bullet3/examples/SharedMemory/PhysicsServerSharedMemory.cpp

327 lines
9.7 KiB
C++
Raw Normal View History

#include "PhysicsServerSharedMemory.h"
#include "PosixSharedMemory.h"
#include "Win32SharedMemory.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btTransform.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryBlock.h"
#include "PhysicsCommandProcessorInterface.h"
//number of shared memory blocks == number of simultaneous connections
#define MAX_SHARED_MEMORY_BLOCKS 2
struct PhysicsServerSharedMemoryInternalData
{
///end handle management
SharedMemoryInterface* m_sharedMemory;
bool m_ownsSharedMemory;
SharedMemoryBlock* m_testBlocks[MAX_SHARED_MEMORY_BLOCKS];
int m_sharedMemoryKey;
bool m_areConnected[MAX_SHARED_MEMORY_BLOCKS];
bool m_verboseOutput;
CommandProcessorInterface* m_commandProcessor;
CommandProcessorCreationInterface* m_commandProcessorCreator;
PhysicsServerSharedMemoryInternalData()
: m_sharedMemory(0),
m_ownsSharedMemory(false),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_verboseOutput(false),
m_commandProcessor(0)
{
for (int i = 0; i < MAX_SHARED_MEMORY_BLOCKS; i++)
{
m_testBlocks[i] = 0;
m_areConnected[i] = false;
}
}
SharedMemoryStatus& createServerStatus(int statusType, int sequenceNumber, int timeStamp, int blockIndex)
{
SharedMemoryStatus& serverCmd = m_testBlocks[blockIndex]->m_serverCommands[0];
serverCmd.m_type = statusType;
serverCmd.m_sequenceNumber = sequenceNumber;
serverCmd.m_timeStamp = timeStamp;
return serverCmd;
}
void submitServerStatus(SharedMemoryStatus& status, int blockIndex)
{
m_testBlocks[blockIndex]->m_numServerCommands++;
}
};
PhysicsServerSharedMemory::PhysicsServerSharedMemory(CommandProcessorCreationInterface* commandProcessorCreator, SharedMemoryInterface* sharedMem, int bla)
{
m_data = new PhysicsServerSharedMemoryInternalData();
m_data->m_commandProcessorCreator = commandProcessorCreator;
if (sharedMem)
{
m_data->m_sharedMemory = sharedMem;
m_data->m_ownsSharedMemory = false;
}
else
{
#ifdef _WIN32
m_data->m_sharedMemory = new Win32SharedMemoryServer();
#else
m_data->m_sharedMemory = new PosixSharedMemory();
#endif
m_data->m_ownsSharedMemory = true;
}
m_data->m_commandProcessor = commandProcessorCreator->createCommandProcessor();
}
PhysicsServerSharedMemory::~PhysicsServerSharedMemory()
{
if (m_data->m_sharedMemory)
{
if (m_data->m_verboseOutput)
{
b3Printf("m_sharedMemory\n");
}
if (m_data->m_ownsSharedMemory)
{
delete m_data->m_sharedMemory;
}
m_data->m_sharedMemory = 0;
}
m_data->m_commandProcessorCreator->deleteCommandProcessor(m_data->m_commandProcessor);
delete m_data;
}
/*void PhysicsServerSharedMemory::resetDynamicsWorld()
{
m_data->m_commandProcessor->deleteDynamicsWorld();
m_data->m_commandProcessor ->createEmptyDynamicsWorld();
}
*/
void PhysicsServerSharedMemory::setSharedMemoryKey(int key)
{
m_data->m_sharedMemoryKey = key;
}
bool PhysicsServerSharedMemory::connectSharedMemory(struct GUIHelperInterface* guiHelper)
{
m_data->m_commandProcessor->setGuiHelper(guiHelper);
bool allowCreation = true;
bool allConnected = false;
int numConnected = 0;
int counter = 0;
for (int block = 0; block < MAX_SHARED_MEMORY_BLOCKS; block++)
{
if (m_data->m_areConnected[block])
{
allConnected = true;
numConnected++;
b3Warning("connectSharedMemory, while already connected");
continue;
}
do
{
m_data->m_testBlocks[block] = (SharedMemoryBlock*)m_data->m_sharedMemory->allocateSharedMemory(m_data->m_sharedMemoryKey + block, SHARED_MEMORY_SIZE, allowCreation);
if (m_data->m_testBlocks[block])
{
int magicId = m_data->m_testBlocks[block]->m_magicId;
if (m_data->m_verboseOutput)
{
b3Printf("magicId = %d\n", magicId);
}
if (m_data->m_testBlocks[block]->m_magicId != SHARED_MEMORY_MAGIC_NUMBER)
{
InitSharedMemoryBlock(m_data->m_testBlocks[block]);
if (m_data->m_verboseOutput)
{
b3Printf("Created and initialized shared memory block\n");
}
m_data->m_areConnected[block] = true;
numConnected++;
}
else
{
m_data->m_sharedMemory->releaseSharedMemory(m_data->m_sharedMemoryKey + block, SHARED_MEMORY_SIZE);
m_data->m_testBlocks[block] = 0;
m_data->m_areConnected[block] = false;
}
}
else
{
//b3Error("Cannot connect to shared memory");
m_data->m_areConnected[block] = false;
}
} while (counter++ < 10 && !m_data->m_areConnected[block]);
if (!m_data->m_areConnected[block])
{
b3Error("Server cannot connect to shared memory.\n");
}
}
allConnected = (numConnected == MAX_SHARED_MEMORY_BLOCKS);
return allConnected;
}
void PhysicsServerSharedMemory::disconnectSharedMemory(bool deInitializeSharedMemory)
{
//m_data->m_commandProcessor->deleteDynamicsWorld();
m_data->m_commandProcessor->setGuiHelper(0);
if (m_data->m_verboseOutput)
{
b3Printf("releaseSharedMemory1\n");
