bullet3/examples/SharedMemory/PhysicsServerCommandProcessor.cpp

9756 lines
346 KiB
C++
Raw Normal View History

#include "PhysicsServerCommandProcessor.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../Importers/ImportURDFDemo/BulletUrdfImporter.h"
#include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h"
#include "../Importers/ImportURDFDemo/URDF2Bullet.h"
#include "../Extras/InverseDynamics/btMultiBodyTreeCreator.hpp"
#include "BulletCollision/CollisionDispatch/btInternalEdgeUtility.h"
#include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h"
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
#include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h"
#include "BulletDynamics/Featherstone/btMultiBodyGearConstraint.h"
#include "../Importers/ImportURDFDemo/UrdfParser.h"
#include "../Utils/b3ResourcePath.h"
#include "Bullet3Common/b3FileUtils.h"
#include "../OpenGLWindow/GLInstanceGraphicsShape.h"
#include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h"
2016-09-29 19:07:54 +00:00
#include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
#include "Bullet3Common/b3HashMap.h"
#include "../Utils/ChromeTraceUtil.h"
#include "stb_image/stb_image.h"
#include "BulletInverseDynamics/MultiBodyTree.hpp"
#include "IKTrajectoryHelper.h"
#include "btBulletDynamicsCommon.h"
#include "../Utils/RobotLoggingUtil.h"
#include "LinearMath/btTransform.h"
#include "../Importers/ImportMJCFDemo/BulletMJCFImporter.h"
#include "../Importers/ImportObjDemo/LoadMeshFromObj.h"
#include "../Importers/ImportSTLDemo/LoadMeshFromSTL.h"
#include "../Extras/Serialize/BulletWorldImporter/btMultiBodyWorldImporter.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "LinearMath/btSerializer.h"
#include "Bullet3Common/b3Logging.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "SharedMemoryCommands.h"
#include "LinearMath/btRandom.h"
#include "Bullet3Common/b3ResizablePool.h"
#include "../Utils/b3Clock.h"
#include "b3PluginManager.h"
#include "../Extras/Serialize/BulletFileLoader/btBulletFile.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#ifdef STATIC_LINK_VR_PLUGIN
#include "plugins/vrSyncPlugin/vrSyncPlugin.h"
#endif
#ifndef SKIP_STATIC_TINYRENDERER_PLUGIN
#include "plugins/tinyRendererPlugin/tinyRendererPlugin.h"
#endif
#ifdef B3_ENABLE_TINY_AUDIO
#include "../TinyAudio/b3SoundEngine.h"
#endif
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "BulletSoftBody/btSoftBodySolvers.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "BulletSoftBody/btSoftMultiBodyDynamicsWorld.h"
#include "../SoftDemo/BunnyMesh.h"
#else
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#endif
int gInternalSimFlags = 0;
bool gResetSimulation = 0;
int gVRTrackingObjectUniqueId = -1;
int gVRTrackingObjectFlag = VR_CAMERA_TRACK_OBJECT_ORIENTATION;
btTransform gVRTrackingObjectTr = btTransform::getIdentity();
btVector3 gVRTeleportPos1(0,0,0);
btQuaternion gVRTeleportOrn(0, 0, 0,1);
btScalar simTimeScalingFactor = 1;
btScalar gRhsClamp = 1.f;
struct UrdfLinkNameMapUtil
{
btMultiBody* m_mb;
btAlignedObjectArray<btGeneric6DofSpring2Constraint*> m_rigidBodyJoints;
btDefaultSerializer* m_memSerializer;
UrdfLinkNameMapUtil():m_mb(0),m_memSerializer(0)
{
}
virtual ~UrdfLinkNameMapUtil()
{
delete m_memSerializer;
}
};
struct SharedMemoryDebugDrawer : public btIDebugDraw
{
int m_debugMode;
btAlignedObjectArray<SharedMemLines> m_lines2;
SharedMemoryDebugDrawer ()
:m_debugMode(0)
{
}
virtual void drawContactPoint(const btVector3& PointOnB,const btVector3& normalOnB,btScalar distance,int lifeTime,const btVector3& color)
{
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location,const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void drawLine(const btVector3& from,const btVector3& to,const btVector3& color)
{
SharedMemLines line;
line.m_from = from;
line.m_to = to;
line.m_color = color;
m_lines2.push_back(line);
}
};
struct InternalVisualShapeData
{
int m_tinyRendererVisualShapeIndex;
int m_OpenGLGraphicsIndex;
b3AlignedObjectArray<UrdfVisual> m_visualShapes;
b3AlignedObjectArray<std::string> m_pathPrefixes;
void clear()
{
m_tinyRendererVisualShapeIndex = -1;
m_OpenGLGraphicsIndex = -1;
m_visualShapes.clear();
m_pathPrefixes.clear();
}
};
struct InternalCollisionShapeData
{
btCollisionShape* m_collisionShape;
b3AlignedObjectArray<UrdfCollision> m_urdfCollisionObjects;
void clear()
{
m_collisionShape=0;
}
};
struct InternalBodyData
{
btMultiBody* m_multiBody;
btRigidBody* m_rigidBody;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftBody* m_softBody;
#endif
int m_testData;
2017-03-29 22:37:33 +00:00
std::string m_bodyName;
btTransform m_rootLocalInertialFrame;
btAlignedObjectArray<btTransform> m_linkLocalInertialFrames;
btAlignedObjectArray<btGeneric6DofSpring2Constraint*> m_rigidBodyJoints;
btAlignedObjectArray<std::string> m_rigidBodyJointNames;
btAlignedObjectArray<std::string> m_rigidBodyLinkNames;
#ifdef B3_ENABLE_TINY_AUDIO
b3HashMap<btHashInt, SDFAudioSource> m_audioSources;
#endif //B3_ENABLE_TINY_AUDIO
InternalBodyData()
{
clear();
}
void clear()
{
m_multiBody=0;
m_rigidBody=0;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_softBody = 0;
#endif
m_testData=0;
m_bodyName="";
m_rootLocalInertialFrame.setIdentity();
m_linkLocalInertialFrames.clear();
m_rigidBodyJoints.clear();
m_rigidBodyJointNames.clear();
m_rigidBodyLinkNames.clear();
}
};
struct InteralUserConstraintData
{
btTypedConstraint* m_rbConstraint;
btMultiBodyConstraint* m_mbConstraint;
b3UserConstraint m_userConstraintData;
InteralUserConstraintData()
:m_rbConstraint(0),
m_mbConstraint(0)
{
}
};
struct InternalTextureData
{
int m_tinyRendererTextureId;
int m_openglTextureId;
void clear()
{
m_tinyRendererTextureId = -1;
m_openglTextureId = -1;
}
};
typedef b3PoolBodyHandle<InternalTextureData> InternalTextureHandle;
typedef b3PoolBodyHandle<InternalBodyData> InternalBodyHandle;
typedef b3PoolBodyHandle<InternalCollisionShapeData> InternalCollisionShapeHandle;
typedef b3PoolBodyHandle<InternalVisualShapeData> InternalVisualShapeHandle;
class btCommandChunk
{
public:
int m_chunkCode;
int m_length;
void *m_oldPtr;
int m_dna_nr;
int m_number;
};
class bCommandChunkPtr4
{
public:
bCommandChunkPtr4(){}
int code;
int len;
union
{
int m_uniqueInt;
};
int dna_nr;
int nr;
};
// ----------------------------------------------------- //
class bCommandChunkPtr8
{
public:
bCommandChunkPtr8(){}
int code, len;
union
{
int m_uniqueInts[2];
};
int dna_nr, nr;
};
struct CommandLogger
{
FILE* m_file;
void writeHeader(unsigned char* buffer) const
{
#ifdef BT_USE_DOUBLE_PRECISION
memcpy(buffer, "BT3CMDd", 7);
#else
memcpy(buffer, "BT3CMDf", 7);
#endif //BT_USE_DOUBLE_PRECISION
int littleEndian= 1;
littleEndian= ((char*)&littleEndian)[0];
if (sizeof(void*)==8)
{
buffer[7] = '-';
} else
{
buffer[7] = '_';
}
if (littleEndian)
{
buffer[8]='v';
} else
{
buffer[8]='V';
}
buffer[9] = 0;
buffer[10] = 0;
buffer[11] = 0;
int ver = btGetVersion();
if (ver>=0 && ver<999)
{
sprintf((char*)&buffer[9],"%d",ver);
}
}
void logCommand(const SharedMemoryCommand& command)
{
if (m_file)
{
btCommandChunk chunk;
chunk.m_chunkCode = command.m_type;
chunk.m_oldPtr = 0;
chunk.m_dna_nr = 0;
chunk.m_length = sizeof(SharedMemoryCommand);
chunk.m_number = 1;
fwrite((const char*)&chunk,sizeof(btCommandChunk), 1,m_file);
switch (command.m_type)
{
case CMD_LOAD_MJCF:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_mjcfArguments , sizeof(MjcfArgs),1,m_file);
break;
}
case CMD_REQUEST_BODY_INFO:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_sdfRequestInfoArgs, sizeof(SdfRequestInfoArgs),1,m_file);
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_requestVisualShapeDataArguments, sizeof(RequestVisualShapeDataArgs),1,m_file);
break;
}
case CMD_LOAD_URDF:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_urdfArguments, sizeof(UrdfArgs),1,m_file);
break;
}
case CMD_INIT_POSE:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_initPoseArgs,sizeof(InitPoseArgs),1,m_file);
break;
};
case CMD_REQUEST_ACTUAL_STATE:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_requestActualStateInformationCommandArgument,
sizeof(RequestActualStateArgs),1,m_file);
break;
};
case CMD_SEND_DESIRED_STATE:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_sendDesiredStateCommandArgument,sizeof(SendDesiredStateArgs),1,m_file);
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_physSimParamArgs, sizeof(b3PhysicsSimulationParameters), 1,m_file);
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
fwrite((const char*)&command.m_updateFlags,sizeof(int), 1,m_file);
fwrite((const char*)&command.m_requestContactPointArguments,sizeof(RequestContactDataArgs),1,m_file);
break;
}
case CMD_STEP_FORWARD_SIMULATION:
case CMD_RESET_SIMULATION:
case CMD_REQUEST_INTERNAL_DATA:
{
break;
};
default:
{
fwrite((const char*)&command,sizeof(SharedMemoryCommand),1,m_file);
}
};
}
}
CommandLogger(const char* fileName)
{
m_file = fopen(fileName,"wb");
if (m_file)
{
unsigned char buf[15];
buf[12] = 12;
buf[13] = 13;
buf[14] = 14;
writeHeader(buf);
fwrite(buf,12,1,m_file);
}
}
virtual ~CommandLogger()
{
if (m_file)
{
fclose(m_file);
}
}
};
struct CommandLogPlayback
{
unsigned char m_header[12];
FILE* m_file;
bool m_bitsVary;
bool m_fileIs64bit;
CommandLogPlayback(const char* fileName)
{
m_file = fopen(fileName,"rb");
if (m_file)
{
2017-01-24 16:36:46 +00:00
size_t bytesRead;
bytesRead = fread(m_header,12,1,m_file);
}
unsigned char c = m_header[7];
m_fileIs64bit = (c=='-');
const bool VOID_IS_8 = ((sizeof(void*)==8));
m_bitsVary = (VOID_IS_8 != m_fileIs64bit);
}
virtual ~CommandLogPlayback()
{
if (m_file)
{
fclose(m_file);
m_file=0;
}
}
bool processNextCommand(SharedMemoryCommand* cmd)
{
//for a little while, keep this flag to be able to read 'old' log files
//#define BACKWARD_COMPAT
#if BACKWARD_COMPAT
SharedMemoryCommand unused;
#endif//BACKWARD_COMPAT
bool result = false;
size_t s = 0;
if (m_file)
{
int commandType = -1;
if (m_fileIs64bit)
{
bCommandChunkPtr8 chunk8;
s = fread((void*)&chunk8,sizeof(bCommandChunkPtr8),1,m_file);
commandType = chunk8.code;
} else
{
bCommandChunkPtr4 chunk4;
s = fread((void*)&chunk4,sizeof(bCommandChunkPtr4),1,m_file);
commandType = chunk4.code;
}
if (s==1)
{
memset(cmd,0,sizeof(SharedMemoryCommand));
cmd->m_type = commandType;
#ifdef BACKWARD_COMPAT
s = fread(&unused,sizeof(SharedMemoryCommand),1,m_file);
cmd->m_updateFlags = unused.m_updateFlags;
#endif
switch (commandType)
{
case CMD_LOAD_MJCF:
{
#ifdef BACKWARD_COMPAT
cmd->m_mjcfArguments = unused.m_mjcfArguments;
#else
s=fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_mjcfArguments,sizeof(MjcfArgs),1,m_file);
#endif
result=true;
break;
}
case CMD_REQUEST_BODY_INFO:
{
#ifdef BACKWARD_COMPAT
cmd->m_sdfRequestInfoArgs = unused.m_sdfRequestInfoArgs;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_sdfRequestInfoArgs,sizeof(SdfRequestInfoArgs),1,m_file);
#endif
result=true;
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestVisualShapeDataArguments = unused.m_requestVisualShapeDataArguments;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_requestVisualShapeDataArguments,sizeof(RequestVisualShapeDataArgs),1,m_file);
#endif
result=true;
break;
}
case CMD_LOAD_URDF:
{
#ifdef BACKWARD_COMPAT
cmd->m_urdfArguments = unused.m_urdfArguments;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_urdfArguments,sizeof(UrdfArgs),1,m_file);
#endif
result=true;
break;
}
case CMD_INIT_POSE:
{
#ifdef BACKWARD_COMPAT
cmd->m_initPoseArgs = unused.m_initPoseArgs;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_initPoseArgs,sizeof(InitPoseArgs),1,m_file);
#endif
result=true;
break;
};
case CMD_REQUEST_ACTUAL_STATE:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestActualStateInformationCommandArgument = unused.m_requestActualStateInformationCommandArgument;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_requestActualStateInformationCommandArgument,sizeof(RequestActualStateArgs),1,m_file);
#endif
result=true;
break;
};
case CMD_SEND_DESIRED_STATE:
{
#ifdef BACKWARD_COMPAT
cmd->m_sendDesiredStateCommandArgument = unused.m_sendDesiredStateCommandArgument;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_sendDesiredStateCommandArgument ,sizeof(SendDesiredStateArgs),1,m_file);
#endif
result = true;
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
#ifdef BACKWARD_COMPAT
cmd->m_physSimParamArgs = unused.m_physSimParamArgs;
#else
2018-04-12 16:28:30 +00:00
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_physSimParamArgs ,sizeof(b3PhysicsSimulationParameters),1,m_file);
#endif
result = true;
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
#ifdef BACKWARD_COMPAT
cmd->m_requestContactPointArguments = unused.m_requestContactPointArguments;
#else
s = fread(&cmd->m_updateFlags,sizeof(int),1,m_file);
s = fread(&cmd->m_requestContactPointArguments ,sizeof(RequestContactDataArgs),1,m_file);
#endif
result = true;
break;
}
case CMD_STEP_FORWARD_SIMULATION:
case CMD_RESET_SIMULATION:
case CMD_REQUEST_INTERNAL_DATA:
{
result=true;
break;
}
default:
{
s = fread(cmd,sizeof(SharedMemoryCommand),1,m_file);
result=(s==1);
}
};
}
}
return result;
}
};
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
struct MyBroadphaseCallback : public btBroadphaseAabbCallback
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
b3AlignedObjectArray<int> m_links;
MyBroadphaseCallback()
{
}
virtual ~MyBroadphaseCallback()
{
}
void clear()
{
m_bodyUniqueIds.clear();
m_links.clear();
}
virtual bool process(const btBroadphaseProxy* proxy)
{
btCollisionObject* colObj = (btCollisionObject*)proxy->m_clientObject;
btMultiBodyLinkCollider* mbl = btMultiBodyLinkCollider::upcast(colObj);
if (mbl)
{
int bodyUniqueId = mbl->m_multiBody->getUserIndex2();
m_bodyUniqueIds.push_back(bodyUniqueId);
m_links.push_back(mbl->m_link);
return true;
}
int bodyUniqueId = colObj->getUserIndex2();
if (bodyUniqueId >= 0)
{
m_bodyUniqueIds.push_back(bodyUniqueId);
//it is not a multibody, so use -1 otherwise
m_links.push_back(-1);
}
return true;
}
};
enum MyFilterModes
{
FILTER_GROUPAMASKB_AND_GROUPBMASKA=0,
FILTER_GROUPAMASKB_OR_GROUPBMASKA
};
struct MyOverlapFilterCallback : public btOverlapFilterCallback
{
int m_filterMode;
MyOverlapFilterCallback()
:m_filterMode(FILTER_GROUPAMASKB_AND_GROUPBMASKA)
{
}
virtual ~MyOverlapFilterCallback()
{}
// return true when pairs need collision
virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1) const
{
if (m_filterMode==FILTER_GROUPAMASKB_AND_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
if (m_filterMode==FILTER_GROUPAMASKB_OR_GROUPBMASKA)
{
bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0;
collides = collides || (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask);
return collides;
}
return false;
}
};
struct InternalStateLogger
{
int m_loggingUniqueId;
int m_loggingType;
InternalStateLogger()
:m_loggingUniqueId(0),
m_loggingType(0)
{
}
virtual ~InternalStateLogger() {}
virtual void stop() = 0;
virtual void logState(btScalar timeStep)=0;
};
struct VideoMP4Loggger : public InternalStateLogger
{
struct GUIHelperInterface* m_guiHelper;
std::string m_fileName;
VideoMP4Loggger(int loggerUid,const char* fileName,GUIHelperInterface* guiHelper)
:m_guiHelper(guiHelper)
{
m_fileName = fileName;
m_loggingUniqueId = loggerUid;
m_loggingType = STATE_LOGGING_VIDEO_MP4;
m_guiHelper->dumpFramesToVideo(fileName);
}
virtual void stop()
{
m_guiHelper->dumpFramesToVideo(0);
}
virtual void logState(btScalar timeStep)
{
//dumping video frames happens in another thread
//we could add some overlay of timestamp here, if needed/wanted
}
};
struct MinitaurStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
std::string m_fileName;
int m_minitaurBodyUniqueId;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBody* m_minitaurMultiBody;
btAlignedObjectArray<int> m_motorIdList;
2017-02-21 18:23:18 +00:00
MinitaurStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBody* minitaurMultiBody, btAlignedObjectArray<int>& motorIdList)
:m_loggingTimeStamp(0),
m_logFileHandle(0),
m_minitaurMultiBody(minitaurMultiBody)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_MINITAUR;
m_motorIdList.resize(motorIdList.size());
for (int m=0;m<motorIdList.size();m++)
{
m_motorIdList[m] = motorIdList[m];
}
btAlignedObjectArray<std::string> structNames;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
structNames.push_back("t");
structNames.push_back("r");
structNames.push_back("p");
structNames.push_back("y");
structNames.push_back("q0");
structNames.push_back("q1");
structNames.push_back("q2");
structNames.push_back("q3");
structNames.push_back("q4");
structNames.push_back("q5");
structNames.push_back("q6");
structNames.push_back("q7");
structNames.push_back("u0");
structNames.push_back("u1");
structNames.push_back("u2");
structNames.push_back("u3");
structNames.push_back("u4");
structNames.push_back("u5");
structNames.push_back("u6");
structNames.push_back("u7");
structNames.push_back("dx");
structNames.push_back("mo");
m_structTypes = "IffffffffffffffffffffB";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
//btVector3 pos = m_minitaurMultiBody->getBasePos();
MinitaurLogRecord logData;
//'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo'
btScalar motorDir[8] = {1, 1, 1, 1, 1, 1, 1, 1};
btQuaternion orn = m_minitaurMultiBody->getBaseWorldTransform().getRotation();
btMatrix3x3 mat(orn);
btScalar roll=0;
btScalar pitch=0;
btScalar yaw = 0;
mat.getEulerZYX(yaw,pitch,roll);
logData.m_values.push_back(m_loggingTimeStamp);
logData.m_values.push_back((float)roll);
logData.m_values.push_back((float)pitch);
logData.m_values.push_back((float)yaw);
for (int i=0;i<8;i++)
{
float jointAngle = (float)motorDir[i]*m_minitaurMultiBody->getJointPos(m_motorIdList[i]);
logData.m_values.push_back(jointAngle);
}
for (int i=0;i<8;i++)
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)m_minitaurMultiBody->getLink(m_motorIdList[i]).m_userPtr;
if (motor && timeStep>btScalar(0))
{
btScalar force = motor->getAppliedImpulse(0)/timeStep;
logData.m_values.push_back((float)force);
}
}
//x is forward component, estimated speed forward
float xd_speed = m_minitaurMultiBody->getBaseVel()[0];
logData.m_values.push_back(xd_speed);
char mode = 6;
logData.m_values.push_back(mode);
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct b3VRControllerEvents
{
b3VRControllerEvent m_vrEvents[MAX_VR_CONTROLLERS];
b3VRControllerEvents()
{
init();
}
virtual ~b3VRControllerEvents()
{
}
void init()
{
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
m_vrEvents[i].m_deviceType = 0;
m_vrEvents[i].m_numButtonEvents = 0;
m_vrEvents[i].m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
m_vrEvents[i].m_buttons[b] = 0;
}
}
}
void addNewVREvents(const struct b3VRControllerEvent* vrEvents, int numVREvents)
{
//update m_vrEvents
for (int i=0;i<numVREvents;i++)
{
int controlledId = vrEvents[i].m_controllerId;
if (vrEvents[i].m_numMoveEvents)
{
m_vrEvents[controlledId].m_analogAxis = vrEvents[i].m_analogAxis;
for (int a=0;a<10;a++)
{
m_vrEvents[controlledId].m_auxAnalogAxis[a] = vrEvents[i].m_auxAnalogAxis[a];
}
} else
{
m_vrEvents[controlledId].m_analogAxis = 0;
for (int a=0;a<10;a++)
{
m_vrEvents[controlledId].m_auxAnalogAxis[a] = 0;
}
}
if (vrEvents[i].m_numMoveEvents+vrEvents[i].m_numButtonEvents)
{
m_vrEvents[controlledId].m_controllerId = vrEvents[i].m_controllerId;
m_vrEvents[controlledId].m_deviceType = vrEvents[i].m_deviceType;
m_vrEvents[controlledId].m_pos[0] = vrEvents[i].m_pos[0];
m_vrEvents[controlledId].m_pos[1] = vrEvents[i].m_pos[1];
m_vrEvents[controlledId].m_pos[2] = vrEvents[i].m_pos[2];
m_vrEvents[controlledId].m_orn[0] = vrEvents[i].m_orn[0];
m_vrEvents[controlledId].m_orn[1] = vrEvents[i].m_orn[1];
