mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-09 17:10:09 +00:00
87 lines
2.6 KiB
Python
87 lines
2.6 KiB
Python
|
from robot_bases import MujocoXmlBasedRobot
|
||
|
import numpy as np
|
||
|
|
||
|
class InvertedPendulum(MujocoXmlBasedRobot):
|
||
|
swingup = False
|
||
|
force_gain = 12 # TODO: Try to find out why we need to scale the force
|
||
|
def __init__(self):
|
||
|
MujocoXmlBasedRobot.__init__(self, 'inverted_pendulum.xml', 'cart', action_dim=1, obs_dim=5)
|
||
|
|
||
|
def robot_specific_reset(self):
|
||
|
self.pole = self.parts["pole"]
|
||
|
self.slider = self.jdict["slider"]
|
||
|
self.j1 = self.jdict["hinge"]
|
||
|
u = self.np_random.uniform(low=-.1, high=.1)
|
||
|
self.j1.reset_current_position( u if not self.swingup else 3.1415+u , 0)
|
||
|
self.j1.set_motor_torque(0)
|
||
|
|
||
|
def apply_action(self, a):
|
||
|
#assert( np.isfinite(a).all() )
|
||
|
if not np.isfinite(a).all():
|
||
|
print("a is inf")
|
||
|
a[0] = 0
|
||
|
self.slider.set_motor_torque( self.force_gain * 100*float(np.clip(a[0], -1, +1)) )
|
||
|
|
||
|
def calc_state(self):
|
||
|
self.theta, theta_dot = self.j1.current_position()
|
||
|
x, vx = self.slider.current_position()
|
||
|
#assert( np.isfinite(x) )
|
||
|
|
||
|
if not np.isfinite(x):
|
||
|
print("x is inf")
|
||
|
x = 0
|
||
|
|
||
|
if not np.isfinite(vx):
|
||
|
print("vx is inf")
|
||
|
vx = 0
|
||
|
|
||
|
if not np.isfinite(self.theta):
|
||
|
print("theta is inf")
|
||
|
self.theta = 0
|
||
|
|
||
|
if not np.isfinite(theta_dot):
|
||
|
print("theta_dot is inf")
|
||
|
theta_dot = 0
|
||
|
|
||
|
return np.array([
|
||
|
x, vx,
|
||
|
np.cos(self.theta), np.sin(self.theta), theta_dot
|
||
|
])
|
||
|
|
||
|
class InvertedPendulumSwingup(InvertedPendulum):
|
||
|
swingup = True
|
||
|
force_gain = 2.2 # TODO: Try to find out why we need to scale the force
|
||
|
|
||
|
|
||
|
class InvertedDoublePendulum(MujocoXmlBasedRobot):
|
||
|
def __init__(self):
|
||
|
MujocoXmlBasedRobot.__init__(self, 'inverted_double_pendulum.xml', 'cart', action_dim=1, obs_dim=9)
|
||
|
|
||
|
def robot_specific_reset(self):
|
||
|
self.pole2 = self.parts["pole2"]
|
||
|
self.slider = self.jdict["slider"]
|
||
|
self.j1 = self.jdict["hinge"]
|
||
|
self.j2 = self.jdict["hinge2"]
|
||
|
u = self.np_random.uniform(low=-.1, high=.1, size=[2])
|
||
|
self.j1.reset_current_position(float(u[0]), 0)
|
||
|
self.j2.reset_current_position(float(u[1]), 0)
|
||
|
self.j1.set_motor_torque(0)
|
||
|
self.j2.set_motor_torque(0)
|
||
|
|
||
|
def apply_action(self, a):
|
||
|
assert( np.isfinite(a).all() )
|
||
|
force_gain = 0.78 # TODO: Try to find out why we need to scale the force
|
||
|
self.slider.set_motor_torque( force_gain *200*float(np.clip(a[0], -1, +1)) )
|
||
|
|
||
|
def calc_state(self):
|
||
|
theta, theta_dot = self.j1.current_position()
|
||
|
gamma, gamma_dot = self.j2.current_position()
|
||
|
x, vx = self.slider.current_position()
|
||
|
self.pos_x, _, self.pos_y = self.pole2.pose().xyz()
|
||
|
assert( np.isfinite(x) )
|
||
|
return np.array([
|
||
|
x, vx,
|
||
|
self.pos_x,
|
||
|
np.cos(theta), np.sin(theta), theta_dot,
|
||
|
np.cos(gamma), np.sin(gamma), gamma_dot,
|
||
|
])
|