bullet3/examples/RenderingExamples/RenderInstancingDemo.cpp

140 lines
3.4 KiB
C++
Raw Normal View History

#ifndef RENDER_INSTANCING_DEMO_H
#define RENDER_INSTANCING_DEMO_H
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
2015-04-20 22:28:52 +00:00
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
///quick demo showing the right-handed coordinate system and positive rotations around each axis
class RenderInstancingDemo : public CommonExampleInterface
{
CommonGraphicsApp* m_app;
float m_x;
float m_y;
float m_z;
b3AlignedObjectArray<int> m_movingInstances;
enum
{
numCubesX = 20,
numCubesY = 20
};
public:
RenderInstancingDemo(CommonGraphicsApp* app)
: m_app(app),
m_x(0),
m_y(0),
m_z(0)
{
m_app->setUpAxis(2);
{
b3Vector3 extents = b3MakeVector3(100, 100, 100);
extents[m_app->getUpAxis()] = 1;
int xres = 20;
int yres = 20;
b3Vector4 color0 = b3MakeVector4(0.1, 0.1, 0.1, 1);
b3Vector4 color1 = b3MakeVector4(0.6, 0.6, 0.6, 1);
m_app->registerGrid(xres, yres, color0, color1);
}
{
int boxId = m_app->registerCubeShape(0.1, 0.1, 0.1);
for (int i = -numCubesX / 2; i < numCubesX / 2; i++)
{
for (int j = -numCubesY / 2; j < numCubesY / 2; j++)
{
b3Vector3 pos = b3MakeVector3(i, j, j);
pos[app->getUpAxis()] = 1;
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 color = b3MakeVector4(0.3, 0.3, 0.3, 1);
b3Vector3 scaling = b3MakeVector3(1, 1, 1);
int instanceId = m_app->m_renderer->registerGraphicsInstance(boxId, pos, orn, color, scaling);
m_movingInstances.push_back(instanceId);
}
}
}
m_app->m_renderer->writeTransforms();
}
virtual ~RenderInstancingDemo()
{
}
virtual void physicsDebugDraw(int debugDrawMode)
{
}
virtual void initPhysics()
{
}
virtual void exitPhysics()
{
}
virtual void stepSimulation(float deltaTime)
{
m_x += 0.01f;
m_y += 0.01f;
m_z += 0.01f;
int index = 0;
for (int i = -numCubesX / 2; i < numCubesX / 2; i++)
{
for (int j = -numCubesY / 2; j < numCubesY / 2; j++)
{
b3Vector3 pos = b3MakeVector3(i, j, j);
pos[m_app->getUpAxis()] = 1 + 1 * b3Sin(m_x + i - j);
float orn[4] = {0, 0, 0, 1};
m_app->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, m_movingInstances[index++]);
}
}
m_app->m_renderer->writeTransforms();
}
virtual void renderScene()
{
m_app->m_renderer->renderScene();
}
virtual void physicsDebugDraw()
{
}
virtual bool mouseMoveCallback(float x, float y)
{
return false;
}
virtual bool mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
virtual bool keyboardCallback(int key, int state)
{
return false;
}
virtual void resetCamera()
{
float dist = 13;
float pitch = -13;
float yaw = 50;
float targetPos[3] = {-1, 0, -0.3};
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->setCameraDistance(dist);
m_app->m_renderer->getActiveCamera()->setCameraPitch(pitch);
m_app->m_renderer->getActiveCamera()->setCameraYaw(yaw);
m_app->m_renderer->getActiveCamera()->setCameraTargetPosition(targetPos[0], targetPos[1], targetPos[2]);
}
}
};
class CommonExampleInterface* RenderInstancingCreateFunc(struct CommonExampleOptions& options)
{
return new RenderInstancingDemo(options.m_guiHelper->getAppInterface());
}
#endif //RENDER_INSTANCING_DEMO_H