m_vrEvents[controlledId].m_orn[2] = vrEvents[i].m_orn[2];
m_vrEvents[controlledId].m_orn[3] = vrEvents[i].m_orn[3];
}
m_vrEvents[controlledId].m_numButtonEvents += vrEvents[i].m_numButtonEvents;
m_vrEvents[controlledId].m_numMoveEvents += vrEvents[i].m_numMoveEvents;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
m_vrEvents[controlledId].m_buttons[b] |= vrEvents[i].m_buttons[b];
if (vrEvents[i].m_buttons[b] & eButtonIsDown)
{
m_vrEvents[controlledId].m_buttons[b] |= eButtonIsDown;
} else
{
m_vrEvents[controlledId].m_buttons[b] &= ~eButtonIsDown;
}
}
}
};
};
struct VRControllerStateLogger : public InternalStateLogger
{
b3VRControllerEvents m_vrEvents;
int m_loggingTimeStamp;
int m_deviceTypeFilter;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
VRControllerStateLogger(int loggingUniqueId, int deviceTypeFilter, const std::string& fileName)
:m_loggingTimeStamp(0),
m_deviceTypeFilter(deviceTypeFilter),
m_fileName(fileName),
m_logFileHandle(0)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_VR_CONTROLLERS;
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("controllerId");
structNames.push_back("numMoveEvents");
structNames.push_back("m_numButtonEvents");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("analogAxis");
structNames.push_back("buttons0");
structNames.push_back("buttons1");
structNames.push_back("buttons2");
structNames.push_back("buttons3");
structNames.push_back("buttons4");
structNames.push_back("buttons5");
structNames.push_back("buttons6");
structNames.push_back("deviceType");
m_structTypes = "IfIIIffffffffIIIIIIII";
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*timeStep;
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
b3VRControllerEvent& event = m_vrEvents.m_vrEvents[i];
if (m_deviceTypeFilter & event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
MinitaurLogRecord logData;
//serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
//log the event
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
logData.m_values.push_back(event.m_controllerId);
logData.m_values.push_back(event.m_numMoveEvents);
logData.m_values.push_back(event.m_numButtonEvents);
logData.m_values.push_back(event.m_pos[0]);
logData.m_values.push_back(event.m_pos[1]);
logData.m_values.push_back(event.m_pos[2]);
logData.m_values.push_back(event.m_orn[0]);
logData.m_values.push_back(event.m_orn[1]);
logData.m_values.push_back(event.m_orn[2]);
logData.m_values.push_back(event.m_orn[3]);
logData.m_values.push_back(event.m_analogAxis);
int packedButtons[7]={0,0,0,0,0,0,0};
int packedButtonIndex = 0;
int packedButtonShift = 0;
//encode the 64 buttons into 7 int (3 bits each), each int stores 10 buttons
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
int buttonMask = event.m_buttons[b];
buttonMask = buttonMask << (packedButtonShift*3);
packedButtons[packedButtonIndex] |= buttonMask;
packedButtonShift++;
if (packedButtonShift>=10)
{
packedButtonShift=0;
packedButtonIndex++;
if (packedButtonIndex>=7)
{
btAssert(0);
break;
}
}
}
for (int b=0;b<7;b++)
{
logData.m_values.push_back(packedButtons[b]);
}
logData.m_values.push_back(event.m_deviceType);
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
event.m_buttons[b] = 0;
}
}
}
}
fflush(m_logFileHandle);
m_loggingTimeStamp++;
}
}
};
struct GenericRobotStateLogger : public InternalStateLogger
{
float m_loggingTimeStamp;
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
2017-09-22 14:53:21 +00:00
const btMultiBodyDynamicsWorld* m_dynamicsWorld;
btAlignedObjectArray<int> m_bodyIdList;
bool m_filterObjectUniqueId;
int m_maxLogDof;
int m_logFlags;
2017-09-22 14:53:21 +00:00
GenericRobotStateLogger(int loggingUniqueId, const std::string& fileName, const btMultiBodyDynamicsWorld* dynamicsWorld, int maxLogDof, int logFlags)
:m_loggingTimeStamp(0),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterObjectUniqueId(false),
m_maxLogDof(maxLogDof),
m_logFlags(logFlags)
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_GENERIC_ROBOT;
btAlignedObjectArray<std::string> structNames;
2017-03-04 21:19:43 +00:00
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("objectId");
structNames.push_back("posX");
structNames.push_back("posY");
structNames.push_back("posZ");
structNames.push_back("oriX");
structNames.push_back("oriY");
structNames.push_back("oriZ");
structNames.push_back("oriW");
structNames.push_back("velX");
structNames.push_back("velY");
structNames.push_back("velZ");
structNames.push_back("omegaX");
structNames.push_back("omegaY");
structNames.push_back("omegaZ");
structNames.push_back("qNum");
m_structTypes = "IfifffffffffffffI";
for (int i=0;i<m_maxLogDof;i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName,"q%d",i);
structNames.push_back(jointName);
}
for (int i=0;i<m_maxLogDof;i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName,"u%d",i);
structNames.push_back(jointName);
}
if (m_logFlags & STATE_LOG_JOINT_TORQUES)
{
for (int i=0;i<m_maxLogDof;i++)
{
m_structTypes.append("f");
char jointName[256];
sprintf(jointName,"t%d",i);
structNames.push_back(jointName);
}
}
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
for (int i=0;i<m_dynamicsWorld->getNumMultibodies();i++)
{
2017-09-22 14:53:21 +00:00
const btMultiBody* mb = m_dynamicsWorld->getMultiBody(i);
int objectUniqueId = mb->getUserIndex2();
if (m_filterObjectUniqueId && m_bodyIdList.findLinearSearch2(objectUniqueId) < 0)
{
continue;
}
MinitaurLogRecord logData;
2017-03-04 21:19:43 +00:00
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*m_dynamicsWorld->getSolverInfo().m_timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
btVector3 pos = mb->getBasePos();
btQuaternion ori = mb->getWorldToBaseRot().inverse();
btVector3 vel = mb->getBaseVel();
btVector3 omega = mb->getBaseOmega();
float posX = pos[0];
float posY = pos[1];
float posZ = pos[2];
float oriX = ori.x();
float oriY = ori.y();
float oriZ = ori.z();
float oriW = ori.w();
float velX = vel[0];
float velY = vel[1];
float velZ = vel[2];
float omegaX = omega[0];
float omegaY = omega[1];
float omegaZ = omega[2];
logData.m_values.push_back(objectUniqueId);
logData.m_values.push_back(posX);
logData.m_values.push_back(posY);
logData.m_values.push_back(posZ);
logData.m_values.push_back(oriX);
logData.m_values.push_back(oriY);
logData.m_values.push_back(oriZ);
logData.m_values.push_back(oriW);
logData.m_values.push_back(velX);
logData.m_values.push_back(velY);
logData.m_values.push_back(velZ);
logData.m_values.push_back(omegaX);
logData.m_values.push_back(omegaY);
logData.m_values.push_back(omegaZ);
int numDofs = mb->getNumDofs();
logData.m_values.push_back(numDofs);
int numJoints = mb->getNumLinks();
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float q = mb->getJointPos(j);
logData.m_values.push_back(q);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float q = 0.0;
logData.m_values.push_back(q);
}
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float v = mb->getJointVel(j);
logData.m_values.push_back(v);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float v = 0.0;
logData.m_values.push_back(v);
}
if (m_logFlags & STATE_LOG_JOINT_TORQUES)
{
for (int j = 0; j < numJoints; ++j)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
float jointTorque = 0;
if (m_logFlags & STATE_LOG_JOINT_MOTOR_TORQUES)
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(j).m_userPtr;
if (motor)
{
jointTorque += motor->getAppliedImpulse(0)/timeStep;
}
}
if (m_logFlags & STATE_LOG_JOINT_USER_TORQUES)
{
if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1)
{
jointTorque += mb->getJointTorque(j);//these are the 'user' applied external torques
}
}
logData.m_values.push_back(jointTorque);
}
}
for (int j = numDofs; j < m_maxLogDof; ++j)
{
float u = 0.0;
logData.m_values.push_back(u);
}
}
//at the moment, appendMinitaurLogData will directly write to disk (potential delay)
//better to fill a huge memory buffer and once in a while write it to disk
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
m_loggingTimeStamp++;
}
}
};
2017-04-02 22:09:40 +00:00
struct ContactPointsStateLogger : public InternalStateLogger
{
int m_loggingTimeStamp;
2017-04-02 22:09:40 +00:00
std::string m_fileName;
FILE* m_logFileHandle;
std::string m_structTypes;
btMultiBodyDynamicsWorld* m_dynamicsWorld;
bool m_filterLinkA;
bool m_filterLinkB;
int m_linkIndexA;
int m_linkIndexB;
2017-04-04 17:38:25 +00:00
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
2017-04-02 22:09:40 +00:00
ContactPointsStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBodyDynamicsWorld* dynamicsWorld)
:m_loggingTimeStamp(0),
m_fileName(fileName),
m_logFileHandle(0),
m_dynamicsWorld(dynamicsWorld),
m_filterLinkA(false),
m_filterLinkB(false),
m_linkIndexA(-2),
m_linkIndexB(-2),
2017-04-04 17:38:25 +00:00
m_bodyUniqueIdA(-1),
m_bodyUniqueIdB(-1)
2017-04-02 22:09:40 +00:00
{
m_loggingUniqueId = loggingUniqueId;
m_loggingType = STATE_LOGGING_CONTACT_POINTS;
2017-04-02 22:09:40 +00:00
btAlignedObjectArray<std::string> structNames;
structNames.push_back("stepCount");
structNames.push_back("timeStamp");
structNames.push_back("contactFlag");
structNames.push_back("bodyUniqueIdA");
structNames.push_back("bodyUniqueIdB");
structNames.push_back("linkIndexA");
structNames.push_back("linkIndexB");
structNames.push_back("positionOnAX");
structNames.push_back("positionOnAY");
structNames.push_back("positionOnAZ");
structNames.push_back("positionOnBX");
structNames.push_back("positionOnBY");
structNames.push_back("positionOnBZ");
structNames.push_back("contactNormalOnBX");
structNames.push_back("contactNormalOnBY");
structNames.push_back("contactNormalOnBZ");
structNames.push_back("contactDistance");
structNames.push_back("normalForce");
m_structTypes = "IfIiiiifffffffffff";
2017-04-02 22:09:40 +00:00
const char* fileNameC = fileName.c_str();
m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes);
2017-04-02 22:09:40 +00:00
}
virtual void stop()
{
if (m_logFileHandle)
{
closeMinitaurLogFile(m_logFileHandle);
m_logFileHandle = 0;
}
}
virtual void logState(btScalar timeStep)
{
if (m_logFileHandle)
{
int numContactManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
2017-04-02 22:09:40 +00:00
int objectIndexB = -1;
2017-04-02 22:09:40 +00:00
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
if (m_filterLinkB && (m_linkIndexB != linkIndexB))
{
continue;
}
}
2017-04-02 22:09:40 +00:00
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
if (m_filterLinkA && (m_linkIndexA != linkIndexA))
{
continue;
}
}
2017-04-02 22:09:40 +00:00
btAssert(bodyA || mblA);
2017-04-02 22:09:40 +00:00
//apply the filter, if the user provides it
2017-04-04 17:38:25 +00:00
if (m_bodyUniqueIdA >= 0)
2017-04-02 22:09:40 +00:00
{
2017-04-04 17:38:25 +00:00
if ((m_bodyUniqueIdA != objectIndexA) &&
(m_bodyUniqueIdA != objectIndexB))
2017-04-02 22:09:40 +00:00
continue;
}
2017-04-02 22:09:40 +00:00
//apply the second object filter, if the user provides it
2017-04-04 17:38:25 +00:00
if (m_bodyUniqueIdB >= 0)
2017-04-02 22:09:40 +00:00
{
2017-04-04 17:38:25 +00:00
if ((m_bodyUniqueIdB != objectIndexA) &&
(m_bodyUniqueIdB != objectIndexB))
2017-04-02 22:09:40 +00:00
continue;
}
2017-04-02 22:09:40 +00:00
for (int p = 0; p < manifold->getNumContacts(); p++)
{
MinitaurLogRecord logData;
int stepCount = m_loggingTimeStamp;
float timeStamp = m_loggingTimeStamp*timeStep;
logData.m_values.push_back(stepCount);
logData.m_values.push_back(timeStamp);
2017-04-02 22:09:40 +00:00
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
2017-04-02 22:09:40 +00:00
logData.m_values.push_back(0); // reserved contact flag
logData.m_values.push_back(objectIndexA);
logData.m_values.push_back(objectIndexB);
logData.m_values.push_back(linkIndexA);
logData.m_values.push_back(linkIndexB);
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[2]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[0]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[1]));
logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[2]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[0]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[1]));
logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[2]));
logData.m_values.push_back((float)(srcPt.getDistance()));
logData.m_values.push_back((float)(srcPt.getAppliedImpulse() / timeStep));
2017-04-02 22:09:40 +00:00
appendMinitaurLogData(m_logFileHandle, m_structTypes, logData);
fflush(m_logFileHandle);
}
}
m_loggingTimeStamp++;
}
}
};
struct SaveStateData
{
bParse::btBulletFile* m_bulletFile;
btSerializer* m_serializer;
};
struct PhysicsServerCommandProcessorInternalData
{
///handle management
b3ResizablePool< InternalTextureHandle > m_textureHandles;
b3ResizablePool< InternalBodyHandle > m_bodyHandles;
b3ResizablePool<InternalCollisionShapeHandle> m_userCollisionShapeHandles;
b3ResizablePool<InternalVisualShapeHandle> m_userVisualShapeHandles;
b3PluginManager m_pluginManager;
bool m_useRealTimeSimulation;
b3VRControllerEvents m_vrControllerEvents;
btAlignedObjectArray<SaveStateData> m_savedStates;
btAlignedObjectArray<b3KeyboardEvent> m_keyboardEvents;
btAlignedObjectArray<b3MouseEvent> m_mouseEvents;
CommandLogger* m_commandLogger;
CommandLogPlayback* m_logPlayback;
btScalar m_physicsDeltaTime;
2016-08-24 21:25:06 +00:00
btScalar m_numSimulationSubSteps;
btAlignedObjectArray<btMultiBodyJointFeedback*> m_multiBodyJointFeedbacks;
b3HashMap<btHashPtr, btInverseDynamics::MultiBodyTree*> m_inverseDynamicsBodies;
b3HashMap<btHashPtr, IKTrajectoryHelper*> m_inverseKinematicsHelpers;
int m_userConstraintUIDGenerator;
b3HashMap<btHashInt, InteralUserConstraintData> m_userConstraints;
b3AlignedObjectArray<SaveWorldObjectData> m_saveWorldBodyData;
btAlignedObjectArray<btMultiBodyWorldImporter*> m_worldImporters;
btAlignedObjectArray<UrdfLinkNameMapUtil*> m_urdfLinkNameMapper;
btAlignedObjectArray<std::string*> m_strings;
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
btAlignedObjectArray<int> m_allocatedTextures;
btHashMap<btHashPtr, UrdfCollision> m_bulletCollisionShape2UrdfCollision;
btAlignedObjectArray<btStridingMeshInterface*> m_meshInterfaces;
MyOverlapFilterCallback* m_broadphaseCollisionFilterCallback;
btHashedOverlappingPairCache* m_pairCache;
btBroadphaseInterface* m_broadphase;
btCollisionDispatcher* m_dispatcher;
btMultiBodyConstraintSolver* m_solver;
btDefaultCollisionConfiguration* m_collisionConfiguration;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
btSoftMultiBodyDynamicsWorld* m_dynamicsWorld;
btSoftBodySolver* m_softbodySolver;
#else
btMultiBodyDynamicsWorld* m_dynamicsWorld;
#endif
SharedMemoryDebugDrawer* m_remoteDebugDrawer;
btAlignedObjectArray<b3ContactPointData> m_cachedContactPoints;
MyBroadphaseCallback m_cachedOverlappingObjects;
btAlignedObjectArray<int> m_sdfRecentLoadedBodies;
btAlignedObjectArray<InternalStateLogger*> m_stateLoggers;
int m_stateLoggersUniqueId;
int m_profileTimingLoggingUid;
std::string m_profileTimingFileName;
struct GUIHelperInterface* m_guiHelper;
int m_sharedMemoryKey;
bool m_enableTinyRenderer;
bool m_verboseOutput;
//data for picking objects
class btRigidBody* m_pickedBody;
int m_savedActivationState;
class btTypedConstraint* m_pickedConstraint;
class btMultiBodyPoint2Point* m_pickingMultiBodyPoint2Point;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
bool m_prevCanSleep;
#ifdef B3_ENABLE_TINY_AUDIO
b3SoundEngine m_soundEngine;
#endif
b3HashMap<b3HashString, char*> m_profileEvents;
PhysicsServerCommandProcessorInternalData(PhysicsCommandProcessorInterface* proc)
:m_pluginManager(proc),
m_useRealTimeSimulation(false),
m_commandLogger(0),
m_logPlayback(0),
m_physicsDeltaTime(1./240.),
2016-08-24 21:25:06 +00:00
m_numSimulationSubSteps(0),
m_userConstraintUIDGenerator(1),
m_broadphaseCollisionFilterCallback(0),
m_pairCache(0),
m_broadphase(0),
m_dispatcher(0),
m_solver(0),
m_collisionConfiguration(0),
m_dynamicsWorld(0),
m_remoteDebugDrawer(0),
m_stateLoggersUniqueId(0),
m_profileTimingLoggingUid(-1),
m_guiHelper(0),
m_sharedMemoryKey(SHARED_MEMORY_KEY),
m_enableTinyRenderer(true),
2017-10-07 00:30:10 +00:00
m_verboseOutput(false),
m_pickedBody(0),
m_pickedConstraint(0),
m_pickingMultiBodyPoint2Point(0)
{
{
//register static plugins:
#ifdef STATIC_LINK_VR_PLUGIN
m_pluginManager.registerStaticLinkedPlugin("vrSyncPlugin", initPlugin_vrSyncPlugin, exitPlugin_vrSyncPlugin, executePluginCommand_vrSyncPlugin,preTickPluginCallback_vrSyncPlugin,0,0);
#endif //STATIC_LINK_VR_PLUGIN
#ifndef SKIP_STATIC_TINYRENDERER_PLUGIN
int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("tinyRendererPlugin", initPlugin_tinyRendererPlugin, exitPlugin_tinyRendererPlugin, executePluginCommand_tinyRendererPlugin,0,0,getRenderInterface_tinyRendererPlugin);
m_pluginManager.selectPluginRenderer(renderPluginId);
#endif
}
m_vrControllerEvents.init();
m_bodyHandles.exitHandles();
m_bodyHandles.initHandles();
m_userCollisionShapeHandles.exitHandles();
m_userCollisionShapeHandles.initHandles();
m_userVisualShapeHandles.exitHandles();
m_userVisualShapeHandles.initHandles();
}
btInverseDynamics::MultiBodyTree* findOrCreateTree(btMultiBody* multiBody)
{
btInverseDynamics::MultiBodyTree* tree = 0;
btInverseDynamics::MultiBodyTree** treePtrPtr =
m_inverseDynamicsBodies.find(multiBody);
if (treePtrPtr)
{
tree = *treePtrPtr;
}
else
{
btInverseDynamics::btMultiBodyTreeCreator id_creator;
if (-1 == id_creator.createFromBtMultiBody(multiBody, false))
{
}
else
{
tree = btInverseDynamics::CreateMultiBodyTree(id_creator);
m_inverseDynamicsBodies.insert(multiBody, tree);
}
}
return tree;
}
};
void PhysicsServerCommandProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper)
{
if (guiHelper)
{
guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
} else
{
if (m_data->m_guiHelper && m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->setDebugDrawer(0);
}
}
m_data->m_guiHelper = guiHelper;
}
PhysicsServerCommandProcessor::PhysicsServerCommandProcessor()
:m_data(0)
{
m_data = new PhysicsServerCommandProcessorInternalData(this);
createEmptyDynamicsWorld();
}
PhysicsServerCommandProcessor::~PhysicsServerCommandProcessor()
{
deleteDynamicsWorld();
if (m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
for (int i=0;i<m_data->m_profileEvents.size();i++)
{
char* event = *m_data->m_profileEvents.getAtIndex(i);
delete[] event;
}
delete m_data;
}
void preTickCallback(btDynamicsWorld *world, btScalar timeStep)
{
PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*) world->getWorldUserInfo();
bool isPreTick = true;
proc->tickPlugins(timeStep, isPreTick);
}
void logCallback(btDynamicsWorld *world, btScalar timeStep)
{
//handle the logging and playing sounds
PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*) world->getWorldUserInfo();
proc->processCollisionForces(timeStep);
proc->logObjectStates(timeStep);
bool isPreTick = false;
proc->tickPlugins(timeStep, isPreTick);
}
bool MyContactAddedCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,int partId0,int index0,const btCollisionObjectWrapper* colObj1Wrap,int partId1,int index1)
{
btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1,index1);
return true;
}
bool MyContactDestroyedCallback(void* userPersistentData)
{
//printf("destroyed\n");
return false;
}
bool MyContactProcessedCallback(btManifoldPoint& cp,void* body0,void* body1)
{
//printf("processed\n");
return false;
}
void MyContactStartedCallback(btPersistentManifold* const &manifold)
{
//printf("started\n");
}
void MyContactEndedCallback(btPersistentManifold* const &manifold)
{
// printf("ended\n");
}
void PhysicsServerCommandProcessor::processCollisionForces(btScalar timeStep)
{
#ifdef B3_ENABLE_TINY_AUDIO
//this is experimental at the moment: impulse thresholds, sound parameters will be exposed in C-API/pybullet.
