bullet3/examples/SharedMemory/PhysicsServer.cpp

603 lines
23 KiB
C++
Raw Normal View History

#include "PhysicsServer.h"
#include "PosixSharedMemory.h"
#include "Win32SharedMemory.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "btBulletDynamicsCommon.h"
#include "../Extras/Serialize/BulletWorldImporter/btBulletWorldImporter.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "LinearMath/btSerializer.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
struct UrdfLinkNameMapUtil
{
btMultiBody* m_mb;
btDefaultSerializer* m_memSerializer;
UrdfLinkNameMapUtil():m_mb(0),m_memSerializer(0)
{
}
};
struct PhysicsServerInternalData
{
SharedMemoryInterface* m_sharedMemory;
SharedMemoryExampleData* m_testBlock1;
bool m_isConnected;
btScalar m_physicsDeltaTime;
//btAlignedObjectArray<btJointFeedback*> m_jointFeedbacks;
btAlignedObjectArray<btBulletWorldImporter*> m_worldImporters;
btAlignedObjectArray<UrdfLinkNameMapUtil*> m_urdfLinkNameMapper;
btHashMap<btHashInt, btMultiBodyJointMotor*> m_multiBodyJointMotorMap;
btAlignedObjectArray<std::string*> m_strings;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
struct GUIHelperInterface* m_guiHelper;
PhysicsServerInternalData()
:m_sharedMemory(0),
m_testBlock1(0),
m_isConnected(false),
m_physicsDeltaTime(1./60.),
m_dynamicsWorld(0),
m_guiHelper(0)
{
}
};
PhysicsServerSharedMemory::PhysicsServerSharedMemory()
{
m_data = new PhysicsServerInternalData();
#ifdef _WIN32
m_data->m_sharedMemory = new Win32SharedMemoryServer();
#else
m_data->m_sharedMemory = new PosixSharedMemory();
#endif
}
PhysicsServerSharedMemory::~PhysicsServerSharedMemory()
{
delete m_data;
}
bool PhysicsServerSharedMemory::connectSharedMemory(bool allowSharedMemoryInitialization, class btMultiBodyDynamicsWorld* dynamicsWorld, struct GUIHelperInterface* guiHelper)
{
m_data->m_dynamicsWorld = dynamicsWorld;
m_data->m_guiHelper = guiHelper;
bool allowCreation = true;
m_data->m_testBlock1 = (SharedMemoryExampleData*)m_data->m_sharedMemory->allocateSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE,allowCreation);
if (m_data->m_testBlock1)
{
if (m_data->m_testBlock1->m_magicId !=SHARED_MEMORY_MAGIC_NUMBER)
{
if (allowSharedMemoryInitialization)
{
InitSharedMemoryExampleData(m_data->m_testBlock1);
b3Printf("Created and initialized shared memory block");
m_data->m_isConnected = true;
} else
{
b3Error("Error: please start server before client\n");
m_data->m_sharedMemory->releaseSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE);
m_data->m_testBlock1 = 0;
return false;
}
} else
{
b3Printf("Connected to existing shared memory, status OK.\n");
m_data->m_isConnected = true;
}
} else
{
b3Error("Cannot connect to shared memory");
return false;
}
return true;
}
void PhysicsServerSharedMemory::disconnectSharedMemory(bool deInitializeSharedMemory)
{
b3Printf("releaseSharedMemory1\n");
if (m_data->m_testBlock1)
{
b3Printf("m_testBlock1\n");
if (deInitializeSharedMemory)
{
m_data->m_testBlock1->m_magicId = 0;
b3Printf("De-initialized shared memory, magic id = %d\n",m_data->m_testBlock1->m_magicId);
}
btAssert(m_data->m_sharedMemory);
m_data->m_sharedMemory->releaseSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE);
}
if (m_data->m_sharedMemory)
{
b3Printf("m_sharedMemory\n");
delete m_data->m_sharedMemory;
m_data->m_sharedMemory = 0;
m_data->m_testBlock1 = 0;
}
}
void PhysicsServerSharedMemory::releaseSharedMemory()
{
b3Printf("releaseSharedMemory1\n");
if (m_data->m_testBlock1)
{
b3Printf("m_testBlock1\n");
m_data->m_testBlock1->m_magicId = 0;
b3Printf("magic id = %d\n",m_data->m_testBlock1->m_magicId);
btAssert(m_data->m_sharedMemory);
m_data->m_sharedMemory->releaseSharedMemory(SHARED_MEMORY_KEY, SHARED_MEMORY_SIZE);
}
if (m_data->m_sharedMemory)
{
b3Printf("m_sharedMemory\n");
delete m_data->m_sharedMemory;
m_data->m_sharedMemory = 0;
m_data->m_testBlock1 = 0;
}
}
bool PhysicsServerSharedMemory::supportsJointMotor(btMultiBody* mb, int mbLinkIndex)
{
bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic);
return canHaveMotor;
}
//for testing, create joint motors for revolute and prismatic joints
void PhysicsServerSharedMemory::createJointMotors(btMultiBody* mb)
{
int numLinks = mb->getNumLinks();
for (int i=0;i<numLinks;i++)
{
int mbLinkIndex = i;
if (supportsJointMotor(mb,mbLinkIndex))
{
float maxMotorImpulse = 0.f;
int dof = 0;
btScalar desiredVelocity = 0.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,dof,desiredVelocity,maxMotorImpulse);
//motor->setMaxAppliedImpulse(0);
m_data->m_multiBodyJointMotorMap.insert(mbLinkIndex,motor);
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
}
}
}
