbC->setJointPosMultiDof(0, quat0);
}
}
///
addColliders_testMultiDof(mbC, world, baseHalfExtents, linkHalfExtents);
/////////////////////////////////////////////////////////////////
btScalar groundHeight = -51.55;
if (!multibodyOnly)
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,groundHeight,0));
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body,1,1+2);//,1,1+2);
}
/////////////////////////////////////////////////////////////////
if(!multibodyOnly)
{
btVector3 halfExtents(.5,.5,.5);
btBoxShape* colShape = new btBoxShape(halfExtents);
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
startTransform.setOrigin(btVector3(
btScalar(0.0),
-0.95,
btScalar(0.0)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);//,1,1+2);
if (multibodyConstraint) {
btVector3 pointInA = -linkHalfExtents;
btVector3 pointInB = halfExtents;
btMatrix3x3 frameInA;
btMatrix3x3 frameInB;
frameInA.setIdentity();
frameInB.setIdentity();
btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,body,pointInA,pointInB,frameInA,frameInB);
//btMultiBodyFixedConstraint* p2p = new btMultiBodyFixedConstraint(mbC,numLinks-1,mbC,numLinks-4,pointInA,pointInA,frameInA,frameInB);
p2p->setMaxAppliedImpulse(2.0);
m_dynamicsWorld->addMultiBodyConstraint(p2p);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
/////////////////////////////////////////////////////////////////
}
btMultiBody* MultiDofDemo::createFeatherstoneMultiBody_testMultiDof(btMultiBodyDynamicsWorld *pWorld, int numLinks, const btVector3 &basePosition, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents, bool spherical, bool floating)
{
//init the base
btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
float baseMass = 1.f;
if(baseMass)
{
btCollisionShape *pTempBox = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
pTempBox->calculateLocalInertia(baseMass, baseInertiaDiag);
delete pTempBox;
}
bool canSleep = false;
btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
pMultiBody->setBasePos(basePosition);
pMultiBody->setWorldToBaseRot(baseOriQuat);
btVector3 vel(0, 0, 0);
// pMultiBody->setBaseVel(vel);
//init the links
btVector3 hingeJointAxis(1, 0, 0);
float linkMass = 1.f;
btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
btCollisionShape *pTempBox = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));
pTempBox->calculateLocalInertia(linkMass, linkInertiaDiag);
delete pTempBox;
//y-axis assumed up
btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
//////
btScalar q0 = 0.f * SIMD_PI/ 180.f;
btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
quat0.normalize();
/////
for(int i = 0; i < numLinks; ++i)
{
if(!spherical)
pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
else
//pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
}
pMultiBody->finalizeMultiDof();
///
pWorld->addMultiBody(pMultiBody);
///
return pMultiBody;
}
void MultiDofDemo::addColliders_testMultiDof(btMultiBody *pMultiBody, btMultiBodyDynamicsWorld *pWorld, const btVector3 &baseHalfExtents, const btVector3 &linkHalfExtents)
{
btAlignedObjectArray<btQuaternion> world_to_local;
world_to_local.resize(pMultiBody->getNumLinks() + 1);
btAlignedObjectArray<btVector3> local_origin;
local_origin.resize(pMultiBody->getNumLinks() + 1);
world_to_local[0] = pMultiBody->getWorldToBaseRot();
local_origin[0] = pMultiBody->getBasePos();
{
// float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
if (1)
{
btCollisionShape* box = new btBoxShape(baseHalfExtents);
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(local_origin[0]);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
pWorld->addCollisionObject(col, 2,1+2);
col->setFriction(friction);
pMultiBody->setBaseCollider(col);
}
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
const int parent = pMultiBody->getParent(i);
world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
}
for (int i=0; i < pMultiBody->getNumLinks(); ++i)
{
btVector3 posr = local_origin[i+1];
// float pos[4]={posr.x(),posr.y(),posr.z(),1};
btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
btCollisionShape* box = new btBoxShape(linkHalfExtents);
btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
col->setCollisionShape(box);
btTransform tr;
tr.setIdentity();
tr.setOrigin(posr);
tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
col->setFriction(friction);
pWorld->addCollisionObject(col,2,1+2);
pMultiBody->getLink(i).m_collider=col;
}
}
void MultiDofDemo::addBoxes_testMultiDof()
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
btBoxShape* colShape = new btBoxShape(btVector3(1,1,1));
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
float start_x = START_POS_X - ARRAY_SIZE_X/2;
float start_y = START_POS_Y;
float start_z = START_POS_Z - ARRAY_SIZE_Z/2;
for (int k=0;k<ARRAY_SIZE_Y;k++)
{
for (int i=0;i<ARRAY_SIZE_X;i++)
{
for(int j = 0;j<ARRAY_SIZE_Z;j++)
{
startTransform.setOrigin(btVector3(
btScalar(3.0*i + start_x),
btScalar(3.0*k + start_y),
btScalar(3.0*j + start_z)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);//,1,1+2);
}
}
}
}
class CommonExampleInterface* MultiDofCreateFunc(struct CommonExampleOptions& options)
{
return new MultiDofDemo(options.m_guiHelper);
}