//audio will go into a wav file, as well as real-time output to speakers/headphones using RtAudio/DAC.
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
bool objHasSound[2];
objHasSound[0] = (0!=(manifold->getBody0()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
objHasSound[1] = (0!=(manifold->getBody1()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER));
const btCollisionObject* colObjs[2] = {manifold->getBody0(),manifold->getBody1()};
for (int ob = 0;ob<2;ob++)
{
if (objHasSound[ob])
{
int uid0 = -1;
int linkIndex = -2;
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjs[ob]);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
uid0 = mblB->m_multiBody->getUserIndex2();
}
const btRigidBody* bodyB = btRigidBody::upcast(colObjs[ob]);
if (bodyB)
{
uid0 = bodyB->getUserIndex2();
linkIndex = -1;
}
if ((uid0<0)||(linkIndex<-1))
continue;
InternalBodyHandle* bodyHandle0 = m_data->m_bodyHandles.getHandle(uid0);
SDFAudioSource* audioSrc = bodyHandle0->m_audioSources[linkIndex];
if (audioSrc==0)
continue;
for (int p=0;p<manifold->getNumContacts();p++)
{
double imp = manifold->getContactPoint(p).getAppliedImpulse();
//printf ("manifold %d, contact %d, lifeTime:%d, appliedImpulse:%f\n",i,p, manifold->getContactPoint(p).getLifeTime(),imp);
if (imp>audioSrc->m_collisionForceThreshold && manifold->getContactPoint(p).getLifeTime()==1)
{
int soundSourceIndex = m_data->m_soundEngine.getAvailableSoundSource();
if (soundSourceIndex>=0)
{
b3SoundMessage msg;
msg.m_attackRate = audioSrc->m_attackRate;
msg.m_decayRate = audioSrc->m_decayRate;
msg.m_sustainLevel = audioSrc->m_sustainLevel;
msg.m_releaseRate = audioSrc->m_releaseRate;
msg.m_amplitude = audioSrc->m_gain;
msg.m_frequency = audioSrc->m_pitch;
msg.m_type = B3_SOUND_SOURCE_WAV_FILE;
msg.m_wavId = audioSrc->m_userIndex;
msg.m_autoKeyOff = true;
m_data->m_soundEngine.startSound(soundSourceIndex,msg);
}
}
}
}
}
}
#endif//B3_ENABLE_TINY_AUDIO
}
void PhysicsServerCommandProcessor::tickPlugins(btScalar timeStep, bool isPreTick)
{
m_data->m_pluginManager.tickPlugins(timeStep, isPreTick);
if (!isPreTick)
{
//clear events after each postTick, so we don't receive events multiple ticks
m_data->m_pluginManager.clearEvents();
}
}
void PhysicsServerCommandProcessor::logObjectStates(btScalar timeStep)
{
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
m_data->m_stateLoggers[i]->logState(timeStep);
}
}
struct ProgrammaticUrdfInterface : public URDFImporterInterface
{
int m_bodyUniqueId;
const b3CreateMultiBodyArgs& m_createBodyArgs;
mutable b3AlignedObjectArray<btCollisionShape*> m_allocatedCollisionShapes;
PhysicsServerCommandProcessorInternalData* m_data;
ProgrammaticUrdfInterface(const b3CreateMultiBodyArgs& bodyArgs, PhysicsServerCommandProcessorInternalData* data)
:m_bodyUniqueId(-1),
m_createBodyArgs(bodyArgs),
m_data(data)
{
}
virtual ~ProgrammaticUrdfInterface()
{
}
virtual bool loadURDF(const char* fileName, bool forceFixedBase = false)
{
b3Assert(0);
return false;
}
virtual const char* getPathPrefix()
{
return "";
}
///return >=0 for the root link index, -1 if there is no root link
virtual int getRootLinkIndex() const
{
return m_createBodyArgs.m_baseLinkIndex;
}
///pure virtual interfaces, precondition is a valid linkIndex (you can assert/terminate if the linkIndex is out of range)
virtual std::string getLinkName(int linkIndex) const
{
std::string linkName = "link";
char numstr[21]; // enough to hold all numbers up to 64-bits
sprintf(numstr, "%d", linkIndex);
linkName = linkName + numstr;
return linkName;
}
//various derived class in internal source code break with new pure virtual methods, so provide some default implementation
virtual std::string getBodyName() const
{
return m_createBodyArgs.m_bodyName;
}
/// optional method to provide the link color. return true if the color is available and copied into colorRGBA, return false otherwise
virtual bool getLinkColor(int linkIndex, btVector4& colorRGBA) const
{
b3Assert(0);
return false;
}
virtual bool getLinkColor2(int linkIndex, struct UrdfMaterialColor& matCol) const
{
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]>=0)
{
const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]);
if (visHandle)
{
for (int i=0;i<visHandle->m_visualShapes.size();i++)
{
if (visHandle->m_visualShapes[i].m_geometry.m_hasLocalMaterial)
{
matCol = visHandle->m_visualShapes[i].m_geometry.m_localMaterial.m_matColor;
return true;
}
}
}
}
return false;
}
virtual int getCollisionGroupAndMask(int linkIndex, int& colGroup, int& colMask) const
{
return 0;
}
///this API will likely change, don't override it!
virtual bool getLinkContactInfo(int linkIndex, URDFLinkContactInfo& contactInfo ) const
{
return false;
}
virtual bool getLinkAudioSource(int linkIndex, SDFAudioSource& audioSource) const
{
b3Assert(0);
return false;
}
virtual std::string getJointName(int linkIndex) const
{
std::string jointName = "joint";
char numstr[21]; // enough to hold all numbers up to 64-bits
sprintf(numstr, "%d", linkIndex);
jointName = jointName + numstr;
return jointName;
}
//fill mass and inertial data. If inertial data is missing, please initialize mass, inertia to sensitive values, and inertialFrame to identity.
virtual void getMassAndInertia(int urdfLinkIndex, btScalar& mass,btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
if (urdfLinkIndex>=0 && urdfLinkIndex < m_createBodyArgs.m_numLinks)
{
mass = m_createBodyArgs.m_linkMasses[urdfLinkIndex];
localInertiaDiagonal.setValue(
m_createBodyArgs.m_linkInertias[urdfLinkIndex*3+0],
m_createBodyArgs.m_linkInertias[urdfLinkIndex*3+1],
m_createBodyArgs.m_linkInertias[urdfLinkIndex*3+2]);
inertialFrame.setOrigin(btVector3(
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex*3+0],
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex*3+1],
m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex*3+2]));
inertialFrame.setRotation(btQuaternion(
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex*4+0],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex*4+1],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex*4+2],
m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex*4+3]));
} else
{
mass = 0;
localInertiaDiagonal.setValue(0,0,0);
inertialFrame.setIdentity();
}
}
///fill an array of child link indices for this link, btAlignedObjectArray behaves like a std::vector so just use push_back and resize(0) if needed
virtual void getLinkChildIndices(int urdfLinkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
for (int i=0;i<m_createBodyArgs.m_numLinks;i++)
{
if (m_createBodyArgs.m_linkParentIndices[i] == urdfLinkIndex)
{
childLinkIndices.push_back(i);
}
}
}
virtual bool getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction) const
{
return false;
};
virtual bool getJointInfo2(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction, btScalar& jointMaxForce, btScalar& jointMaxVelocity) const
{
bool isValid = false;
int jointTypeOrg = m_createBodyArgs.m_linkJointTypes[urdfLinkIndex];
switch (jointTypeOrg)
{
case eRevoluteType:
{
isValid = true;
jointType = URDFRevoluteJoint;
break;
}
case ePrismaticType:
{
isValid = true;
jointType = URDFPrismaticJoint;
break;
}
case eFixedType:
{
isValid = true;
jointType = URDFFixedJoint;
break;
}
//case eSphericalType:
//case ePlanarType:
//case eFixedType:
//case ePoint2PointType:
//case eGearType:
default:
{
}
};
if (isValid)
{
//backwards compatibility for custom file importers
jointMaxForce = 0;
jointMaxVelocity = 0;
jointFriction = 0;
jointDamping = 0;
jointLowerLimit = 1;
jointUpperLimit = -1;
parent2joint.setOrigin(btVector3(
m_createBodyArgs.m_linkPositions[urdfLinkIndex*3+0],
m_createBodyArgs.m_linkPositions[urdfLinkIndex*3+1],
m_createBodyArgs.m_linkPositions[urdfLinkIndex*3+2]));
parent2joint.setRotation(btQuaternion(
m_createBodyArgs.m_linkOrientations[urdfLinkIndex*4+0],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex*4+1],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex*4+2],
m_createBodyArgs.m_linkOrientations[urdfLinkIndex*4+3]
));
linkTransformInWorld.setIdentity();
jointAxisInJointSpace.setValue(
m_createBodyArgs.m_linkJointAxis[3*urdfLinkIndex+0],
m_createBodyArgs.m_linkJointAxis[3*urdfLinkIndex+1],
m_createBodyArgs.m_linkJointAxis[3*urdfLinkIndex+2]);
}
return isValid;
};
virtual bool getRootTransformInWorld(btTransform& rootTransformInWorld) const
{
int baseLinkIndex = m_createBodyArgs.m_baseLinkIndex;
rootTransformInWorld.setOrigin(btVector3(
m_createBodyArgs.m_linkPositions[baseLinkIndex*3+0],
m_createBodyArgs.m_linkPositions[baseLinkIndex*3+1],
m_createBodyArgs.m_linkPositions[baseLinkIndex*3+2]));
rootTransformInWorld.setRotation(btQuaternion(
m_createBodyArgs.m_linkOrientations[baseLinkIndex*4+0],
m_createBodyArgs.m_linkOrientations[baseLinkIndex*4+1],
m_createBodyArgs.m_linkOrientations[baseLinkIndex*4+2],
m_createBodyArgs.m_linkOrientations[baseLinkIndex*4+3]));
return true;
}
virtual void setRootTransformInWorld(const btTransform& rootTransformInWorld)
{
b3Assert(0);
}
virtual int convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
int graphicsIndex = -1;
double globalScaling = 1.f;//todo!
int flags=0;
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans; startTrans.setIdentity();
btAlignedObjectArray<BulletURDFTexture> textures;
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]>=0)
{
InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]);
if (visHandle)
{
if (visHandle->m_OpenGLGraphicsIndex>=0)
{
//instancing. assume the inertial frame is identical
graphicsIndex = visHandle->m_OpenGLGraphicsIndex;
} else
{
for (int v = 0;v<visHandle->m_visualShapes.size();v++)
{
u2b.convertURDFToVisualShapeInternal(&visHandle->m_visualShapes[v], pathPrefix, localInertiaFrame.inverse()*visHandle->m_visualShapes[v].m_linkLocalFrame, vertices, indices, textures);
}
if (vertices.size() && indices.size())
{
if (1)
{
int textureIndex = -1;
if (textures.size())
{
textureIndex = m_data->m_guiHelper->registerTexture(textures[0].textureData1, textures[0].m_width, textures[0].m_height);
}
{
B3_PROFILE("registerGraphicsShape");
graphicsIndex = m_data->m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, textureIndex);
visHandle->m_OpenGLGraphicsIndex = graphicsIndex;
}
}
}
}
}
}
return graphicsIndex;
}
virtual void convertLinkVisualShapes2(int linkIndex, int urdfIndex, const char* pathPrefix, const btTransform& localInertiaFrame, class btCollisionObject* colObj, int bodyUniqueId) const
{
//if there is a visual, use it, otherwise convert collision shape back into UrdfCollision...
UrdfModel model;// = m_data->m_urdfParser.getModel();
UrdfLink link;
if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]>=0)
{
const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]);
if (visHandle)
{
for (int i=0;i<visHandle->m_visualShapes.size();i++)
{
link.m_visualArray.push_back(visHandle->m_visualShapes[i]);
}
}
}
if (link.m_visualArray.size()==0)
{
int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[urdfIndex];
if (colShapeUniqueId>=0)
{
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId);
if (handle)
{
for (int i=0;i<handle->m_urdfCollisionObjects.size();i++)
{
link.m_collisionArray.push_back(handle->m_urdfCollisionObjects[i]);
}
}
}
}
//UrdfVisual vis;
//link.m_visualArray.push_back(vis);
//UrdfLink*const* linkPtr = model.m_links.getAtIndex(urdfIndex);
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->convertVisualShapes(linkIndex,pathPrefix,localInertiaFrame, &link, &model, colObj->getBroadphaseHandle()->getUid(), bodyUniqueId);
}
}
virtual void setBodyUniqueId(int bodyId)
{
m_bodyUniqueId = bodyId;
}
virtual int getBodyUniqueId() const
{
return m_bodyUniqueId;
}
//default implementation for backward compatibility
virtual class btCompoundShape* convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compound = new btCompoundShape();
int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[linkIndex];
if (colShapeUniqueId>=0)
{
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId);
if (handle && handle->m_collisionShape)
{
if (handle->m_collisionShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* childCompound = (btCompoundShape*)handle->m_collisionShape;
for (int c = 0; c < childCompound->getNumChildShapes(); c++)
{
btTransform childTrans = childCompound->getChildTransform(c);
btCollisionShape* childShape = childCompound->getChildShape(c);
btTransform tr = localInertiaFrame.inverse()*childTrans;
compound->addChildShape(tr, childShape);
}
}
else
{
btTransform childTrans;
childTrans.setIdentity();
compound->addChildShape(localInertiaFrame.inverse()*childTrans, handle->m_collisionShape);
}
}
}
m_allocatedCollisionShapes.push_back(compound);
return compound;
}
virtual int getNumAllocatedCollisionShapes() const
{
return m_allocatedCollisionShapes.size();
}
virtual class btCollisionShape* getAllocatedCollisionShape(int index)
{
return m_allocatedCollisionShapes[index];
}
virtual int getNumModels() const
{
return 1;
}
virtual void activateModel(int /*modelIndex*/)
{
}
};
void PhysicsServerCommandProcessor::createEmptyDynamicsWorld()
{
///collision configuration contains default setup for memory, collision setup
//m_collisionConfiguration->setConvexConvexMultipointIterations();
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration();
#else
m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration();
#endif
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration);
m_data->m_broadphaseCollisionFilterCallback = new MyOverlapFilterCallback();
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = FILTER_GROUPAMASKB_OR_GROUPBMASKA;
m_data->m_pairCache = new btHashedOverlappingPairCache();
m_data->m_pairCache->setOverlapFilterCallback(m_data->m_broadphaseCollisionFilterCallback);
//int maxProxies = 32768;
//m_data->m_broadphase = new btSimpleBroadphase(maxProxies, m_data->m_pairCache);
2017-01-17 05:04:02 +00:00
m_data->m_broadphase = new btDbvtBroadphase(m_data->m_pairCache);
m_data->m_solver = new btMultiBodyConstraintSolver;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_dynamicsWorld = new btSoftMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#else
m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration);
#endif
//Workaround: in a VR application, where we avoid synchronizing between GFX/Physics threads, we don't want to resize this array, so pre-allocate it
m_data->m_dynamicsWorld->getCollisionObjectArray().reserve(32768);
m_data->m_remoteDebugDrawer = new SharedMemoryDebugDrawer();
m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, 0));
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = 0.08;
m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = 0.2;//need to check if there are artifacts with frictionERP
m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = 0.00001;
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = 50;
m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = 1e-7;
// m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 2;
//todo: islands/constraints are buggy in btMultiBodyDynamicsWorld! (performance + see slipping grasp)
if (m_data->m_guiHelper)
{
m_data->m_guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld);
}
bool isPreTick=false;
m_data->m_dynamicsWorld->setInternalTickCallback(logCallback,this,isPreTick);
isPreTick = true;
m_data->m_dynamicsWorld->setInternalTickCallback(preTickCallback,this,isPreTick);
gContactAddedCallback = MyContactAddedCallback;
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.init(16,true);
//we don't use those callbacks (yet), experimental
// gContactDestroyedCallback = MyContactDestroyedCallback;
// gContactProcessedCallback = MyContactProcessedCallback;
// gContactStartedCallback = MyContactStartedCallback;
// gContactEndedCallback = MyContactEndedCallback;
#endif
}
void PhysicsServerCommandProcessor::deleteStateLoggers()
{
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
}
m_data->m_stateLoggers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseKinematicsBodies()
{
for (int i = 0; i < m_data->m_inverseKinematicsHelpers.size(); i++)
{
IKTrajectoryHelper** ikHelperPtr = m_data->m_inverseKinematicsHelpers.getAtIndex(i);
if (ikHelperPtr)
{
IKTrajectoryHelper* ikHelper = *ikHelperPtr;
delete ikHelper;
}
}
m_data->m_inverseKinematicsHelpers.clear();
}
void PhysicsServerCommandProcessor::deleteCachedInverseDynamicsBodies()
{
for (int i = 0; i < m_data->m_inverseDynamicsBodies.size(); i++)
{
btInverseDynamics::MultiBodyTree** treePtrPtr = m_data->m_inverseDynamicsBodies.getAtIndex(i);
if (treePtrPtr)
{
btInverseDynamics::MultiBodyTree* tree = *treePtrPtr;
delete tree;
}
}
m_data->m_inverseDynamicsBodies.clear();
}
void PhysicsServerCommandProcessor::deleteDynamicsWorld()
{
#ifdef B3_ENABLE_TINY_AUDIO
m_data->m_soundEngine.exit();
//gContactDestroyedCallback = 0;
//gContactProcessedCallback = 0;
//gContactStartedCallback = 0;
//gContactEndedCallback = 0;
#endif
deleteCachedInverseDynamicsBodies();
deleteCachedInverseKinematicsBodies();
deleteStateLoggers();
m_data->m_userConstraints.clear();
m_data->m_saveWorldBodyData.clear();
for (int i=0;i<m_data->m_multiBodyJointFeedbacks.size();i++)
{
delete m_data->m_multiBodyJointFeedbacks[i];
}
m_data->m_multiBodyJointFeedbacks.clear();
for (int i=0;i<m_data->m_worldImporters.size();i++)
{
m_data->m_worldImporters[i]->deleteAllData();
delete m_data->m_worldImporters[i];
}
m_data->m_worldImporters.clear();
for (int i=0;i<m_data->m_urdfLinkNameMapper.size();i++)
{
delete m_data->m_urdfLinkNameMapper[i];
}
m_data->m_urdfLinkNameMapper.clear();
for (int i=0;i<m_data->m_strings.size();i++)
{
delete m_data->m_strings[i];
}
m_data->m_strings.clear();
btAlignedObjectArray<btTypedConstraint*> constraints;
btAlignedObjectArray<btMultiBodyConstraint*> mbconstraints;
if (m_data->m_dynamicsWorld)
{
int i;
for (i = m_data->m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--)
{
btTypedConstraint* constraint =m_data->m_dynamicsWorld->getConstraint(i);
constraints.push_back(constraint);
m_data->m_dynamicsWorld->removeConstraint(constraint);
}
for (i=m_data->m_dynamicsWorld->getNumMultiBodyConstraints()-1;i>=0;i--)
{
btMultiBodyConstraint* mbconstraint = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
mbconstraints.push_back(mbconstraint);
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbconstraint);
}
for (i = m_data->m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_data->m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
for (i=m_data->m_dynamicsWorld->getNumMultibodies()-1;i>=0;i--)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
m_data->m_dynamicsWorld->removeMultiBody(mb);
delete mb;
}
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
for (i=m_data->m_dynamicsWorld->getSoftBodyArray().size()-1;i>=0;i--)
{
btSoftBody* sb = m_data->m_dynamicsWorld->getSoftBodyArray()[i];
m_data->m_dynamicsWorld->removeSoftBody(sb);
delete sb;
}
#endif
}
for (int i=0;i<constraints.size();i++)
{
delete constraints[i];
}
constraints.clear();
for (int i=0;i<mbconstraints.size();i++)
{
delete mbconstraints[i];
}
mbconstraints.clear();
//delete collision shapes
for (int j = 0; j<m_data->m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_data->m_collisionShapes[j];
//check for internal edge utility, delete memory
if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
{
btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*) shape;
if (trimesh->getTriangleInfoMap())
{
delete trimesh->getTriangleInfoMap();
}
}
delete shape;
}
for (int j=0;j<m_data->m_meshInterfaces.size();j++)
{
delete m_data->m_meshInterfaces[j];
}
if (m_data->m_guiHelper)
{
for (int j = 0; j < m_data->m_allocatedTextures.size(); j++)
{
int texId = m_data->m_allocatedTextures[j];
m_data->m_guiHelper->removeTexture(texId);
}
}
m_data->m_allocatedTextures.clear();
m_data->m_meshInterfaces.clear();
m_data->m_collisionShapes.clear();
m_data->m_bulletCollisionShape2UrdfCollision.clear();
delete m_data->m_dynamicsWorld;