bool PhysicsServerSharedMemory::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadUrdf: No valid m_dynamicsWorld");
return false;
}
BulletURDFImporter u2b(m_data->m_guiHelper);
bool loadOk = u2b.loadURDF(fileName, useFixedBase);
if (loadOk)
{
b3Printf("loaded %s OK!", fileName);
btTransform tr;
tr.setIdentity();
tr.setOrigin(pos);
tr.setRotation(orn);
int rootLinkIndex = u2b.getRootLinkIndex();
// printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
ConvertURDF2Bullet(u2b,creation, tr,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix());
btMultiBody* mb = creation.getBulletMultiBody();
if (useMultiBody)
{
if (mb)
{
createJointMotors(mb);
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
util->m_memSerializer = new btDefaultSerializer(SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE,(unsigned char*)m_data->m_testBlock1->m_bulletStreamDataServerToClient);
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
int urdfLinkIndex = creation.m_mb2urdfLink[i];
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
util->m_memSerializer->registerNameForPointer(linkName->c_str(),linkName->c_str());
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
util->m_memSerializer->registerNameForPointer(jointName->c_str(),jointName->c_str());
mb->getLink(i).m_jointName = jointName->c_str();
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
util->m_memSerializer->registerNameForPointer(baseName->c_str(),baseName->c_str());
mb->setBaseName(baseName->c_str());
util->m_memSerializer->insertHeader();
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
return true;
} else
{
b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
return false;
}
} else
{
btAssert(0);
/*
for (int i=0;i<m_data->m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_data->m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
*/
return true;
}
}
return false;
}
void PhysicsServerSharedMemory::processClientCommands()
{
if (m_data->m_isConnected && m_data->m_testBlock1)
{
///we ignore overflow of integer for now
if (m_data->m_testBlock1->m_numClientCommands> m_data->m_testBlock1->m_numProcessedClientCommands)
{
//until we implement a proper ring buffer, we assume always maximum of 1 outstanding commands
btAssert(m_data->m_testBlock1->m_numClientCommands==m_data->m_testBlock1->m_numProcessedClientCommands+1);
const SharedMemoryCommand& clientCmd =m_data->m_testBlock1->m_clientCommands[0];
m_data->m_testBlock1->m_numProcessedClientCommands++;
//consume the command
switch (clientCmd.m_type)
{
case CMD_SEND_BULLET_DATA_STREAM:
{
b3Printf("Processed CMD_SEND_BULLET_DATA_STREAM length %d",clientCmd.m_dataStreamArguments.m_streamChunkLength);
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
bool completedOk = worldImporter->loadFileFromMemory(m_data->m_testBlock1->m_bulletStreamDataClientToServer,clientCmd.m_dataStreamArguments.m_streamChunkLength);
SharedMemoryCommand& serverCmd =m_data->m_testBlock1->m_serverCommands[0];
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverCmd.m_type =CMD_BULLET_DATA_STREAM_RECEIVED_COMPLETED;
} else
{
serverCmd.m_type =CMD_BULLET_DATA_STREAM_RECEIVED_FAILED;
}
m_data->m_testBlock1->m_numServerCommands++;
break;
}
case CMD_LOAD_URDF:
{
const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments;
b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName);
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(urdfArgs.m_urdfFileName,
btVector3(urdfArgs.m_initialPosition[0],
urdfArgs.m_initialPosition[1],
urdfArgs.m_initialPosition[2]),
btQuaternion(urdfArgs.m_initialOrientation[0],
urdfArgs.m_initialOrientation[1],
urdfArgs.m_initialOrientation[2],
urdfArgs.m_initialOrientation[3]),
urdfArgs.m_useMultiBody, urdfArgs.m_useFixedBase);
SharedMemoryCommand& serverCmd =m_data->m_testBlock1->m_serverCommands[0];
if (completedOk)
{
if (m_data->m_urdfLinkNameMapper.size())
{
serverCmd.m_dataStreamArguments.m_streamChunkLength = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size()-1)->m_memSerializer->getCurrentBufferSize();
}
serverCmd.m_type =CMD_URDF_LOADING_COMPLETED;
} else
{
serverCmd.m_type =CMD_URDF_LOADING_FAILED;
}
m_data->m_testBlock1->m_numServerCommands++;
break;
}
case CMD_SEND_DESIRED_STATE:
{
//for (int i=0;i<MAX_DEGREE_OF_FREEDOM;i++)
//{
// m_testBlock1->m_desiredStateForceTorque[i] = 100;
//}
b3Printf("Processed CMD_SEND_DESIRED_STATE");
if (m_data->m_dynamicsWorld->getNumMultibodies()>0)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(0);
btAssert(mb);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
b3Printf("Using CONTROL_MODE_TORQUE");
mb->clearForcesAndTorques();
int torqueIndex = 0;