}
for (int block = 0; block < MAX_SHARED_MEMORY_BLOCKS; block++)
{
if (m_data->m_testBlocks[block])
{
if (m_data->m_verboseOutput)
{
b3Printf("m_testBlock1\n");
}
if (deInitializeSharedMemory)
{
m_data->m_testBlocks[block]->m_magicId = 0;
if (m_data->m_verboseOutput)
{
b3Printf("De-initialized shared memory, magic id = %d\n", m_data->m_testBlocks[block]->m_magicId);
}
}
btAssert(m_data->m_sharedMemory);
m_data->m_sharedMemory->releaseSharedMemory(m_data->m_sharedMemoryKey + block, SHARED_MEMORY_SIZE);
}
m_data->m_testBlocks[block] = 0;
m_data->m_areConnected[block] = false;
}
}
void PhysicsServerSharedMemory::releaseSharedMemory()
{
disconnectSharedMemory(true);
}
void PhysicsServerSharedMemory::stepSimulationRealTime(double dtInSec, const struct b3VRControllerEvent* vrEvents, int numVREvents, const struct b3KeyboardEvent* keyEvents, int numKeyEvents, const struct b3MouseEvent* mouseEvents, int numMouseEvents)
{
m_data->m_commandProcessor->stepSimulationRealTime(dtInSec, vrEvents, numVREvents, keyEvents, numKeyEvents, mouseEvents, numMouseEvents);
}
void PhysicsServerSharedMemory::enableRealTimeSimulation(bool enableRealTimeSim)
{
m_data->m_commandProcessor->enableRealTimeSimulation(enableRealTimeSim);
}
bool PhysicsServerSharedMemory::isRealTimeSimulationEnabled() const
{
return m_data->m_commandProcessor->isRealTimeSimulationEnabled();
}
void PhysicsServerSharedMemory::reportNotifications()
{
m_data->m_commandProcessor->reportNotifications();
}
void PhysicsServerSharedMemory::processClientCommands()
{
m_data->m_commandProcessor->processClientCommands();
for (int block = 0; block < MAX_SHARED_MEMORY_BLOCKS; block++)
{
if (m_data->m_areConnected[block] && m_data->m_testBlocks[block])
{
m_data->m_commandProcessor->replayLogCommand(&m_data->m_testBlocks[block]->m_bulletStreamDataServerToClientRefactor[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
///we ignore overflow of integer for now
if (m_data->m_testBlocks[block]->m_numClientCommands > m_data->m_testBlocks[block]->m_numProcessedClientCommands)
{
//BT_PROFILE("processClientCommand");
//until we implement a proper ring buffer, we assume always maximum of 1 outstanding commands
btAssert(m_data->m_testBlocks[block]->m_numClientCommands == m_data->m_testBlocks[block]->m_numProcessedClientCommands + 1);
const SharedMemoryCommand& clientCmd = m_data->m_testBlocks[block]->m_clientCommands[0];
m_data->m_testBlocks[block]->m_numProcessedClientCommands++;
//todo, timeStamp
int timeStamp = 0;
SharedMemoryStatus& serverStatusOut = m_data->createServerStatus(CMD_BULLET_DATA_STREAM_RECEIVED_COMPLETED, clientCmd.m_sequenceNumber, timeStamp, block);
bool hasStatus = m_data->m_commandProcessor->processCommand(clientCmd, serverStatusOut, &m_data->m_testBlocks[block]->m_bulletStreamDataServerToClientRefactor[0], SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE);
if (hasStatus)
{
m_data->submitServerStatus(serverStatusOut, block);
}
}
}
}
}
void PhysicsServerSharedMemory::renderScene(int renderFlags)
{
m_data->m_commandProcessor->renderScene(renderFlags);
}
void PhysicsServerSharedMemory::syncPhysicsToGraphics()
{
m_data->m_commandProcessor->syncPhysicsToGraphics();
}
void PhysicsServerSharedMemory::physicsDebugDraw(int debugDrawFlags)
{
m_data->m_commandProcessor->physicsDebugDraw(debugDrawFlags);
}
bool PhysicsServerSharedMemory::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
return m_data->m_commandProcessor->pickBody(rayFromWorld, rayToWorld);
}
bool PhysicsServerSharedMemory::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
return m_data->m_commandProcessor->movePickedBody(rayFromWorld, rayToWorld);
}
void PhysicsServerSharedMemory::removePickingConstraint()
{
m_data->m_commandProcessor->removePickingConstraint();
}
void PhysicsServerSharedMemory::enableCommandLogging(bool enable, const char* fileName)
{
m_data->m_commandProcessor->enableCommandLogging(enable, fileName);
}
void PhysicsServerSharedMemory::replayFromLogFile(const char* fileName)
{
m_data->m_commandProcessor->replayFromLogFile(fileName);
}
const btVector3& PhysicsServerSharedMemory::getVRTeleportPosition() const
{
return m_data->m_commandProcessor->getVRTeleportPosition();
}
void PhysicsServerSharedMemory::setVRTeleportPosition(const btVector3& vrTeleportPos)
{
m_data->m_commandProcessor->setVRTeleportPosition(vrTeleportPos);
}
const btQuaternion& PhysicsServerSharedMemory::getVRTeleportOrientation() const
{
return m_data->m_commandProcessor->getVRTeleportOrientation();
}
void PhysicsServerSharedMemory::setVRTeleportOrientation(const btQuaternion& vrTeleportOrn)
{
m_data->m_commandProcessor->setVRTeleportOrientation(vrTeleportOrn);
}