m_data->m_dynamicsWorld=0;
delete m_data->m_remoteDebugDrawer;
m_data->m_remoteDebugDrawer =0;
delete m_data->m_solver;
m_data->m_solver=0;
delete m_data->m_broadphase;
m_data->m_broadphase=0;
delete m_data->m_pairCache;
m_data->m_pairCache= 0;
delete m_data->m_broadphaseCollisionFilterCallback;
m_data->m_broadphaseCollisionFilterCallback= 0;
delete m_data->m_dispatcher;
m_data->m_dispatcher=0;
delete m_data->m_collisionConfiguration;
m_data->m_collisionConfiguration=0;
m_data->m_userConstraintUIDGenerator = 1;
}
bool PhysicsServerCommandProcessor::supportsJointMotor(btMultiBody* mb, int mbLinkIndex)
{
bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic);
return canHaveMotor;
}
//for testing, create joint motors for revolute and prismatic joints
void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb)
{
int numLinks = mb->getNumLinks();
for (int i=0;i<numLinks;i++)
{
int mbLinkIndex = i;
if (supportsJointMotor(mb,mbLinkIndex))
{
float maxMotorImpulse = 1.f;
int dof = 0;
btScalar desiredVelocity = 0.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,dof,desiredVelocity,maxMotorImpulse);
motor->setPositionTarget(0, 0);
motor->setVelocityTarget(0, 1);
2016-09-28 23:07:55 +00:00
//motor->setRhsClamp(gRhsClamp);
//motor->setMaxAppliedImpulse(0);
mb->getLink(mbLinkIndex).m_userPtr = motor;
m_data->m_dynamicsWorld->addMultiBodyConstraint(motor);
motor->finalizeMultiDof();
}
}
}
bool PhysicsServerCommandProcessor::processImportedObjects(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, URDFImporterInterface& u2b)
{
bool loadOk = true;
btTransform rootTrans;
rootTrans.setIdentity();
if (m_data->m_verboseOutput)
{
b3Printf("loaded %s OK!", fileName);
}
SaveWorldObjectData sd;
sd.m_fileName = fileName;
for (int m =0; m<u2b.getNumModels();m++)
{
u2b.activateModel(m);
btMultiBody* mb = 0;
btRigidBody* rb = 0;
//get a body index
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
sd.m_bodyUniqueIds.push_back(bodyUniqueId);
u2b.setBodyUniqueId(bodyUniqueId);
{
btScalar mass = 0;
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_bodyName = u2b.getBodyName();
btVector3 localInertiaDiagonal(0,0,0);
int urdfLinkIndex = u2b.getRootLinkIndex();
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,bodyHandle->m_rootLocalInertialFrame);
}
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
//int rootLinkIndex = u2b.getRootLinkIndex();
//b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_data->m_guiHelper);
u2b.getRootTransformInWorld(rootTrans);
//CUF_RESERVED is a temporary flag, for backward compatibility purposes
flags |= CUF_RESERVED;
2017-09-07 18:40:11 +00:00
ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags);
mb = creation.getBulletMultiBody();
rb = creation.getRigidBody();
if (rb)
rb->setUserIndex2(bodyUniqueId);
if (mb)
mb->setUserIndex2(bodyUniqueId);
if (mb)
{
bodyHandle->m_multiBody = mb;
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
createJointMotors(mb);
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfRootLink = u2b.getRootLinkIndex();//LinkIndex = creation.m_mb2urdfLink[-1];
if (u2b.getLinkAudioSource(urdfRootLink,audioSource))
{
int flags = mb->getBaseCollider()->getCollisionFlags();
mb->getBaseCollider()->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex>=0)
{
bodyHandle->m_audioSources.insert(-1, audioSource);
}
}
}
#endif
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btScalar mass;
btVector3 localInertiaDiagonal(0,0,0);
btTransform localInertialFrame;
u2b.getMassAndInertia(urdfLinkIndex, mass,localInertiaDiagonal,localInertialFrame);
bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
mb->getLink(i).m_linkName = linkName->c_str();
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
mb->getLink(i).m_jointName = jointName->c_str();
#ifdef B3_ENABLE_TINY_AUDIO
{
SDFAudioSource audioSource;
int urdfLinkIndex = creation.m_mb2urdfLink[link];
if (u2b.getLinkAudioSource(urdfLinkIndex,audioSource))
{
int flags = mb->getLink(link).m_collider->getCollisionFlags();
mb->getLink(i).m_collider->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER);
audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str());
if (audioSource.m_userIndex>=0)
{
bodyHandle->m_audioSources.insert(link, audioSource);
}
}
}
#endif
}
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
mb->setBaseName(baseName->c_str());
} else
{
//b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later.");
bodyHandle->m_rigidBody = rb;
rb->setUserIndex2(bodyUniqueId);
m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId);
std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
m_data->m_strings.push_back(baseName);
bodyHandle->m_bodyName = *baseName;
int numJoints = creation.getNum6DofConstraints();
bodyHandle->m_rigidBodyJoints.reserve(numJoints);
bodyHandle->m_rigidBodyJointNames.reserve(numJoints);
bodyHandle->m_rigidBodyLinkNames.reserve(numJoints);
for (int i=0;i<numJoints;i++)
{
int urdfLinkIndex = creation.m_mb2urdfLink[i];
btGeneric6DofSpring2Constraint* con = creation.get6DofConstraint(i);
std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(linkName);
std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str());
m_data->m_strings.push_back(jointName);
bodyHandle->m_rigidBodyJointNames.push_back(*jointName);
bodyHandle->m_rigidBodyLinkNames.push_back(*linkName);
bodyHandle->m_rigidBodyJoints.push_back(con);
}
}
}
for (int i = 0; i < u2b.getNumAllocatedTextures(); i++)
{
int texId = u2b.getAllocatedTexture(i);
m_data->m_allocatedTextures.push_back(texId);
}
for (int i=0;i<u2b.getNumAllocatedMeshInterfaces();i++)
{
m_data->m_meshInterfaces.push_back(u2b.getAllocatedMeshInterface(i));
}
for (int i=0;i<u2b.getNumAllocatedCollisionShapes();i++)
{
btCollisionShape* shape =u2b.getAllocatedCollisionShape(i);
m_data->m_collisionShapes.push_back(shape);
UrdfCollision urdfCollision;
if (u2b.getUrdfFromCollisionShape(shape, urdfCollision))
{
m_data->m_bulletCollisionShape2UrdfCollision.insert(shape, urdfCollision);
}
if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)shape;
for (int c = 0; c < compound->getNumChildShapes(); c++)
{
btCollisionShape* childShape = compound->getChildShape(c);
if (u2b.getUrdfFromCollisionShape(childShape, urdfCollision))
{
m_data->m_bulletCollisionShape2UrdfCollision.insert(childShape, urdfCollision);
}
}
}
}
m_data->m_saveWorldBodyData.push_back(sd);
return loadOk;
}
struct MyMJCFLogger2 : public MJCFErrorLogger
{
virtual void reportError(const char* error)
{
b3Error(error);
}
virtual void reportWarning(const char* warning)
{
b3Warning(warning);
}
virtual void printMessage(const char* msg)
{
b3Printf(msg);
}
};
bool PhysicsServerCommandProcessor::loadMjcf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
BulletMJCFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), flags);
bool useFixedBase = false;
MyMJCFLogger2 logger;
bool loadOk = u2b.loadMJCF(fileName, &logger, useFixedBase);
if (loadOk)
{
processImportedObjects(fileName,bufferServerToClient,bufferSizeInBytes,useMultiBody,flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadSdf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, btScalar globalScaling)
{
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadSdf: No valid m_dynamicsWorld");
return false;
}
m_data->m_sdfRecentLoadedBodies.clear();
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
bool forceFixedBase = false;
bool loadOk =u2b.loadSDF(fileName,forceFixedBase);
if (loadOk)
{
processImportedObjects(fileName,bufferServerToClient,bufferSizeInBytes,useMultiBody,flags, u2b);
}
return loadOk;
}
bool PhysicsServerCommandProcessor::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn,
bool useMultiBody, bool useFixedBase, int* bodyUniqueIdPtr, char* bufferServerToClient, int bufferSizeInBytes, int flags, btScalar globalScaling)
{
m_data->m_sdfRecentLoadedBodies.clear();
*bodyUniqueIdPtr = -1;
BT_PROFILE("loadURDF");
btAssert(m_data->m_dynamicsWorld);
if (!m_data->m_dynamicsWorld)
{
b3Error("loadUrdf: No valid m_dynamicsWorld");
return false;
}
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
bool loadOk = u2b.loadURDF(fileName, useFixedBase);
if (loadOk)
{
btTransform rootTrans;
rootTrans.setOrigin(pos);
rootTrans.setRotation(orn);
u2b.setRootTransformInWorld(rootTrans);
bool ok = processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
if (ok)
{
if (m_data->m_sdfRecentLoadedBodies.size()==1)
{
*bodyUniqueIdPtr = m_data->m_sdfRecentLoadedBodies[0];
}
m_data->m_sdfRecentLoadedBodies.clear();
}
return ok;
}
return false;
}
void PhysicsServerCommandProcessor::replayLogCommand(char* bufferServerToClient, int bufferSizeInBytes)
{
if (m_data->m_logPlayback)
{
SharedMemoryCommand clientCmd;
SharedMemoryStatus serverStatus;
bool hasCommand = m_data->m_logPlayback->processNextCommand(&clientCmd);
if (hasCommand)
{
processCommand(clientCmd,serverStatus,bufferServerToClient,bufferSizeInBytes);
}
}
}
int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes)
{
int streamSizeInBytes = 0;
//serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
btMultiBody* mb = bodyHandle? bodyHandle->m_multiBody:0;
if (mb)
{
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_mb = mb;
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
util->m_memSerializer->startSerialization();
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
util->m_memSerializer->m_skipPointers.insert(mb->getBaseCollider(),0);
if (mb->getBaseName())
{
util->m_memSerializer->registerNameForPointer(mb->getBaseName(),mb->getBaseName());
}
bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks());
for (int i=0;i<mb->getNumLinks();i++)
{
//disable serialization of the collision objects
util->m_memSerializer->m_skipPointers.insert(mb->getLink(i).m_collider,0);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_linkName,mb->getLink(i).m_linkName);
util->m_memSerializer->registerNameForPointer(mb->getLink(i).m_jointName,mb->getLink(i).m_jointName);
}
util->m_memSerializer->registerNameForPointer(mb->getBaseName(),mb->getBaseName());
int len = mb->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = mb->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
streamSizeInBytes = util->m_memSerializer->getCurrentBufferSize();
} else
{
btRigidBody* rb = bodyHandle? bodyHandle->m_rigidBody :0;
if (rb)
{
UrdfLinkNameMapUtil* util = new UrdfLinkNameMapUtil;
m_data->m_urdfLinkNameMapper.push_back(util);
util->m_memSerializer = new btDefaultSerializer(bufferSizeInBytes ,(unsigned char*)bufferServerToClient);
util->m_memSerializer->startSerialization();
util->m_memSerializer->registerNameForPointer(bodyHandle->m_rigidBody,bodyHandle->m_bodyName.c_str());
//disable serialization of the collision objects (they are too big, and the client likely doesn't need them);
for (int i=0;i<bodyHandle->m_rigidBodyJoints.size();i++)
{
const btGeneric6DofSpring2Constraint* con = bodyHandle->m_rigidBodyJoints.at(i);
util->m_memSerializer->registerNameForPointer(con,bodyHandle->m_rigidBodyJointNames[i].c_str());
util->m_memSerializer->registerNameForPointer(&con->getRigidBodyB(),bodyHandle->m_rigidBodyLinkNames[i].c_str());
const btRigidBody& bodyA = con->getRigidBodyA();
int len = con->calculateSerializeBufferSize();
btChunk* chunk = util->m_memSerializer->allocate(len,1);
const char* structType = con->serialize(chunk->m_oldPtr, util->m_memSerializer);
util->m_memSerializer->finalizeChunk(chunk,structType,BT_CONSTRAINT_CODE,(void*)con);
}
streamSizeInBytes = util->m_memSerializer->getCurrentBufferSize();
}
}
return streamSizeInBytes;
}
bool PhysicsServerCommandProcessor::processStateLoggingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_STATE_LOGGING");
serverStatusOut.m_type = CMD_STATE_LOGGING_FAILED;
bool hasStatus = true;
if (clientCmd.m_updateFlags & STATE_LOGGING_START_LOG)
{
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_PROFILE_TIMINGS)
{
if (m_data->m_profileTimingLoggingUid<0)
{
b3ChromeUtilsStartTimings();
m_data->m_profileTimingFileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
m_data->m_profileTimingLoggingUid = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VIDEO_MP4)
{
//if (clientCmd.m_stateLoggingArguments.m_fileName)
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
VideoMP4Loggger* logger = new VideoMP4Loggger(loggerUid,clientCmd.m_stateLoggingArguments.m_fileName,this->m_data->m_guiHelper);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_MINITAUR)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
//either provide the minitaur by object unique Id, or search for first multibody with 8 motors...
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID)&& (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds>0))
{
int bodyUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[0];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btAlignedObjectArray<std::string> motorNames;
motorNames.push_back("motor_front_leftR_joint");
motorNames.push_back("motor_front_leftL_joint");
motorNames.push_back("motor_back_leftR_joint");
motorNames.push_back("motor_back_leftL_joint");
motorNames.push_back("motor_front_rightL_joint");
motorNames.push_back("motor_front_rightR_joint");
motorNames.push_back("motor_back_rightL_joint");
motorNames.push_back("motor_back_rightR_joint");
btAlignedObjectArray<int> motorIdList;
for (int m=0;m<motorNames.size();m++)
{
for (int i=0;i<body->m_multiBody->getNumLinks();i++)
{
std::string jointName;
if (body->m_multiBody->getLink(i).m_jointName)
{
jointName = body->m_multiBody->getLink(i).m_jointName;
}
if (motorNames[m]==jointName)
{
motorIdList.push_back(i);
}
}
}
if (motorIdList.size()==8)
2017-04-02 22:45:48 +00:00
{
int loggerUid = m_data->m_stateLoggersUniqueId++;
MinitaurStateLogger* logger = new MinitaurStateLogger(loggerUid,fileName,body->m_multiBody, motorIdList);
2017-04-02 22:45:48 +00:00
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
}
}
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_GENERIC_ROBOT)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int maxLogDof = 12;
if ((clientCmd.m_updateFlags & STATE_LOGGING_MAX_LOG_DOF))
{
maxLogDof = clientCmd.m_stateLoggingArguments.m_maxLogDof;
}
int logFlags = 0;
if (clientCmd.m_updateFlags & STATE_LOGGING_LOG_FLAGS)
{
logFlags = clientCmd.m_stateLoggingArguments.m_logFlags;
}
GenericRobotStateLogger* logger = new GenericRobotStateLogger(loggerUid,fileName,m_data->m_dynamicsWorld,maxLogDof, logFlags);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds>0))
{
logger->m_filterObjectUniqueId = true;
for (int i = 0; i < clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds; ++i)
{
int objectUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[i];
logger->m_bodyIdList.push_back(objectUniqueId);
}
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_CONTACT_POINTS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
ContactPointsStateLogger* logger = new ContactPointsStateLogger(loggerUid,fileName,m_data->m_dynamicsWorld);
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_A) && clientCmd.m_stateLoggingArguments.m_linkIndexA >= -1)
{
logger->m_filterLinkA = true;
logger->m_linkIndexA = clientCmd.m_stateLoggingArguments.m_linkIndexA;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_B) && clientCmd.m_stateLoggingArguments.m_linkIndexB >= -1)
{
logger->m_filterLinkB = true;
logger->m_linkIndexB = clientCmd.m_stateLoggingArguments.m_linkIndexB;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA > -1)
{
logger->m_bodyUniqueIdA = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA;
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB > -1)
{
logger->m_bodyUniqueIdB = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB;
}
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
if (clientCmd.m_stateLoggingArguments.m_logType ==STATE_LOGGING_VR_CONTROLLERS)
{
std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName;
int loggerUid = m_data->m_stateLoggersUniqueId++;
int deviceFilterType = VR_DEVICE_CONTROLLER;
if (clientCmd.m_updateFlags & STATE_LOGGING_FILTER_DEVICE_TYPE)
{
deviceFilterType = clientCmd.m_stateLoggingArguments.m_deviceFilterType;
}
VRControllerStateLogger* logger = new VRControllerStateLogger(loggerUid,deviceFilterType, fileName);
m_data->m_stateLoggers.push_back(logger);
serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED;
serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid;
}
}
if ((clientCmd.m_updateFlags & STATE_LOGGING_STOP_LOG) && clientCmd.m_stateLoggingArguments.m_loggingUniqueId>=0)
{
if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_profileTimingLoggingUid)
{
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
b3ChromeUtilsStopTimingsAndWriteJsonFile(m_data->m_profileTimingFileName.c_str());
m_data->m_profileTimingLoggingUid = -1;
}
else
{
serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED;
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
if (m_data->m_stateLoggers[i]->m_loggingUniqueId==clientCmd.m_stateLoggingArguments.m_loggingUniqueId)
{
m_data->m_stateLoggers[i]->stop();
delete m_data->m_stateLoggers[i];
m_data->m_stateLoggers.removeAtIndex(i);
}
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestCameraImageCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_CAMERA_IMAGE_DATA");
int startPixelIndex = clientCmd.m_requestPixelDataArguments.m_startPixelIndex;
int width = clientCmd.m_requestPixelDataArguments.m_pixelWidth;
int height = clientCmd.m_requestPixelDataArguments.m_pixelHeight;
int numPixelsCopied = 0;
if ((clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0) &&
(clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT)!=0)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth,
clientCmd.m_requestPixelDataArguments.m_pixelHeight);
}
}
int flags = 0;
if (clientCmd.m_updateFlags&REQUEST_PIXEL_ARGS_HAS_FLAGS)
{
flags = clientCmd.m_requestPixelDataArguments.m_flags;
}
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->setFlags(flags);
}
int numTotalPixels = width*height;
int numRemainingPixels = numTotalPixels - startPixelIndex;
if (numRemainingPixels>0)
{
int totalBytesPerPixel = 4+4+4;//4 for rgb, 4 for depth, 4 for segmentation mask
int maxNumPixels = bufferSizeInBytes/totalBytesPerPixel-1;
unsigned char* pixelRGBA = (unsigned char*)bufferServerToClient;
int numRequestedPixels = btMin(maxNumPixels,numRemainingPixels);
float* depthBuffer = (float*)(bufferServerToClient+numRequestedPixels*4);
int* segmentationMaskBuffer = (int*)(bufferServerToClient+numRequestedPixels*8);
serverStatusOut.m_numDataStreamBytes = numRequestedPixels * totalBytesPerPixel;
float viewMat[16];
float projMat[16];
float projTextureViewMat[16];
float projTextureProjMat[16];
for (int i=0;i<16;i++)
{
viewMat[i] = clientCmd.m_requestPixelDataArguments.m_viewMatrix[i];
projMat[i] = clientCmd.m_requestPixelDataArguments.m_projectionMatrix[i];
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES)==0)
{
b3OpenGLVisualizerCameraInfo tmpCamResult;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&tmpCamResult.m_width,
&tmpCamResult.m_height,
tmpCamResult.m_viewMatrix,
tmpCamResult.m_projectionMatrix,
tmpCamResult.m_camUp,
tmpCamResult.m_camForward,
tmpCamResult.m_horizontal,
tmpCamResult.m_vertical,
&tmpCamResult.m_yaw,
&tmpCamResult.m_pitch,
&tmpCamResult.m_dist,
tmpCamResult.m_target);
if (result)
{
for (int i=0;i<16;i++)
{
viewMat[i] = tmpCamResult.m_viewMatrix[i];
projMat[i] = tmpCamResult.m_projectionMatrix[i];
}
}
}
bool handled = false;
if ((clientCmd.m_updateFlags & ER_BULLET_HARDWARE_OPENGL)!=0)
{
if ((flags & ER_USE_PROJECTIVE_TEXTURE) != 0)
{
this->m_data->m_guiHelper->setProjectiveTexture(true);
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES)!=0)
{
for (int i=0;i<16;i++)
{
projTextureViewMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i];
projTextureProjMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i];
}
}
else // If no specified matrices for projective texture, then use the camera matrices.