btVector3 f(clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[0],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[1],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[2]);
btVector3 t(clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[3],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[4],
clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[5]);
torqueIndex+=6;
mb->addBaseForce(f);
mb->addBaseTorque(t);
for (int link=0;link<mb->getNumLinks();link++)
{
for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
double torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
mb->addJointTorqueMultiDof(link,dof,torque);
torqueIndex++;
}
}
break;
}
case CONTROL_MODE_VELOCITY:
{
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
if (m_data->m_dynamicsWorld->getNumMultibodies()>0)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(0);
int dofIndex = 6;//skip the 3 linear + 3 angular degree of freedom entries of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor** motorPtr = m_data->m_multiBodyJointMotorMap[link];
if (motorPtr)
{
btMultiBodyJointMotor* motor = *motorPtr;
btScalar desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex];
motor->setVelocityTarget(desiredVelocity);
btScalar maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex]*m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
numMotors++;
}
}
dofIndex += mb->getLink(link).m_dofCount;
}
}
b3Printf("Using CONTROL_MODE_TORQUE with %d motors", numMotors);
break;
}
default:
{
b3Printf("m_controlMode not implemented yet");
break;
}
}
}
SharedMemoryCommand& serverCmd = m_data->m_testBlock1->m_serverCommands[0];
serverCmd.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED;
m_data->m_testBlock1->m_numServerCommands++;
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
b3Printf("Sending the actual state (Q,U)");
if (m_data->m_dynamicsWorld->getNumMultibodies()>0)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(0);
SharedMemoryCommand& serverCmd = m_data->m_testBlock1->m_serverCommands[0];
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = 0;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = mb->getBaseVel()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = mb->getBaseVel()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = mb->getBaseOmega()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = mb->getBaseOmega()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
}
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_posVarCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
} else
{
b3Warning("Request state but no multibody available");
//rigid bodies?
}
/*
//now we send back the actual q, q' and force/torque and IMU sensor values
for (int i=0;i<m_jointFeedbacks.size();i++)
{
printf("Applied force A:(%f,%f,%f), torque A:(%f,%f,%f)\nForce B:(%f,%f,%f), torque B:(%f,%f,%f)\n",
m_jointFeedbacks[i]->m_appliedForceBodyA.x(),
m_jointFeedbacks[i]->m_appliedForceBodyA.y(),
m_jointFeedbacks[i]->m_appliedForceBodyA.z(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.x(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.y(),
m_jointFeedbacks[i]->m_appliedTorqueBodyA.z(),
m_jointFeedbacks[i]->m_appliedForceBodyB.x(),
m_jointFeedbacks[i]->m_appliedForceBodyB.y(),
m_jointFeedbacks[i]->m_appliedForceBodyB.z(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.x(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.y(),
m_jointFeedbacks[i]->m_appliedTorqueBodyB.z());
}
*/
m_data->m_testBlock1->m_numServerCommands++;
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
b3Printf("Step simulation request");
m_data->m_dynamicsWorld->stepSimulation(m_data->m_physicsDeltaTime);
SharedMemoryCommand& serverCmd =m_data->m_testBlock1->m_serverCommands[0];
serverCmd.m_type =CMD_STEP_FORWARD_SIMULATION_COMPLETED;
m_data->m_testBlock1->m_numServerCommands++;
break;
}
case CMD_SHUTDOWN:
{
btAssert(0);
//wantsShutdown = true;
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
btVector3 halfExtents(30,30,1);
btTransform startTrans;
startTrans.setIdentity();
startTrans.setOrigin(btVector3(0,0,-4));
btBulletWorldImporter* worldImporter = new btBulletWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
btCollisionShape* shape = worldImporter->createBoxShape(halfExtents);
btScalar mass = 0.f;
bool isDynamic = (mass>0);
worldImporter->createRigidBody(isDynamic,mass,startTrans,shape,0);
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
SharedMemoryCommand& serverCmd =m_data->m_testBlock1->m_serverCommands[0];
serverCmd.m_type =CMD_STEP_FORWARD_SIMULATION_COMPLETED;
m_data->m_testBlock1->m_numServerCommands++;
break;
}
default:
{
b3Error("Unsupported command encountered");
btAssert(0);
}
};
//process the command right now
}
}
}