{
for (int i=0;i<16;i++)
{
projTextureViewMat[i] = viewMat[i];
projTextureProjMat[i] = projMat[i];
}
}
this->m_data->m_guiHelper->setProjectiveTextureMatrices(projTextureViewMat, projTextureProjMat);
}
else
{
this->m_data->m_guiHelper->setProjectiveTexture(false);
}
m_data->m_guiHelper->copyCameraImageData(viewMat,
projMat,pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex,width,height,&numPixelsCopied);
if (numPixelsCopied>0)
{
handled = true;
m_data->m_guiHelper->debugDisplayCameraImageData(viewMat,
projMat,pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
0, numRequestedPixels,
startPixelIndex,width,height,&numPixelsCopied);
}
}
if (!handled)
{
if (m_data->m_pluginManager.getRenderInterface())
{
if (clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0)
{
// printf("-------------------------------\nRendering\n");
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDirection(clientCmd.m_requestPixelDataArguments.m_lightDirection[0], clientCmd.m_requestPixelDataArguments.m_lightDirection[1], clientCmd.m_requestPixelDataArguments.m_lightDirection[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightColor(clientCmd.m_requestPixelDataArguments.m_lightColor[0], clientCmd.m_requestPixelDataArguments.m_lightColor[1], clientCmd.m_requestPixelDataArguments.m_lightColor[2]);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDistance(clientCmd.m_requestPixelDataArguments.m_lightDistance);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SHADOW) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setShadow((clientCmd.m_requestPixelDataArguments.m_hasShadow!=0));
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightAmbientCoeff(clientCmd.m_requestPixelDataArguments.m_lightAmbientCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightDiffuseCoeff(clientCmd.m_requestPixelDataArguments.m_lightDiffuseCoeff);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF) != 0)
{
m_data->m_pluginManager.getRenderInterface()->setLightSpecularCoeff(clientCmd.m_requestPixelDataArguments.m_lightSpecularCoeff);
}
for (int i=0;i<m_data->m_dynamicsWorld->getNumCollisionObjects();i++)
{
const btCollisionObject* colObj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i];
m_data->m_pluginManager.getRenderInterface()->syncTransform(colObj->getBroadphaseHandle()->getUid(),colObj->getWorldTransform(),colObj->getCollisionShape()->getLocalScaling());
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES)!=0)
{
m_data->m_pluginManager.getRenderInterface()->render(
clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix);
} else
{
b3OpenGLVisualizerCameraInfo tmpCamResult;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&tmpCamResult.m_width,
&tmpCamResult.m_height,
tmpCamResult.m_viewMatrix,
tmpCamResult.m_projectionMatrix,
tmpCamResult.m_camUp,
tmpCamResult.m_camForward,
tmpCamResult.m_horizontal,
tmpCamResult.m_vertical,
&tmpCamResult.m_yaw,
&tmpCamResult.m_pitch,
&tmpCamResult.m_dist,
tmpCamResult.m_target);
if (result)
{
m_data->m_pluginManager.getRenderInterface()->render(tmpCamResult.m_viewMatrix,tmpCamResult.m_projectionMatrix);
} else
{
m_data->m_pluginManager.getRenderInterface()->render();
}
}
}
}
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->copyCameraImageData(pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex,&width,&height,&numPixelsCopied);
}
m_data->m_guiHelper->debugDisplayCameraImageData(clientCmd.m_requestPixelDataArguments.m_viewMatrix,
clientCmd.m_requestPixelDataArguments.m_projectionMatrix,pixelRGBA,numRequestedPixels,
depthBuffer,numRequestedPixels,
segmentationMaskBuffer, numRequestedPixels,
startPixelIndex,width,height,&numPixelsCopied);
}
//each pixel takes 4 RGBA values and 1 float = 8 bytes
} else
{
}
serverStatusOut.m_type = CMD_CAMERA_IMAGE_COMPLETED;
serverStatusOut.m_sendPixelDataArguments.m_numPixelsCopied = numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_numRemainingPixels = numRemainingPixels - numPixelsCopied;
serverStatusOut.m_sendPixelDataArguments.m_startingPixelIndex = startPixelIndex;
serverStatusOut.m_sendPixelDataArguments.m_imageWidth = width;
serverStatusOut.m_sendPixelDataArguments.m_imageHeight= height;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveWorldCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = false;
BT_PROFILE("CMD_SAVE_WORLD");
serverStatusOut.m_type = CMD_SAVE_WORLD_FAILED;
///this is a very rudimentary way to save the state of the world, for scene authoring
///many todo's, for example save the state of motor controllers etc.
{
//saveWorld(clientCmd.m_sdfArguments.m_sdfFileName);
int constraintCount = 0;
FILE* f = fopen(clientCmd.m_sdfArguments.m_sdfFileName,"w");
if (f)
{
char line[1024];
{
sprintf(line,"import pybullet as p\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"cin = p.connect(p.SHARED_MEMORY)\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"if (cin < 0):\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line," cin = p.connect(p.GUI)\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
//for each objects ...
for (int i=0;i<m_data->m_saveWorldBodyData.size();i++)
{
SaveWorldObjectData& sd = m_data->m_saveWorldBodyData[i];
for (int i=0;i<sd.m_bodyUniqueIds.size();i++)
{
{
int bodyUniqueId = sd.m_bodyUniqueIds[i];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
if (body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btTransform comTr = mb->getBaseWorldTransform();
btTransform tr = comTr * body->m_rootLocalInertialFrame.inverse();
if (strstr(sd.m_fileName.c_str(),".urdf"))
{
sprintf(line,"objects = [p.loadURDF(\"%s\", %f,%f,%f,%f,%f,%f,%f)]\n",sd.m_fileName.c_str(),
tr.getOrigin()[0],tr.getOrigin()[1],tr.getOrigin()[2],
tr.getRotation()[0],tr.getRotation()[1],tr.getRotation()[2],tr.getRotation()[3]);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf") && i==0)
{
sprintf(line,"objects = p.loadSDF(\"%s\")\n",sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".xml") && i==0)
{
sprintf(line,"objects = p.loadMJCF(\"%s\")\n",sd.m_fileName.c_str());
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf") || strstr(sd.m_fileName.c_str(),".xml") || ((strstr(sd.m_fileName.c_str(),".urdf")) && mb->getNumLinks()) )
{
sprintf(line,"ob = objects[%d]\n",i);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (strstr(sd.m_fileName.c_str(),".sdf")||strstr(sd.m_fileName.c_str(),".xml"))
{
sprintf(line,"p.resetBasePositionAndOrientation(ob,[%f,%f,%f],[%f,%f,%f,%f])\n",
comTr.getOrigin()[0],comTr.getOrigin()[1],comTr.getOrigin()[2],
comTr.getRotation()[0],comTr.getRotation()[1],comTr.getRotation()[2],comTr.getRotation()[3]);
int len = strlen(line);
fwrite(line,len,1,f);
}
if (mb->getNumLinks())
{
{
sprintf(line,"jointPositions=[");
int len = strlen(line);
fwrite(line,len,1,f);
}
for (int i=0;i<mb->getNumLinks();i++)
{
btScalar jointPos = mb->getJointPosMultiDof(i)[0];
if (i<mb->getNumLinks()-1)
{
sprintf(line," %f,",jointPos);
int len = strlen(line);
fwrite(line,len,1,f);
} else
{
sprintf(line," %f ",jointPos);
int len = strlen(line);
fwrite(line,len,1,f);
}
}
{
sprintf(line,"]\nfor jointIndex in range (p.getNumJoints(ob)):\n\tp.resetJointState(ob,jointIndex,jointPositions[jointIndex])\n\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
}
} else
{
//todo: btRigidBody/btSoftBody etc case
}
}
}
}
//for URDF, load at origin, then reposition...
struct SaveWorldObjectData
{
b3AlignedObjectArray<int> m_bodyUniqueIds;
std::string m_fileName;
};
}
//user constraints
{
for (int i=0;i<m_data->m_userConstraints.size();i++)
{
InteralUserConstraintData* ucptr = m_data->m_userConstraints.getAtIndex(i);
b3UserConstraint& uc = ucptr->m_userConstraintData;
int parentBodyIndex=uc.m_parentBodyIndex;
int parentJointIndex=uc.m_parentJointIndex;
int childBodyIndex=uc.m_childBodyIndex;
int childJointIndex=uc.m_childJointIndex;
btVector3 jointAxis(uc.m_jointAxis[0],uc.m_jointAxis[1],uc.m_jointAxis[2]);
btVector3 pivotParent(uc.m_parentFrame[0],uc.m_parentFrame[1],uc.m_parentFrame[2]);
btVector3 pivotChild(uc.m_childFrame[0],uc.m_childFrame[1],uc.m_childFrame[2]);
btQuaternion ornFrameParent(uc.m_parentFrame[3],uc.m_parentFrame[4],uc.m_parentFrame[5],uc.m_parentFrame[6]);
btQuaternion ornFrameChild(uc.m_childFrame[3],uc.m_childFrame[4],uc.m_childFrame[5],uc.m_childFrame[6]);
{
char jointTypeStr[1024]="FIXED";
bool hasKnownJointType = true;
switch (uc.m_jointType)
{
case eRevoluteType:
{
sprintf(jointTypeStr,"p.JOINT_REVOLUTE");
break;
}
case ePrismaticType:
{
sprintf(jointTypeStr,"p.JOINT_PRISMATIC");
break;
}
case eSphericalType:
{
sprintf(jointTypeStr,"p.JOINT_SPHERICAL");
break;
}
case ePlanarType:
{
sprintf(jointTypeStr,"p.JOINT_PLANAR");
break;
}
case eFixedType :
{
sprintf(jointTypeStr,"p.JOINT_FIXED");
break;
}
case ePoint2PointType:
{
sprintf(jointTypeStr,"p.JOINT_POINT2POINT");
break;
}
case eGearType:
{
sprintf(jointTypeStr,"p.JOINT_GEAR");
break;
}
default:
{
hasKnownJointType = false;
b3Warning("unknown constraint type in SAVE_WORLD");
}
};
if (hasKnownJointType)
2016-06-01 18:04:10 +00:00
{
{
sprintf(line,"cid%d = p.createConstraint(%d,%d,%d,%d,%s,[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],[%f,%f,%f,%f],[%f,%f,%f,%f])\n",
constraintCount,
parentBodyIndex,
parentJointIndex,
childBodyIndex,
childJointIndex,
jointTypeStr,
jointAxis[0],jointAxis[1],jointAxis[2],
pivotParent[0],pivotParent[1],pivotParent[2],
pivotChild[0],pivotChild[1],pivotChild[2],
ornFrameParent[0],ornFrameParent[1],ornFrameParent[2],ornFrameParent[3],
ornFrameChild[0],ornFrameChild[1],ornFrameChild[2],ornFrameChild[3]
);
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"p.changeConstraint(cid%d,maxForce=%f)\n",constraintCount,uc.m_maxAppliedForce);
int len = strlen(line);
fwrite(line,len,1,f);
constraintCount++;
}
}
}
}
}
{
btVector3 grav=this->m_data->m_dynamicsWorld->getGravity();
sprintf(line,"p.setGravity(%f,%f,%f)\n",grav[0],grav[1],grav[2]);
int len = strlen(line);
fwrite(line,len,1,f);
}
{
sprintf(line,"p.stepSimulation()\np.disconnect()\n");
int len = strlen(line);
fwrite(line,len,1,f);
}
fclose(f);
}
serverStatusOut.m_type = CMD_SAVE_WORLD_COMPLETED;
hasStatus = true;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateCollisionShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_FAILED;
btScalar defaultCollisionMargin = 0.001;
btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
btCollisionShape* shape = 0;
b3AlignedObjectArray<UrdfCollision> urdfCollisionObjects;
btCompoundShape* compound = 0;
if (clientCmd.m_createUserShapeArgs.m_numUserShapes>1)
{
compound = worldImporter->createCompoundShape();
}
for (int i = 0; i < clientCmd.m_createUserShapeArgs.m_numUserShapes; i++)
{
GLInstanceGraphicsShape* glmesh = 0;
char pathPrefix[1024] = "";
char relativeFileName[1024] = "";
UrdfCollision urdfColObj;
btTransform childTransform;
childTransform.setIdentity();
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_hasChildTransform)
{
childTransform.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[2]));
childTransform.setRotation(btQuaternion(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[2],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[3]
));
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
}
urdfColObj.m_linkLocalFrame = childTransform;
urdfColObj.m_sourceFileLocation = "memory";
urdfColObj.m_name = "memory";
urdfColObj.m_geometry.m_type = URDF_GEOM_UNKNOWN;
switch (clientCmd.m_createUserShapeArgs.m_shapes[i].m_type)
{
case GEOM_SPHERE:
{
double radius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius;
shape = worldImporter->createSphereShape(radius);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_SPHERE;
urdfColObj.m_geometry.m_sphereRadius = radius;
break;
}
case GEOM_BOX:
{
//double halfExtents[3] = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius;
btVector3 halfExtents(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[2]);
shape = worldImporter->createBoxShape(halfExtents);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_BOX;
urdfColObj.m_geometry.m_boxSize = 2.*halfExtents;
break;
}
case GEOM_CAPSULE:
{
shape = worldImporter->createCapsuleShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius,
clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_CAPSULE;
urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius;
urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight;
break;
}
case GEOM_CYLINDER:
{
shape = worldImporter->createCylinderShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius,
0.5*clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_CYLINDER;
urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius;
urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight;
break;
}
case GEOM_PLANE:
{
btVector3 planeNormal(clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]);
shape = worldImporter->createPlaneShape(planeNormal, 0);
if (compound)
{
compound->addChildShape(childTransform, shape);
}
urdfColObj.m_geometry.m_type = URDF_GEOM_PLANE;
urdfColObj.m_geometry.m_planeNormal.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]);
break;
}
case GEOM_MESH:
{
btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]);
const std::string& urdf_path = "";
std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshFileName;
urdfColObj.m_geometry.m_type = URDF_GEOM_MESH;
urdfColObj.m_geometry.m_meshFileName = fileName;
urdfColObj.m_geometry.m_meshScale = meshScale;
pathPrefix[0] = 0;
if (b3ResourcePath::findResourcePath(fileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
const std::string& error_message_prefix = "";
std::string out_found_filename;
int out_type;
bool foundFile = findExistingMeshFile(pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type);
if (foundFile)
{
urdfColObj.m_geometry.m_meshFileType = out_type;
if (out_type == UrdfGeometry::FILE_STL)
{
glmesh = LoadMeshFromSTL(relativeFileName);
}
if (out_type == UrdfGeometry::FILE_OBJ)
{
//create a convex hull for each shape, and store it in a btCompoundShape
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags&GEOM_FORCE_CONCAVE_TRIMESH)
{
glmesh = LoadMeshFromObj(relativeFileName, pathPrefix);
}
else
{
std::vector<tinyobj::shape_t> shapes;
std::string err = tinyobj::LoadObj(shapes, out_found_filename.c_str());
//shape = createConvexHullFromShapes(shapes, collision->m_geometry.m_meshScale);
//static btCollisionShape* createConvexHullFromShapes(std::vector<tinyobj::shape_t>& shapes, const btVector3& geomScale)
B3_PROFILE("createConvexHullFromShapes");
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
compound->setMargin(defaultCollisionMargin);
for (int s = 0; s < (int)shapes.size(); s++)
{
btConvexHullShape* convexHull = worldImporter->createConvexHullShape();
convexHull->setMargin(defaultCollisionMargin);
tinyobj::shape_t& shape = shapes[s];
int faceCount = shape.mesh.indices.size();
for (int f = 0; f < faceCount; f += 3)
{
btVector3 pt;
pt.setValue(shape.mesh.positions[shape.mesh.indices[f] * 3 + 0],
shape.mesh.positions[shape.mesh.indices[f] * 3 + 1],
shape.mesh.positions[shape.mesh.indices[f] * 3 + 2]);
convexHull->addPoint(pt*meshScale, false);
pt.setValue(shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 0],
shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 1],
shape.mesh.positions[shape.mesh.indices[f + 1] * 3 + 2]);
convexHull->addPoint(pt*meshScale, false);
pt.setValue(shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 0],
shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 1],
shape.mesh.positions[shape.mesh.indices[f + 2] * 3 + 2]);
convexHull->addPoint(pt*meshScale, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(childTransform, convexHull);
}
}
}
}
break;
}
default:
{
}
}
if (urdfColObj.m_geometry.m_type != URDF_GEOM_UNKNOWN)
{
urdfCollisionObjects.push_back(urdfColObj);
}
if (glmesh)
{
btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]);
if (!glmesh || glmesh->m_numvertices <= 0)
{
b3Warning("%s: cannot extract mesh from '%s'\n", pathPrefix, relativeFileName);
delete glmesh;
}
else
{
btAlignedObjectArray<btVector3> convertedVerts;
convertedVerts.reserve(glmesh->m_numvertices);
for (int v = 0; v < glmesh->m_numvertices; v++)
{
convertedVerts.push_back(btVector3(
glmesh->m_vertices->at(v).xyzw[0] * meshScale[0],
glmesh->m_vertices->at(v).xyzw[1] * meshScale[1],
glmesh->m_vertices->at(v).xyzw[2] * meshScale[2]));
}
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags&GEOM_FORCE_CONCAVE_TRIMESH)
{
BT_PROFILE("convert trimesh");
btTriangleMesh* meshInterface = new btTriangleMesh();
this->m_data->m_meshInterfaces.push_back(meshInterface);
{
BT_PROFILE("convert vertices");
for (int i = 0; i < glmesh->m_numIndices / 3; i++)
{
const btVector3& v0 = convertedVerts[glmesh->m_indices->at(i * 3)];
const btVector3& v1 = convertedVerts[glmesh->m_indices->at(i * 3 + 1)];
const btVector3& v2 = convertedVerts[glmesh->m_indices->at(i * 3 + 2)];
meshInterface->addTriangle(v0, v1, v2);
}
}
{
BT_PROFILE("create btBvhTriangleMeshShape");
btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true);
m_data->m_collisionShapes.push_back(trimesh);
if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE)
{
btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap();
btGenerateInternalEdgeInfo(trimesh, triangleInfoMap);
}
//trimesh->setLocalScaling(collision->m_geometry.m_meshScale);
shape = trimesh;
if (compound)
{
compound->addChildShape(childTransform, shape);
}
}
delete glmesh;
}
else
{
//convex mesh
if (compound == 0)
{
compound = worldImporter->createCompoundShape();
}
compound->setMargin(defaultCollisionMargin);
{
btConvexHullShape* convexHull = worldImporter->createConvexHullShape();
convexHull->setMargin(defaultCollisionMargin);
for (int v = 0; v < convertedVerts.size(); v++)
{
btVector3 pt = convertedVerts[v];
convexHull->addPoint(pt, false);
}
convexHull->recalcLocalAabb();
convexHull->optimizeConvexHull();
compound->addChildShape(childTransform, convexHull);
}
}
}
}
}
if (compound && compound->getNumChildShapes())
{
shape = compound;
}
if (shape)
{
int collisionShapeUid = m_data->m_userCollisionShapeHandles.allocHandle();
InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeUid);
handle->m_collisionShape = shape;
for (int i=0;i<urdfCollisionObjects.size();i++)
{
handle->m_urdfCollisionObjects.push_back(urdfCollisionObjects[i]);
}
serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = collisionShapeUid;
m_data->m_worldImporters.push_back(worldImporter);
serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_COMPLETED;
} else
{
delete worldImporter;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_FAILED;
double globalScaling = 1.f;
int flags=0;
BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), globalScaling, flags);
u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer);
btTransform localInertiaFrame;
localInertiaFrame.setIdentity();
const char* pathPrefix = "";
int visualShapeUniqueId = -1;
UrdfVisual visualShape;
for (int userShapeIndex = 0; userShapeIndex< clientCmd.m_createUserShapeArgs.m_numUserShapes; userShapeIndex++)
{
btTransform childTrans;
childTrans.setIdentity();
visualShape.m_geometry.m_type = (UrdfGeomTypes)clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_type;
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
const b3CreateUserShapeData& visShape = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex];
switch (visualShape.m_geometry.m_type)
{
case URDF_GEOM_CYLINDER:
{
visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight;
visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius;
break;
}
case URDF_GEOM_BOX:
{
visualShape.m_geometry.m_boxSize.setValue(2.*visShape.m_boxHalfExtents[0],
2.*visShape.m_boxHalfExtents[1],
2.*visShape.m_boxHalfExtents[2]);
break;
}
case URDF_GEOM_SPHERE:
{
visualShape.m_geometry.m_sphereRadius = visShape.m_sphereRadius;
break;
}
case URDF_GEOM_CAPSULE:
{
visualShape.m_geometry.m_hasFromTo = visShape.m_hasFromTo;
if (visualShape.m_geometry.m_hasFromTo)
{
visualShape.m_geometry.m_capsuleFrom.setValue(visShape.m_capsuleFrom[0],
visShape.m_capsuleFrom[1],
visShape.m_capsuleFrom[2]);
visualShape.m_geometry.m_capsuleTo.setValue(visShape.m_capsuleTo[0],
visShape.m_capsuleTo[1],
visShape.m_capsuleTo[2]);
}
else
{
visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight;
visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius;
}
break;
}
case URDF_GEOM_MESH:
{
std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshFileName;
const std::string& error_message_prefix = "";
std::string out_found_filename;
int out_type;
if (b3ResourcePath::findResourcePath(fileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
bool foundFile = findExistingMeshFile(pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type);
visualShape.m_geometry.m_meshFileType = out_type;
visualShape.m_geometry.m_meshFileName = fileName;
visualShape.m_geometry.m_meshScale.setValue(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[2]);
break;
}
default:
{
}
};
visualShape.m_name = "in_memory";
visualShape.m_materialName = "";
visualShape.m_sourceFileLocation = "in_memory_unknown_line";
visualShape.m_linkLocalFrame.setIdentity();
visualShape.m_geometry.m_hasLocalMaterial = false;
bool hasRGBA = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags&GEOM_VISUAL_HAS_RGBA_COLOR) != 0;;
bool hasSpecular = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags&GEOM_VISUAL_HAS_SPECULAR_COLOR) != 0;;
visualShape.m_geometry.m_hasLocalMaterial = hasRGBA | hasSpecular;
if (visualShape.m_geometry.m_hasLocalMaterial)
{
if (hasRGBA)
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_rgbaColor.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[2],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[3]);
}
else
{
}
if (hasSpecular)
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[2]);
}
else
{
visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue(0.4, 0.4, 0.4);
}
}
if (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_hasChildTransform != 0)
{
childTrans.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[2]));
childTrans.setRotation(btQuaternion(
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[0],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[1],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[2],
clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[3]));
}
if (visualShapeUniqueId<0)
{
visualShapeUniqueId = m_data->m_userVisualShapeHandles.allocHandle();
}
InternalVisualShapeHandle* visualHandle = m_data->m_userVisualShapeHandles.getHandle(visualShapeUniqueId);
visualHandle->m_OpenGLGraphicsIndex = -1;
visualHandle->m_tinyRendererVisualShapeIndex = -1;
//tinyrenderer doesn't separate shape versus instance, so create it when creating the multibody instance
//store needed info for tinyrenderer
visualShape.m_linkLocalFrame = childTrans;
visualHandle->m_visualShapes.push_back(visualShape);
visualHandle->m_pathPrefixes.push_back(pathPrefix[0] ? pathPrefix : "");
serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = visualShapeUniqueId;
serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCustomCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CUSTOM_COMMAND_FAILED;
serverCmd.m_customCommandResultArgs.m_pluginUniqueId = -1;
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN)
{
//pluginPath could be registered or load from disk
const char* postFix = "";
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN_POSTFIX)
{
postFix = clientCmd.m_customCommandArgs.m_postFix;
}
int pluginUniqueId = m_data->m_pluginManager.loadPlugin(clientCmd.m_customCommandArgs.m_pluginPath, postFix);
if (pluginUniqueId>=0)
{
serverCmd.m_customCommandResultArgs.m_pluginUniqueId = pluginUniqueId;
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
}
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_UNLOAD_PLUGIN)
{
m_data->m_pluginManager.unloadPlugin(clientCmd.m_customCommandArgs.m_pluginUniqueId);
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND)
{
int result = m_data->m_pluginManager.executePluginCommand(clientCmd.m_customCommandArgs.m_pluginUniqueId, &clientCmd.m_customCommandArgs.m_arguments);
serverCmd.m_customCommandResultArgs.m_executeCommandResult = result;
serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processUserDebugDrawCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_USER_DEBUG_DRAW");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_FAILED;
int trackingVisualShapeIndex = -1;
if (clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId>=0)
{
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId);
if (bodyHandle)
{
int linkIndex = -1;
if (bodyHandle->m_multiBody)
{
int linkIndex = clientCmd.m_userDebugDrawArgs.m_parentLinkIndex;
if (linkIndex ==-1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
trackingVisualShapeIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
}
} else
{
if (linkIndex >=0 && linkIndex < bodyHandle->m_multiBody->getNumLinks())
{
if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider)
{
trackingVisualShapeIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex();
}
}
}
}
if (bodyHandle->m_rigidBody)
{
trackingVisualShapeIndex = bodyHandle->m_rigidBody->getUserIndex();
}
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_ADD_PARAMETER)
{
int uid = m_data->m_guiHelper->addUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_rangeMin,
clientCmd.m_userDebugDrawArgs.m_rangeMax,
clientCmd.m_userDebugDrawArgs.m_startValue
);
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags &USER_DEBUG_READ_PARAMETER)
{
int ok = m_data->m_guiHelper->readUserDebugParameter(
clientCmd.m_userDebugDrawArgs.m_itemUniqueId,
&serverCmd.m_userDebugDrawArgs.m_parameterValue);
if (ok)
{
serverCmd.m_type = CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED;
}
}
if ((clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR) || (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR))
{
int bodyUniqueId = clientCmd.m_userDebugDrawArgs.m_objectUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body)
{
btCollisionObject* destColObj = 0;
if (body->m_multiBody)
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex == -1)
{
destColObj = body->m_multiBody->getBaseCollider();
}
else
{
if (clientCmd.m_userDebugDrawArgs.m_linkIndex >= 0 && clientCmd.m_userDebugDrawArgs.m_linkIndex < body->m_multiBody->getNumLinks())
{
destColObj = body->m_multiBody->getLink(clientCmd.m_userDebugDrawArgs.m_linkIndex).m_collider;
}
}
}
if (body->m_rigidBody)
{
destColObj = body->m_rigidBody;
}
if (destColObj)
{
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR)
{
destColObj->removeCustomDebugColor();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR)
{
btVector3 objectColorRGB;
objectColorRGB.setValue(clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[0],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[1],
clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[2]);
destColObj->setCustomDebugColor(objectColorRGB);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT)
{
//addUserDebugText3D( const double orientation[4], const double textColorRGB[3], double size, double lifeTime, int trackingObjectUniqueId, int optionFlags){return -1;}
int optionFlags = clientCmd.m_userDebugDrawArgs.m_optionFlags;
if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT_ORIENTATION)==0)
{
optionFlags |= DEB_DEBUG_TEXT_ALWAYS_FACE_CAMERA;
}
int replaceItemUniqueId = -1;
if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID)!=0)
{
replaceItemUniqueId = clientCmd.m_userDebugDrawArgs.m_replaceItemUniqueId;
}
int uid = m_data->m_guiHelper->addUserDebugText3D(clientCmd.m_userDebugDrawArgs.m_text,
clientCmd.m_userDebugDrawArgs.m_textPositionXYZ,
clientCmd.m_userDebugDrawArgs.m_textOrientation,
clientCmd.m_userDebugDrawArgs.m_textColorRGB,
clientCmd.m_userDebugDrawArgs.m_textSize,
clientCmd.m_userDebugDrawArgs.m_lifeTime,
trackingVisualShapeIndex,
optionFlags,
replaceItemUniqueId);
if (uid>=0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_HAS_LINE)
{
int uid = m_data->m_guiHelper->addUserDebugLine(
clientCmd.m_userDebugDrawArgs.m_debugLineFromXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineToXYZ,
clientCmd.m_userDebugDrawArgs.m_debugLineColorRGB,
clientCmd.m_userDebugDrawArgs.m_lineWidth,
clientCmd.m_userDebugDrawArgs.m_lifeTime,
trackingVisualShapeIndex);
if (uid>=0)
{
serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid;
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ALL)
{
m_data->m_guiHelper->removeAllUserDebugItems();
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ONE_ITEM)
{
m_data->m_guiHelper->removeUserDebugItem(clientCmd.m_userDebugDrawArgs.m_itemUniqueId);
serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSetVRCameraStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SET_VR_CAMERA_STATE");
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_POSITION)
{
gVRTeleportPos1[0] = clientCmd.m_vrCameraStateArguments.m_rootPosition[0];
gVRTeleportPos1[1] = clientCmd.m_vrCameraStateArguments.m_rootPosition[1];
gVRTeleportPos1[2] = clientCmd.m_vrCameraStateArguments.m_rootPosition[2];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_ORIENTATION)
{
gVRTeleportOrn[0] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[0];
gVRTeleportOrn[1] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[1];
gVRTeleportOrn[2] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[2];
gVRTeleportOrn[3] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[3];
}
if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_TRACKING_OBJECT)
{
gVRTrackingObjectUniqueId = clientCmd.m_vrCameraStateArguments.m_trackingObjectUniqueId;
}
if (clientCmd.m_updateFlags & VR_CAMERA_FLAG)
{
gVRTrackingObjectFlag = clientCmd.m_vrCameraStateArguments.m_trackingObjectFlag;
}
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestVREventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
//BT_PROFILE("CMD_REQUEST_VR_EVENTS_DATA");
serverStatusOut.m_sendVREvents.m_numVRControllerEvents = 0;
for (int i=0;i<MAX_VR_CONTROLLERS;i++)
{
b3VRControllerEvent& event = m_data->m_vrControllerEvents.m_vrEvents[i];
if (clientCmd.m_updateFlags&event.m_deviceType)
{
if (event.m_numButtonEvents + event.m_numMoveEvents)
{
serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event;
event.m_numButtonEvents = 0;
event.m_numMoveEvents = 0;
for (int b=0;b<MAX_VR_BUTTONS;b++)
{
event.m_buttons[b] = 0;
}
}
}
}
serverStatusOut.m_type = CMD_REQUEST_VR_EVENTS_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestMouseEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_sendMouseEvents.m_numMouseEvents = m_data->m_mouseEvents.size();
if (serverStatusOut.m_sendMouseEvents.m_numMouseEvents>MAX_MOUSE_EVENTS)
{
serverStatusOut.m_sendMouseEvents.m_numMouseEvents = MAX_MOUSE_EVENTS;
}
for (int i=0;i<serverStatusOut.m_sendMouseEvents.m_numMouseEvents;i++)
{
serverStatusOut.m_sendMouseEvents.m_mouseEvents[i] = m_data->m_mouseEvents[i];
}
m_data->m_mouseEvents.resize(0);
serverStatusOut.m_type = CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestKeyboardEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
//BT_PROFILE("CMD_REQUEST_KEYBOARD_EVENTS_DATA");
bool hasStatus = true;
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = m_data->m_keyboardEvents.size();
if (serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents>MAX_KEYBOARD_EVENTS)
{
serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = MAX_KEYBOARD_EVENTS;
}
for (int i=0;i<serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents;i++)
{
serverStatusOut.m_sendKeyboardEvents.m_keyboardEvents[i] = m_data->m_keyboardEvents[i];
}
btAlignedObjectArray<b3KeyboardEvent> events;
//remove out-of-date events
for (int i=0;i<m_data->m_keyboardEvents.size();i++)
{
b3KeyboardEvent event = m_data->m_keyboardEvents[i];
if (event.m_keyState & eButtonIsDown)
{
event.m_keyState = eButtonIsDown;
events.push_back(event);
}
}
m_data->m_keyboardEvents.resize(events.size());
for (int i=0;i<events.size();i++)
{
m_data->m_keyboardEvents[i] = events[i];
}
serverStatusOut.m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestRaycastIntersectionsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_RAY_CAST_INTERSECTIONS");
serverStatusOut.m_raycastHits.m_numRaycastHits = 0;
for (int ray=0;ray<clientCmd.m_requestRaycastIntersections.m_numRays;ray++)
{
btVector3 rayFromWorld(clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][0],
clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][1],
clientCmd.m_requestRaycastIntersections.m_rayFromPositions[ray][2]);
btVector3 rayToWorld(clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][0],
clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][1],
clientCmd.m_requestRaycastIntersections.m_rayToPositions[ray][2]);
btCollisionWorld::ClosestRayResultCallback rayResultCallback(rayFromWorld,rayToWorld);
rayResultCallback.m_flags |= btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest;
m_data->m_dynamicsWorld->rayTest(rayFromWorld,rayToWorld,rayResultCallback);
int rayHits = serverStatusOut.m_raycastHits.m_numRaycastHits;
if (rayResultCallback.hasHit())
{
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitFraction
= rayResultCallback.m_closestHitFraction;
int objectUniqueId = -1;
int linkIndex = -1;
const btRigidBody* body = btRigidBody::upcast(rayResultCallback.m_collisionObject);
if (body)
{
objectUniqueId = rayResultCallback.m_collisionObject->getUserIndex2();
} else
{
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(rayResultCallback.m_collisionObject);
if (mblB && mblB->m_multiBody)
{
linkIndex = mblB->m_link;
objectUniqueId = mblB->m_multiBody->getUserIndex2();
}
}
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitObjectUniqueId
= objectUniqueId;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitObjectLinkIndex
= linkIndex;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[0]
= rayResultCallback.m_hitPointWorld[0];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[1]
= rayResultCallback.m_hitPointWorld[1];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[2]
= rayResultCallback.m_hitPointWorld[2];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[0]
= rayResultCallback.m_hitNormalWorld[0];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[1]
= rayResultCallback.m_hitNormalWorld[1];
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[2]
= rayResultCallback.m_hitNormalWorld[2];
} else
{
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitFraction = 1;
serverStatusOut.m_raycastHits.m_rayHits[serverStatusOut.m_raycastHits.m_numRaycastHits].m_hitObjectUniqueId = -1;
serverStatusOut.m_raycastHits.m_rayHits[serverStatusOut.m_raycastHits.m_numRaycastHits].m_hitObjectLinkIndex = -1;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[0] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[1] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitPositionWorld[2] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[0] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[1] = 0;
serverStatusOut.m_raycastHits.m_rayHits[rayHits].m_hitNormalWorld[2] = 0;
}
serverStatusOut.m_raycastHits.m_numRaycastHits++;
}
serverStatusOut.m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestDebugLinesCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_DEBUG_LINES");
int curFlags =m_data->m_remoteDebugDrawer->getDebugMode();
int debugMode = clientCmd.m_requestDebugLinesArguments.m_debugMode;//clientCmd.btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb;
int startingLineIndex = clientCmd.m_requestDebugLinesArguments.m_startingLineIndex;
if (startingLineIndex<0)
{
b3Warning("startingLineIndex should be non-negative");
startingLineIndex = 0;
}
if (clientCmd.m_requestDebugLinesArguments.m_startingLineIndex==0)
{
m_data->m_remoteDebugDrawer->m_lines2.resize(0);
//|btIDebugDraw::DBG_DrawAabb|
// btIDebugDraw::DBG_DrawConstraints |btIDebugDraw::DBG_DrawConstraintLimits ;
m_data->m_remoteDebugDrawer->setDebugMode(debugMode);
btIDebugDraw* oldDebugDrawer = m_data->m_dynamicsWorld->getDebugDrawer();
m_data->m_dynamicsWorld->setDebugDrawer(m_data->m_remoteDebugDrawer);
m_data->m_dynamicsWorld->debugDrawWorld();
m_data->m_dynamicsWorld->setDebugDrawer(oldDebugDrawer);
m_data->m_remoteDebugDrawer->setDebugMode(curFlags);
}
//9 floats per line: 3 floats for 'from', 3 floats for 'to' and 3 floats for 'color'
int bytesPerLine = (sizeof(float) * 9);
int maxNumLines = bufferSizeInBytes/bytesPerLine-1;
if (startingLineIndex >m_data->m_remoteDebugDrawer->m_lines2.size())
{
b3Warning("m_startingLineIndex exceeds total number of debug lines");
startingLineIndex =m_data->m_remoteDebugDrawer->m_lines2.size();
}
int numLines = btMin(maxNumLines,m_data->m_remoteDebugDrawer->m_lines2.size()-startingLineIndex);
if (numLines)
{
float* linesFrom = (float*)bufferServerToClient;
float* linesTo = (float*)(bufferServerToClient+numLines*3*sizeof(float));
float* linesColor = (float*)(bufferServerToClient+2*numLines*3*sizeof(float));
for (int i=0;i<numLines;i++)
{
linesFrom[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.x();
linesTo[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.x();
linesColor[i*3] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.x();
linesFrom[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.y();
linesTo[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.y();
linesColor[i*3+1] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.y();
linesFrom[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_from.z();
linesTo[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_to.z();
linesColor[i*3+2] = m_data->m_remoteDebugDrawer->m_lines2[i+startingLineIndex].m_color.z();
}
}
serverStatusOut.m_type = CMD_DEBUG_LINES_COMPLETED;
serverStatusOut.m_numDataStreamBytes = numLines * bytesPerLine;
serverStatusOut.m_sendDebugLinesArgs.m_numDebugLines = numLines;
serverStatusOut.m_sendDebugLinesArgs.m_startingLineIndex = startingLineIndex;
serverStatusOut.m_sendDebugLinesArgs.m_numRemainingDebugLines = m_data->m_remoteDebugDrawer->m_lines2.size()-(startingLineIndex+numLines);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSyncBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SYNC_BODY_INFO");
b3AlignedObjectArray<int> usedHandles;
m_data->m_bodyHandles.getUsedHandles(usedHandles);
int actualNumBodies = 0;
for (int i=0;i<usedHandles.size();i++)
{
int usedHandle = usedHandles[i];
InternalBodyData* body = m_data->m_bodyHandles.getHandle(usedHandle);
if (body && (body->m_multiBody || body->m_rigidBody))
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[actualNumBodies++] = usedHandle;
}
}
serverStatusOut.m_sdfLoadedArgs.m_numBodies = actualNumBodies;
int usz = m_data->m_userConstraints.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = usz;
for (int i=0;i<usz;i++)
{
int key = m_data->m_userConstraints.getKeyAtIndex(i).getUid1();
// int uid = m_data->m_userConstraints.getAtIndex(i)->m_userConstraintData.m_userConstraintUniqueId;
serverStatusOut.m_sdfLoadedArgs.m_userConstraintUniqueIds[i] = key;
}
serverStatusOut.m_type = CMD_SYNC_BODY_INFO_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSendDesiredStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SEND_DESIRED_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_SEND_DESIRED_STATE");
}
int bodyUniqueId = clientCmd.m_sendDesiredStateCommandArgument.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
int torqueIndex = 6;
if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link=0;link<mb->getNumLinks();link++)
{
for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
double torque = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex];
mb->addJointTorqueMultiDof(link,dof,torque);
}
torqueIndex++;
}
}
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_VELOCITY");
}
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int dofIndex = 6;//skip the 3 linear + 3 angular degree of freedom entries of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
btScalar desiredVelocity = 0.f;
bool hasDesiredVelocity = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex];
btScalar kd = 0.1f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[dofIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
btScalar kp = 0.f;
motor->setPositionTarget(0,kp);
hasDesiredVelocity = true;
}
if (hasDesiredVelocity)
{
//disable velocity clamp in velocity mode
motor->setRhsClamp(SIMD_INFINITY);
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex]&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex]*m_data->m_physicsDeltaTime;
}
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
dofIndex += mb->getLink(link).m_dofCount;
}
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_POSITION_VELOCITY_PD");
}
//compute the force base on PD control
int numMotors = 0;
//find the joint motors and apply the desired velocity and maximum force/torque
{
int velIndex = 6;//skip the 3 linear + 3 angular degree of freedom velocity entries of the base
int posIndex = 7;//skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base
for (int link=0;link<mb->getNumLinks();link++)
{
if (supportsJointMotor(mb,link))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr;
if (motor)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex]&SIM_DESIRED_STATE_HAS_RHS_CLAMP)!=0)
{
motor->setRhsClamp(clientCmd.m_sendDesiredStateCommandArgument.m_rhsClamp[velIndex]);
}
bool hasDesiredPosOrVel = false;
btScalar kp = 0.f;
btScalar kd = 0.f;
btScalar desiredVelocity = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
hasDesiredPosOrVel = true;
desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
kd = 0.1;
}
btScalar desiredPosition = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q)!=0)
{
hasDesiredPosOrVel = true;
desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
kp = 0.1;
}
if (hasDesiredPosOrVel)
{
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP)!=0)
{
kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex];
}
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD)!=0)
{
kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex];
}
motor->setVelocityTarget(desiredVelocity,kd);
2018-01-06 23:00:20 +00:00
//todo: instead of clamping, combine the motor and limit
//and combine handling of limit force and motor force.
//clamp position
if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit)
{
btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit);
}
motor->setPositionTarget(desiredPosition,kp);
btScalar maxImp = 1000000.f*m_data->m_physicsDeltaTime;
if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex]*m_data->m_physicsDeltaTime;
motor->setMaxAppliedImpulse(maxImp);
}
numMotors++;
}
}
velIndex += mb->getLink(link).m_dofCount;
posIndex += mb->getLink(link).m_posVarCount;
}
}
break;
}
default:
{
b3Warning("m_controlMode not implemented yet");
break;
}
}
} else
{
//support for non-btMultiBody, such as btRigidBody
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
btAssert(rb);
//switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
//case CONTROL_MODE_TORQUE:
{
if (m_data->m_verboseOutput)
{
b3Printf("Using CONTROL_MODE_TORQUE");
}
// mb->clearForcesAndTorques();
///see addJointInfoFromConstraint
int velIndex = 6;
int posIndex = 7;
//if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
for (int link=0;link<body->m_rigidBodyJoints.size();link++)
{
btGeneric6DofSpring2Constraint* con = body->m_rigidBodyJoints[link];
btVector3 linearLowerLimit;
btVector3 linearUpperLimit;
btVector3 angularLowerLimit;
btVector3 angularUpperLimit;
//for (int dof=0;dof<mb->getLink(link).m_dofCount;dof++)
{
{
int torqueIndex = velIndex;
double torque = 100;
bool hasDesiredTorque = false;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0)
{
torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex];
hasDesiredTorque = true;
}
bool hasDesiredPosOrVel = false;
btScalar qdotTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT)!=0)
{
hasDesiredPosOrVel = true;
qdotTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex];
}
btScalar qTarget = 0.f;
if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q)!=0)
{
hasDesiredPosOrVel = true;
qTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex];
}
con->getLinearLowerLimit(linearLowerLimit);
con->getLinearUpperLimit(linearUpperLimit);
con->getAngularLowerLimit(angularLowerLimit);
con->getAngularUpperLimit(angularUpperLimit);
if (linearLowerLimit.isZero() && linearUpperLimit.isZero() && angularLowerLimit.isZero() && angularUpperLimit.isZero())
{
//fixed, don't do anything
} else
{
con->calculateTransforms();
if (linearLowerLimit.isZero() && linearUpperLimit.isZero())
{
//eRevoluteType;
btVector3 limitRange = angularLowerLimit.absolute()+angularUpperLimit.absolute();
int limitAxis = limitRange.maxAxis();
const btTransform& transA = con->getCalculatedTransformA();
const btTransform& transB = con->getCalculatedTransformB();
btVector3 axisA = transA.getBasis().getColumn(limitAxis);
btVector3 axisB = transB.getBasis().getColumn(limitAxis);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
if (hasDesiredTorque)
{
con->getRigidBodyA().applyTorque(torque*axisA);
con->getRigidBodyB().applyTorque(-torque*axisB);
}
break;
}
case CONTROL_MODE_VELOCITY:
{
if (hasDesiredPosOrVel)
{
con->enableMotor(3+limitAxis,true);
con->setTargetVelocity(3+limitAxis, qdotTarget);
2018-03-05 22:05:22 +00:00
con->setMaxMotorForce(3+limitAxis, torque);
}
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
if (hasDesiredPosOrVel)
{
con->setServo(3+limitAxis,true);
con->setServoTarget(3+limitAxis,-qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(3+limitAxis, 100);
2018-03-05 22:05:22 +00:00
con->setMaxMotorForce(3+limitAxis, torque);
con->enableMotor(3+limitAxis,true);
}
break;
}
default:
{
}
};
} else
{
//ePrismaticType; @todo
btVector3 limitRange = linearLowerLimit.absolute()+linearUpperLimit.absolute();
int limitAxis = limitRange.maxAxis();
const btTransform& transA = con->getCalculatedTransformA();
const btTransform& transB = con->getCalculatedTransformB();
btVector3 axisA = transA.getBasis().getColumn(limitAxis);
btVector3 axisB = transB.getBasis().getColumn(limitAxis);
switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode)
{
case CONTROL_MODE_TORQUE:
{
con->getRigidBodyA().applyForce(-torque*axisA,btVector3(0,0,0));
con->getRigidBodyB().applyForce(torque*axisB,btVector3(0,0,0));
break;
}
case CONTROL_MODE_VELOCITY:
{
con->enableMotor(limitAxis,true);
con->setTargetVelocity(limitAxis, -qdotTarget);
2018-03-05 22:05:22 +00:00
con->setMaxMotorForce(limitAxis, torque);
break;
}
case CONTROL_MODE_POSITION_VELOCITY_PD:
{
con->setServo(limitAxis,true);
con->setServoTarget(limitAxis,qTarget);
//next one is the maximum velocity to reach target position.
//the maximum velocity is limited by maxMotorForce
con->setTargetVelocity(limitAxis, 100);
2018-03-05 22:05:22 +00:00
con->setMaxMotorForce(limitAxis, torque);
con->enableMotor(limitAxis,true);
break;
}
default:
{
}
};
}
}
}//fi
///see addJointInfoFromConstraint
velIndex ++;//info.m_uIndex
posIndex ++;//info.m_qIndex
}
}
}//fi
//break;
}
}
} //if (body && body->m_rigidBody)
}
serverStatusOut.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestActualStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
BT_PROFILE("CMD_REQUEST_ACTUAL_STATE");
if (m_data->m_verboseOutput)
{
b3Printf("Sending the actual state (Q,U)");
}
int bodyUniqueId = clientCmd.m_requestActualStateInformationCommandArgument.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendActualStateArgs.m_numLinks = body->m_multiBody->getNumLinks();
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
if (mb->getNumLinks()>= MAX_DEGREE_OF_FREEDOM)
{
serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
return hasStatus;
}
//always add the base, even for static (non-moving objects)
//so that we can easily move the 'fixed' base when needed
//do we don't use this conditional "if (!mb->hasFixedBase())"
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] =
body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] =
body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] =
body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] =
body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] =
body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] =
body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] =
body->m_rootLocalInertialFrame.getRotation()[3];
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = mb->getBaseVel()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = mb->getBaseVel()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = mb->getBaseVel()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = mb->getBaseOmega()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = mb->getBaseOmega()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = mb->getBaseOmega()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
}
btAlignedObjectArray<btVector3> omega;
btAlignedObjectArray<btVector3> linVel;
bool computeForwardKinematics = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_FORWARD_KINEMATICS)!=0);
if (computeForwardKinematics)
{
B3_PROFILE("compForwardKinematics");
btAlignedObjectArray<btQuaternion> world_to_local;
btAlignedObjectArray<btVector3> local_origin;
world_to_local.resize(mb->getNumLinks()+1);
local_origin.resize(mb->getNumLinks()+1);
mb->forwardKinematics(world_to_local,local_origin);
}
bool computeLinkVelocities = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_LINKVELOCITY)!=0);
if (computeLinkVelocities)
{
omega.resize(mb->getNumLinks()+1);
linVel.resize(mb->getNumLinks()+1);
{
B3_PROFILE("compTreeLinkVelocities");
mb->compTreeLinkVelocities(&omega[0], &linVel[0]);
}
}
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_posVarCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d];
}
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
serverCmd.m_sendActualStateArgs.m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d];
}
if (0 == mb->getLink(l).m_jointFeedback)
{
for (int d=0;d<6;d++)
{
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+d]=0;
}
} else
{
btVector3 sensedForce = mb->getLink(l).m_jointFeedback->m_reactionForces.getLinear();
btVector3 sensedTorque = mb->getLink(l).m_jointFeedback->m_reactionForces.getAngular();
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+0] = sensedForce[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+1] = sensedForce[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+2] = sensedForce[2];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+3] = sensedTorque[0];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+4] = sensedTorque[1];
serverCmd.m_sendActualStateArgs.m_jointReactionForces[l*6+5] = sensedTorque[2];
}
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] = 0;
if (supportsJointMotor(mb,l))
{
btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr;
if (motor && m_data->m_physicsDeltaTime>btScalar(0))
{
btScalar force =motor->getAppliedImpulse(0)/m_data->m_physicsDeltaTime;
serverCmd.m_sendActualStateArgs.m_jointMotorForce[l] =
force;
//if (force>0)
//{
// b3Printf("force = %f\n", force);
//}
}
}
btVector3 linkLocalInertialOrigin = body->m_linkLocalInertialFrames[l].getOrigin();
btQuaternion linkLocalInertialRotation = body->m_linkLocalInertialFrames[l].getRotation();
btVector3 linkCOMOrigin = mb->getLink(l).m_cachedWorldTransform.getOrigin();
btQuaternion linkCOMRotation = mb->getLink(l).m_cachedWorldTransform.getRotation();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+0] = linkCOMOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+1] = linkCOMOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+2] = linkCOMOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+3] = linkCOMRotation.x();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+4] = linkCOMRotation.y();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+5] = linkCOMRotation.z();
serverCmd.m_sendActualStateArgs.m_linkState[l*7+6] = linkCOMRotation.w();
btVector3 worldLinVel(0,0,0);
btVector3 worldAngVel(0,0,0);
if (computeLinkVelocities)
{
const btMatrix3x3& linkRotMat = mb->getLink(l).m_cachedWorldTransform.getBasis();
worldLinVel = linkRotMat * linVel[l+1];
worldAngVel = linkRotMat * omega[l+1];
}
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+0] = worldLinVel[0];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+1] = worldLinVel[1];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+2] = worldLinVel[2];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+3] = worldAngVel[0];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+4] = worldAngVel[1];
serverCmd.m_sendActualStateArgs.m_linkWorldVelocities[l*6+5] = worldAngVel[2];
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+0] = linkLocalInertialOrigin.getX();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+1] = linkLocalInertialOrigin.getY();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+2] = linkLocalInertialOrigin.getZ();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+3] = linkLocalInertialRotation.x();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+4] = linkLocalInertialRotation.y();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+5] = linkLocalInertialRotation.z();
serverCmd.m_sendActualStateArgs.m_linkLocalInertialFrames[l*7+6] = linkLocalInertialRotation.w();
}
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED;
serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendActualStateArgs.m_numLinks = 0;
int totalDegreeOfFreedomQ = 0;
int totalDegreeOfFreedomU = 0;
btTransform tr = rb->getWorldTransform();
//base position in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[0] = tr.getOrigin()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[1] = tr.getOrigin()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[2] = tr.getOrigin()[2];
//base orientation, quaternion x,y,z,w, in world space, carthesian
serverCmd.m_sendActualStateArgs.m_actualStateQ[3] = tr.getRotation()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQ[4] = tr.getRotation()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQ[5] = tr.getRotation()[2];
serverCmd.m_sendActualStateArgs.m_actualStateQ[6] = tr.getRotation()[3];
totalDegreeOfFreedomQ +=7;//pos + quaternion
//base linear velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[0] = rb->getLinearVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[1] = rb->getLinearVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[2] = rb->getLinearVelocity()[2];
//base angular velocity (in world space, carthesian)
serverCmd.m_sendActualStateArgs.m_actualStateQdot[3] = rb->getAngularVelocity()[0];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[4] = rb->getAngularVelocity()[1];
serverCmd.m_sendActualStateArgs.m_actualStateQdot[5] = rb->getAngularVelocity()[2];
totalDegreeOfFreedomU += 6;//3 linear and 3 angular DOF
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ;
serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU;
hasStatus = true;
} else
{
//b3Warning("Request state but no multibody or rigid body available");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED;
hasStatus = true;
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestContactpointInformationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_CONTACT_POINT_INFORMATION");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied = 0;
//make a snapshot of the contact manifolds into individual contact points
if (clientCmd.m_requestContactPointArguments.m_startingContactPointIndex == 0)
{
m_data->m_cachedContactPoints.resize(0);
int mode = CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS;
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE)
{
mode = clientCmd.m_requestContactPointArguments.m_mode;
}
switch (mode)
{
case CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS:
{
int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds();
m_data->m_cachedContactPoints.reserve(numContactManifolds * 4);
for (int i = 0; i < numContactManifolds; i++)
{
const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i];
int linkIndexA = -1;
int linkIndexB = -1;
int objectIndexB = -1;
const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1());
if (bodyB)
{
objectIndexB = bodyB->getUserIndex2();
}
const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
if (mblB && mblB->m_multiBody)
{
linkIndexB = mblB->m_link;
objectIndexB = mblB->m_multiBody->getUserIndex2();
}
int objectIndexA = -1;
const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0());
if (bodyA)
{
objectIndexA = bodyA->getUserIndex2();
}
const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
if (mblA && mblA->m_multiBody)
{
linkIndexA = mblA->m_link;
objectIndexA = mblA->m_multiBody->getUserIndex2();
}
btAssert(bodyA || mblA);
//apply the filter, if the user provides it
bool swap = false;
if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter >= 0)
{
if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexA)
{
swap = false;
}
else if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexB)
{
swap = true;
}
else
{
continue;
}
}
if (swap)
{
std::swap(objectIndexA, objectIndexB);
std::swap(linkIndexA, linkIndexB);
std::swap(bodyA, bodyB);
}
//apply the second object filter, if the user provides it
if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter >= 0)
{
if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter != objectIndexB)
{
continue;
}
}
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter != linkIndexA)
{
continue;
}
if (
(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER) &&
clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter != linkIndexB)
{
continue;
}
for (int p = 0; p < manifold->getNumContacts(); p++)
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = objectIndexA;
pt.m_bodyUniqueIdB = objectIndexB;
const btManifoldPoint& srcPt = manifold->getContactPoint(p);
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = linkIndexA;
pt.m_linkIndexB = linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_data->m_physicsDeltaTime;
// pt.m_linearFrictionForce = srcPt.m_appliedImpulseLateral1;
m_data->m_cachedContactPoints.push_back(pt);
}
}
break;
}
case CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS:
{
//todo(erwincoumans) compute closest points between all, and vs all, pair
btScalar closestDistanceThreshold = 0.f;
if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD)
{
closestDistanceThreshold = clientCmd.m_requestContactPointArguments.m_closestDistanceThreshold;
}
int bodyUniqueIdA = clientCmd.m_requestContactPointArguments.m_objectAIndexFilter;
int bodyUniqueIdB = clientCmd.m_requestContactPointArguments.m_objectBIndexFilter;
bool hasLinkIndexAFilter = (0!=(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER));
bool hasLinkIndexBFilter = (0!=(clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER));
int linkIndexA = clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter;
int linkIndexB = clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter;
btAlignedObjectArray<btCollisionObject*> setA;
btAlignedObjectArray<btCollisionObject*> setB;
btAlignedObjectArray<int> setALinkIndex;
btAlignedObjectArray<int> setBLinkIndex;
if (bodyUniqueIdA >= 0)
{
InternalBodyData* bodyA = m_data->m_bodyHandles.getHandle(bodyUniqueIdA);
if (bodyA)
{
if (bodyA->m_multiBody)
{
if (bodyA->m_multiBody->getBaseCollider())
{
if (!hasLinkIndexAFilter || (linkIndexA == -1))
{
setA.push_back(bodyA->m_multiBody->getBaseCollider());
setALinkIndex.push_back(-1);
}
}
for (int i = 0; i < bodyA->m_multiBody->getNumLinks(); i++)
{
if (bodyA->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexAFilter || (linkIndexA == i))
{
setA.push_back(bodyA->m_multiBody->getLink(i).m_collider);
setALinkIndex.push_back(i);
}
}
}
}
if (bodyA->m_rigidBody)
{
setA.push_back(bodyA->m_rigidBody);
setALinkIndex.push_back(-1);
}
}
}
if (bodyUniqueIdB>=0)
{
InternalBodyData* bodyB = m_data->m_bodyHandles.getHandle(bodyUniqueIdB);
if (bodyB)
2017-05-08 05:21:38 +00:00
{
if (bodyB->m_multiBody)
2017-05-08 05:21:38 +00:00
{
if (bodyB->m_multiBody->getBaseCollider())
2017-05-08 05:21:38 +00:00
{
if (!hasLinkIndexBFilter || (linkIndexB == -1))
{
setB.push_back(bodyB->m_multiBody->getBaseCollider());
setBLinkIndex.push_back(-1);
}
}
for (int i = 0; i < bodyB->m_multiBody->getNumLinks(); i++)
{
if (bodyB->m_multiBody->getLink(i).m_collider)
{
if (!hasLinkIndexBFilter || (linkIndexB ==i))
{
setB.push_back(bodyB->m_multiBody->getLink(i).m_collider);
setBLinkIndex.push_back(i);
}
}
2017-05-08 05:21:38 +00:00
}
}
if (bodyB->m_rigidBody)
2017-05-08 05:21:38 +00:00
{
setB.push_back(bodyB->m_rigidBody);
setBLinkIndex.push_back(-1);
}
}
}
{
///ContactResultCallback is used to report contact points
struct MyContactResultCallback : public btCollisionWorld::ContactResultCallback
{
int m_bodyUniqueIdA;
int m_bodyUniqueIdB;
int m_linkIndexA;
int m_linkIndexB;
btScalar m_deltaTime;
btAlignedObjectArray<b3ContactPointData>& m_cachedContactPoints;
MyContactResultCallback(btAlignedObjectArray<b3ContactPointData>& pointCache)
:m_cachedContactPoints(pointCache)
{
}
virtual ~MyContactResultCallback()
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
//bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0;
//collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask);
//return collides;
return true;
}
virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
{
if (cp.m_distance1<=m_closestDistanceThreshold)
{
b3ContactPointData pt;
pt.m_bodyUniqueIdA = m_bodyUniqueIdA;
pt.m_bodyUniqueIdB = m_bodyUniqueIdB;
const btManifoldPoint& srcPt = cp;
pt.m_contactDistance = srcPt.getDistance();
pt.m_contactFlags = 0;
pt.m_linkIndexA = m_linkIndexA;
pt.m_linkIndexB = m_linkIndexB;
for (int j = 0; j < 3; j++)
{
pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j];
pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j];
pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j];
}
pt.m_normalForce = srcPt.getAppliedImpulse() / m_deltaTime;
// pt.m_linearFrictionForce = srcPt.m_appliedImpulseLateral1;
m_cachedContactPoints.push_back(pt);
}
return 1;
}
};
MyContactResultCallback cb(m_data->m_cachedContactPoints);
cb.m_bodyUniqueIdA = bodyUniqueIdA;
cb.m_bodyUniqueIdB = bodyUniqueIdB;
cb.m_deltaTime = m_data->m_physicsDeltaTime;
for (int i = 0; i < setA.size(); i++)
{
cb.m_linkIndexA = setALinkIndex[i];
for (int j = 0; j < setB.size(); j++)
{
cb.m_linkIndexB = setBLinkIndex[j];
cb.m_closestDistanceThreshold = closestDistanceThreshold;
this->m_data->m_dynamicsWorld->contactPairTest(setA[i], setB[j], cb);
}
}
}
break;
}
default:
{
b3Warning("Unknown contact query mode: %d", mode);
}
}
}
int numContactPoints = m_data->m_cachedContactPoints.size();
//b3ContactPoint
//struct b3ContactPointDynamics
int totalBytesPerContact = sizeof(b3ContactPointData);
int contactPointStorage = bufferSizeInBytes/totalBytesPerContact-1;
b3ContactPointData* contactData = (b3ContactPointData*)bufferServerToClient;
int startContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
int numContactPointBatch = btMin(numContactPoints,contactPointStorage);
int endContactPointIndex = startContactPointIndex+numContactPointBatch;
for (int i=startContactPointIndex;i<endContactPointIndex ;i++)
{
const b3ContactPointData& srcPt = m_data->m_cachedContactPoints[i];
b3ContactPointData& destPt = contactData[serverCmd.m_sendContactPointArgs.m_numContactPointsCopied];
destPt = srcPt;
serverCmd.m_sendContactPointArgs.m_numContactPointsCopied++;
}
serverCmd.m_sendContactPointArgs.m_startingContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex;
serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints = numContactPoints - clientCmd.m_requestContactPointArguments.m_startingContactPointIndex - serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_numDataStreamBytes = totalBytesPerContact * serverCmd.m_sendContactPointArgs.m_numContactPointsCopied;
serverCmd.m_type = CMD_CONTACT_POINT_INFORMATION_COMPLETED; //CMD_CONTACT_POINT_INFORMATION_FAILED,
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_BODY_INFO");
const SdfRequestInfoArgs& sdfInfoArgs = clientCmd.m_sdfRequestInfoArgs;
//stream info into memory
int streamSizeInBytes = createBodyInfoStream(sdfInfoArgs.m_bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
serverStatusOut.m_type = CMD_BODY_INFO_COMPLETED;
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = sdfInfoArgs.m_bodyUniqueId;
serverStatusOut.m_dataStreamArguments.m_bodyName[0] = 0;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(sdfInfoArgs.m_bodyUniqueId);
if (bodyHandle)
{
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName,bodyHandle->m_bodyName.c_str());
}
serverStatusOut.m_numDataStreamBytes = streamSizeInBytes;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadSDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_LOAD_SDF");
const SdfArgs& sdfArgs = clientCmd.m_sdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SDF:%s", sdfArgs.m_sdfFileName);
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (sdfArgs.m_useMultiBody!=0) : true;
int flags = CUF_USE_SDF; //CUF_USE_URDF_INERTIA
btScalar globalScaling = 1.f;
if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING)
{
globalScaling = sdfArgs.m_globalScaling;
}
bool completedOk = loadSdf(sdfArgs.m_sdfFileName,bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, globalScaling);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
//serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i=0;i<maxBodies;i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_SDF_LOADING_COMPLETED;
} else
{
serverStatusOut.m_type = CMD_SDF_LOADING_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateMultiBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_FAILED;
if (clientCmd.m_createMultiBodyArgs.m_baseLinkIndex>=0)
{
m_data->m_sdfRecentLoadedBodies.clear();
ProgrammaticUrdfInterface u2b(clientCmd.m_createMultiBodyArgs, m_data);
bool useMultiBody = true;
if (clientCmd.m_updateFlags & MULT_BODY_USE_MAXIMAL_COORDINATES)
{
useMultiBody = false;
}
int flags = 0;
bool ok = processImportedObjects("memory", bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b);
if (ok)
{
int bodyUniqueId = -1;
if (m_data->m_sdfRecentLoadedBodies.size()==1)
{
bodyUniqueId = m_data->m_sdfRecentLoadedBodies[0];
}
m_data->m_sdfRecentLoadedBodies.clear();
if (bodyUniqueId>=0)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_COMPLETED;
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size()-1)->m_memSerializer->getCurrentBufferSize();
}
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
}
}
//ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags);
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadURDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
serverStatusOut.m_type = CMD_URDF_LOADING_FAILED;
BT_PROFILE("CMD_LOAD_URDF");
const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName);
}
btAssert((clientCmd.m_updateFlags&URDF_ARGS_FILE_NAME) !=0);
btAssert(urdfArgs.m_urdfFileName);
btVector3 initialPos(0,0,0);
btQuaternion initialOrn(0,0,0,1);
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_POSITION)
{
initialPos[0] = urdfArgs.m_initialPosition[0];
initialPos[1] = urdfArgs.m_initialPosition[1];
initialPos[2] = urdfArgs.m_initialPosition[2];
}
int urdfFlags = 0;
if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS)
{
urdfFlags = urdfArgs.m_urdfFlags;
}
if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_ORIENTATION)
{
initialOrn[0] = urdfArgs.m_initialOrientation[0];
initialOrn[1] = urdfArgs.m_initialOrientation[1];
initialOrn[2] = urdfArgs.m_initialOrientation[2];
initialOrn[3] = urdfArgs.m_initialOrientation[3];
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (urdfArgs.m_useMultiBody!=0) : true;
bool useFixedBase = (clientCmd.m_updateFlags & URDF_ARGS_USE_FIXED_BASE) ? (urdfArgs.m_useFixedBase!=0): false;
int bodyUniqueId;
btScalar globalScaling = 1.f;
if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING)
{
globalScaling = urdfArgs.m_globalScaling;
}
//load the actual URDF and send a report: completed or failed
bool completedOk = loadUrdf(urdfArgs.m_urdfFileName,
initialPos,initialOrn,
useMultiBody, useFixedBase,&bodyUniqueId, bufferServerToClient, bufferSizeInBytes, urdfFlags, globalScaling);
if (completedOk && bodyUniqueId>=0)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_type = CMD_URDF_LOADING_COMPLETED;
int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes);
if (m_data->m_urdfLinkNameMapper.size())
{
serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size()-1)->m_memSerializer->getCurrentBufferSize();
}
serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str());
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadSoftBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_FAILED;
bool hasStatus = true;
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
double scale = 0.1;
double mass = 0.1;
double collisionMargin = 0.02;
const LoadSoftBodyArgs& loadSoftBodyArgs = clientCmd.m_loadSoftBodyArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_SOFT_BODY:%s", loadSoftBodyArgs.m_fileName);
}
btAssert((clientCmd.m_updateFlags & LOAD_SOFT_BODY_FILE_NAME) !=0);
btAssert(loadSoftBodyArgs.m_fileName);
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_SCALE)
{
scale = clientCmd.m_loadSoftBodyArguments.m_scale;
}
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_MASS)
{
mass = clientCmd.m_loadSoftBodyArguments.m_mass;
}
if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_COLLISION_MARGIN)
{
collisionMargin = clientCmd.m_loadSoftBodyArguments.m_collisionMargin;
}
{
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
if (b3ResourcePath::findResourcePath(loadSoftBodyArgs.m_fileName, relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
const std::string& error_message_prefix="";
std::string out_found_filename;
int out_type;
bool foundFile = findExistingMeshFile(pathPrefix, relativeFileName,error_message_prefix,&out_found_filename, &out_type);
std::vector<tinyobj::shape_t> shapes;
std::string err = tinyobj::LoadObj(shapes,out_found_filename.c_str());
if (shapes.size()>0)
{
const tinyobj::shape_t& shape = shapes[0];
btAlignedObjectArray<btScalar> vertices;
btAlignedObjectArray<int> indices;
for (int i=0;i<shape.mesh.positions.size();i++)
{
vertices.push_back(shape.mesh.positions[i]);
}
for (int i=0;i<shape.mesh.indices.size();i++)
{
indices.push_back(shape.mesh.indices[i]);
}
int numTris = indices.size()/3;
if (numTris>0)
{
btSoftBody* psb=btSoftBodyHelpers::CreateFromTriMesh(m_data->m_dynamicsWorld->getWorldInfo(),&vertices[0],&indices[0],numTris);
btSoftBody::Material* pm=psb->appendMaterial();
pm->m_kLST = 0.5;
pm->m_flags -= btSoftBody::fMaterial::DebugDraw;
psb->generateBendingConstraints(2,pm);
psb->m_cfg.piterations = 20;
psb->m_cfg.kDF = 0.5;
psb->randomizeConstraints();
psb->rotate(btQuaternion(0.70711,0,0,0.70711));
psb->translate(btVector3(-0.05,0,1.0));
psb->scale(btVector3(scale,scale,scale));
psb->setTotalMass(mass,true);
psb->getCollisionShape()->setMargin(collisionMargin);
psb->getCollisionShape()->setUserPointer(psb);
m_data->m_dynamicsWorld->addSoftBody(psb);
m_data->m_guiHelper->createCollisionShapeGraphicsObject(psb->getCollisionShape());
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
bodyHandle->m_softBody = psb;
serverStatusOut.m_loadSoftBodyResultArguments.m_objectUniqueId = bodyUniqueId;
serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_COMPLETED;
}
}
}
#endif
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateSensorCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CREATE_SENSOR");
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_CREATE_SENSOR");
}
int bodyUniqueId = clientCmd.m_createSensorArguments.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
btAssert(mb);
for (int i=0;i<clientCmd.m_createSensorArguments.m_numJointSensorChanges;i++)
{
int jointIndex = clientCmd.m_createSensorArguments.m_jointIndex[i];
if (clientCmd.m_createSensorArguments.m_enableJointForceSensor[i])
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
b3Warning("CMD_CREATE_SENSOR: sensor for joint [%d] already enabled", jointIndex);
} else
{
btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
fb->m_reactionForces.setZero();
mb->getLink(jointIndex).m_jointFeedback = fb;
m_data->m_multiBodyJointFeedbacks.push_back(fb);
};
} else
{
if (mb->getLink(jointIndex).m_jointFeedback)
{
m_data->m_multiBodyJointFeedbacks.remove(mb->getLink(jointIndex).m_jointFeedback);
delete mb->getLink(jointIndex).m_jointFeedback;
mb->getLink(jointIndex).m_jointFeedback=0;
} else
{
b3Warning("CMD_CREATE_SENSOR: cannot perform sensor removal request, no sensor on joint [%d]", jointIndex);
};
}
}
} else
{
b3Warning("No btMultiBody in the world. btRigidBody/btTypedConstraint sensor not hooked up yet");
}
#if 0
//todo(erwincoumans) here is some sample code to hook up a force/torque sensor for btTypedConstraint/btRigidBody
/*
for (int i=0;i<m_data->m_dynamicsWorld->getNumConstraints();i++)
{
btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i);
btJointFeedback* fb = new btJointFeedback();
m_data->m_jointFeedbacks.push_back(fb);
c->setJointFeedback(fb);
}
*/
#endif
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processProfileTimingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
B3_PROFILE("custom");//clientCmd.m_profile.m_name);
{
B3_PROFILE("event");//clientCmd.m_profile.m_name);
char** eventNamePtr = m_data->m_profileEvents[clientCmd.m_profile.m_name];
char* eventName = 0;
if (eventNamePtr)
{
B3_PROFILE("reuse");
eventName = *eventNamePtr;
} else
{
B3_PROFILE("alloc");
int len = strlen(clientCmd.m_profile.m_name);
eventName = new char[len+1];
strcpy(eventName,clientCmd.m_profile.m_name);
eventName[len] = 0;
m_data->m_profileEvents.insert(eventName,eventName);
}
{
{
B3_PROFILE("with");//clientCmd.m_profile.m_name);
{
B3_PROFILE("some");//clientCmd.m_profile.m_name);
{
B3_PROFILE("deep");//clientCmd.m_profile.m_name);
{
B3_PROFILE("level");//clientCmd.m_profile.m_name);
{
B3_PROFILE(eventName);
b3Clock::usleep(clientCmd.m_profile.m_durationInMicroSeconds);
}
}
}
}
}
}
}
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestCollisionInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_FAILED;
hasStatus=true;
int bodyUniqueId = clientCmd.m_requestCollisionInfoArgs.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
2016-11-10 05:01:04 +00:00
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED;
serverCmd.m_sendCollisionInfoArgs.m_numLinks = body->m_multiBody->getNumLinks();
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = -1;
if (body->m_multiBody->getBaseCollider())
{
btTransform tr;
tr.setOrigin(mb->getBasePos());
tr.setRotation(mb->getWorldToBaseRot().inverse());
btVector3 aabbMin,aabbMax;
body->m_multiBody->getBaseCollider()->getCollisionShape()->getAabb(tr,aabbMin,aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2];
}
for (int l=0;l<mb->getNumLinks();l++)
{
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+0] = 0;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+1] = 0;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+2] = 0;
2016-11-10 05:01:04 +00:00
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+0] = -1;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+1] = -1;
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+2] = -1;
2016-11-10 05:01:04 +00:00
if (body->m_multiBody->getLink(l).m_collider)
{
btVector3 aabbMin,aabbMax;
body->m_multiBody->getLinkCollider(l)->getCollisionShape()->getAabb(mb->getLink(l).m_cachedWorldTransform,aabbMin,aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3*l+2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3*l+2] = aabbMax[2];
}
}
}
else
{
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED;
serverCmd.m_sendCollisionInfoArgs.m_numLinks = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = 0;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = -1;
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = -1;
if (rb->getCollisionShape())
{
btTransform tr = rb->getWorldTransform();
btVector3 aabbMin,aabbMax;
rb->getCollisionShape()->getAabb(tr,aabbMin,aabbMax);
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1];
serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2];
}
}
}
return hasStatus;
}
2016-11-10 05:01:04 +00:00
bool PhysicsServerCommandProcessor::processForwardDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_STEP_FORWARD_SIMULATION");
2016-11-10 05:01:04 +00:00
if (m_data->m_verboseOutput)
{
b3Printf("Step simulation request");
b3Printf("CMD_STEP_FORWARD_SIMULATION clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
///todo(erwincoumans) move this damping inside Bullet
for (int i=0;i<m_data->m_dynamicsWorld->getNumMultibodies();i++)
{
btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i);
for (int l=0;l<mb->getNumLinks();l++)
{
for (int d=0;d<mb->getLink(l).m_dofCount;d++)
{
double damping_coefficient = mb->getLink(l).m_jointDamping;
double damping = -damping_coefficient*mb->getJointVelMultiDof(l)[d];
mb->addJointTorqueMultiDof(l, d, damping);
}
}
}
2016-11-10 05:01:04 +00:00
btScalar deltaTimeScaled = m_data->m_physicsDeltaTime*simTimeScalingFactor;
2016-11-10 05:01:04 +00:00
if (m_data->m_numSimulationSubSteps > 0)
{
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps);
}
else
{
m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, 0);
}
2016-11-10 05:01:04 +00:00
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
return hasStatus;
}
2016-11-10 05:01:04 +00:00
bool PhysicsServerCommandProcessor::processRequestInternalDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
2016-11-10 05:01:04 +00:00
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_INTERNAL_DATA");
2016-11-10 05:01:04 +00:00
//todo: also check version etc?
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_FAILED;
int sz = btDefaultSerializer::getMemoryDnaSizeInBytes();
const char* memDna = btDefaultSerializer::getMemoryDna();
if (sz < bufferSizeInBytes)
{
for (int i = 0; i < sz; i++)
{
bufferServerToClient[i] = memDna[i];
}
serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_COMPLETED;
serverCmd.m_numDataStreamBytes = sz;
}
return hasStatus;
}
2016-11-10 05:01:04 +00:00
bool PhysicsServerCommandProcessor::processChangeDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CHANGE_DYNAMICS_INFO");
int bodyUniqueId = clientCmd.m_changeDynamicsInfoArgs.m_bodyUniqueId;
int linkIndex = clientCmd.m_changeDynamicsInfoArgs.m_linkIndex;
double mass = clientCmd.m_changeDynamicsInfoArgs.m_mass;
double lateralFriction = clientCmd.m_changeDynamicsInfoArgs.m_lateralFriction;
double spinningFriction = clientCmd.m_changeDynamicsInfoArgs.m_spinningFriction;
double rollingFriction = clientCmd.m_changeDynamicsInfoArgs.m_rollingFriction;
double restitution = clientCmd.m_changeDynamicsInfoArgs.m_restitution;
btVector3 newLocalInertiaDiagonal(clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[0],
clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[1],
clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[2]);
btAssert(bodyUniqueId >= 0);
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING)
{
mb->setLinearDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING)
{
mb->setAngularDamping(clientCmd.m_changeDynamicsInfoArgs.m_angularDamping);
}
if (linkIndex == -1)
{
if (mb->getBaseCollider())
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
mb->getBaseCollider()->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
mb->getBaseCollider()->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
mb->getBaseCollider()->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
mb->getBaseCollider()->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
mb->getBaseCollider()->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
} else
{
mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
mb->setBaseMass(mass);
if (mb->getBaseCollider() && mb->getBaseCollider()->getCollisionShape())
{
btVector3 localInertia;
mb->getBaseCollider()->getCollisionShape()->calculateLocalInertia(mass,localInertia);
mb->setBaseInertia(localInertia);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
mb->setBaseInertia(newLocalInertiaDiagonal);
}
}
else
{
if (linkIndex >= 0 && linkIndex < mb->getNumLinks())
{
if (mb->getLinkCollider(linkIndex))
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
mb->getLinkCollider(linkIndex)->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
mb->getLinkCollider(linkIndex)->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
mb->getLinkCollider(linkIndex)->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
} else
{
mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
mb->getLinkCollider(linkIndex)->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
mb->getLinkCollider(linkIndex)->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
mb->getLink(linkIndex).m_mass = mass;
if (mb->getLinkCollider(linkIndex) && mb->getLinkCollider(linkIndex)->getCollisionShape())
{
btVector3 localInertia;
mb->getLinkCollider(linkIndex)->getCollisionShape()->calculateLocalInertia(mass,localInertia);
mb->getLink(linkIndex).m_inertiaLocal = localInertia;
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
mb->getLink(linkIndex).m_inertiaLocal = newLocalInertiaDiagonal;
}
}
}
} else
{
if (body && body->m_rigidBody)
{
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING)
{
btScalar angDamping = body->m_rigidBody->getAngularDamping();
body->m_rigidBody->setDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping,angDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING)
{
btScalar linDamping = body->m_rigidBody->getLinearDamping();
body->m_rigidBody->setDamping(linDamping, clientCmd.m_changeDynamicsInfoArgs.m_angularDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING)
{
body->m_rigidBody->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION)
{
body->m_rigidBody->setRestitution(restitution);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION)
{
body->m_rigidBody->setFriction(lateralFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION)
{
body->m_rigidBody->setSpinningFriction(spinningFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION)
{
body->m_rigidBody->setRollingFriction(rollingFriction);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR)
{
if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor)
{
body->m_rigidBody->setCollisionFlags(body->m_rigidBody->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
} else
{
body->m_rigidBody->setCollisionFlags(body->m_rigidBody->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS)
{
btVector3 localInertia;
if (body->m_rigidBody->getCollisionShape())
{
body->m_rigidBody->getCollisionShape()->calculateLocalInertia(mass,localInertia);
}
body->m_rigidBody->setMassProps(mass,localInertia);
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL)
{
btScalar orgMass = body->m_rigidBody->getInvMass();
if (orgMass>0)
{
body->m_rigidBody->setMassProps(mass,newLocalInertiaDiagonal);
}
}
if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS)
{
body->m_rigidBody->setCcdSweptSphereRadius(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius);
//for a given sphere radius, use a motion threshold of half the radius, before the ccd algorithm is enabled
body->m_rigidBody->setCcdMotionThreshold(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius/2.);
}
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSetAdditionalSearchPathCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SET_ADDITIONAL_SEARCH_PATH");
b3ResourcePath::setAdditionalSearchPath(clientCmd.m_searchPathArgs.m_path);
serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processGetDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED;
int bodyUniqueId = clientCmd.m_getDynamicsInfoArgs.m_bodyUniqueId;
int linkIndex = clientCmd.m_getDynamicsInfoArgs.m_linkIndex;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (body && body->m_multiBody)
{
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED;
btMultiBody* mb = body->m_multiBody;
if (linkIndex == -1)
{
serverCmd.m_dynamicsInfo.m_mass = mb->getBaseMass();
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getBaseInertia()[0];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getBaseInertia()[1];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getBaseInertia()[2];
serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getBaseCollider()->getFriction();
serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3];
serverCmd.m_dynamicsInfo.m_restitution = mb->getBaseCollider()->getRestitution();
serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getBaseCollider()->getRollingFriction();
serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getBaseCollider()->getSpinningFriction();
if (mb->getBaseCollider()->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING)
{
serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getBaseCollider()->getContactStiffness();
serverCmd.m_dynamicsInfo.m_contactDamping = mb->getBaseCollider()->getContactDamping();
}
else
{
serverCmd.m_dynamicsInfo.m_contactStiffness = -1;
serverCmd.m_dynamicsInfo.m_contactDamping = -1;
}
}
else
{
serverCmd.m_dynamicsInfo.m_mass = mb->getLinkMass(linkIndex);
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getLinkInertia(linkIndex)[0];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getLinkInertia(linkIndex)[1];
serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getLinkInertia(linkIndex)[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[0];
serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[1];
serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[2];
serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[3];
if (mb->getLinkCollider(linkIndex))
{
serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getLinkCollider(linkIndex)->getFriction();
serverCmd.m_dynamicsInfo.m_restitution = mb->getLinkCollider(linkIndex)->getRestitution();
serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getLinkCollider(linkIndex)->getRollingFriction();
serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getLinkCollider(linkIndex)->getSpinningFriction();
if (mb->getLinkCollider(linkIndex)->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING)
{
serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getLinkCollider(linkIndex)->getContactStiffness();
serverCmd.m_dynamicsInfo.m_contactDamping = mb->getLinkCollider(linkIndex)->getContactDamping();
}
else
{
serverCmd.m_dynamicsInfo.m_contactStiffness = -1;
serverCmd.m_dynamicsInfo.m_contactDamping = -1;
}
}
else
{
b3Warning("The dynamic info requested is not available");
serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED;
}
}
hasStatus = true;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestPhysicsSimulationParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED;
serverCmd.m_simulationParameterResultArgs.m_collisionFilterMode = m_data->m_broadphaseCollisionFilterCallback->m_filterMode;
serverCmd.m_simulationParameterResultArgs.m_contactBreakingThreshold = gContactBreakingThreshold;
serverCmd.m_simulationParameterResultArgs.m_defaultContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp2;
serverCmd.m_simulationParameterResultArgs.m_defaultNonContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp;
serverCmd.m_simulationParameterResultArgs.m_deltaTime = m_data->m_physicsDeltaTime;
serverCmd.m_simulationParameterResultArgs.m_enableFileCaching = b3IsFileCachingEnabled();
serverCmd.m_simulationParameterResultArgs.m_frictionERP = m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP;
btVector3 grav = m_data->m_dynamicsWorld->getGravity();
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[0] = grav[0];
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[1] = grav[1];
serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[2] = grav[2];
serverCmd.m_simulationParameterResultArgs.m_internalSimFlags = gInternalSimFlags;
serverCmd.m_simulationParameterResultArgs.m_numSimulationSubSteps = m_data->m_numSimulationSubSteps;
serverCmd.m_simulationParameterResultArgs.m_numSolverIterations = m_data->m_dynamicsWorld->getSolverInfo().m_numIterations;
serverCmd.m_simulationParameterResultArgs.m_restitutionVelocityThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold;
serverCmd.m_simulationParameterResultArgs.m_splitImpulsePenetrationThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold;
serverCmd.m_simulationParameterResultArgs.m_useRealTimeSimulation = m_data->m_useRealTimeSimulation;
serverCmd.m_simulationParameterResultArgs.m_useSplitImpulse = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS");
if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_CONE_FRICTION)
{
if (clientCmd.m_physSimParamArgs.m_enableConeFriction)
{
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode &=~SOLVER_DISABLE_IMPLICIT_CONE_FRICTION;
} else
{
m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_DISABLE_IMPLICIT_CONE_FRICTION;
}
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS)
{
m_data->m_dynamicsWorld->getDispatchInfo().m_deterministicOverlappingPairs = (clientCmd.m_physSimParamArgs.m_deterministicOverlappingPairs!=0);
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION)
{
m_data->m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration = clientCmd.m_physSimParamArgs.m_allowedCcdPenetration;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DELTA_TIME)
{
m_data->m_physicsDeltaTime = clientCmd.m_physSimParamArgs.m_deltaTime;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_REAL_TIME_SIMULATION)
{
m_data->m_useRealTimeSimulation = (clientCmd.m_physSimParamArgs.m_useRealTimeSimulation!=0);
}
//see
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS)
{
//these flags are for internal/temporary/easter-egg/experimental demo purposes, use at own risk
gInternalSimFlags = clientCmd.m_physSimParamArgs.m_internalSimFlags;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_GRAVITY)
{
btVector3 grav(clientCmd.m_physSimParamArgs.m_gravityAcceleration[0],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[1],
clientCmd.m_physSimParamArgs.m_gravityAcceleration[2]);
this->m_data->m_dynamicsWorld->setGravity(grav);
2018-02-21 03:44:02 +00:00
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
m_data->m_dynamicsWorld->getWorldInfo().m_gravity=grav;
2018-02-21 03:44:02 +00:00
#endif
if (m_data->m_verboseOutput)
{
b3Printf("Updated Gravity: %f,%f,%f",grav[0],grav[1],grav[2]);
}
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS)
{
m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = clientCmd.m_physSimParamArgs.m_numSolverIterations;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD)
{
gContactBreakingThreshold = clientCmd.m_physSimParamArgs.m_contactBreakingThreshold;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_COLLISION_FILTER_MODE)
{
m_data->m_broadphaseCollisionFilterCallback->m_filterMode = clientCmd.m_physSimParamArgs.m_collisionFilterMode;
}
if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse = clientCmd.m_physSimParamArgs.m_useSplitImpulse;
}
if (clientCmd.m_updateFlags &SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold = clientCmd.m_physSimParamArgs.m_splitImpulsePenetrationThreshold;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS)
{
m_data->m_numSimulationSubSteps = clientCmd.m_physSimParamArgs.m_numSimulationSubSteps;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = clientCmd.m_physSimParamArgs.m_defaultContactERP;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_erp = clientCmd.m_physSimParamArgs.m_defaultNonContactERP;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP)
{
m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = clientCmd.m_physSimParamArgs.m_frictionERP;
}
if (clientCmd.m_updateFlags&SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD)
{
m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold = clientCmd.m_physSimParamArgs.m_restitutionVelocityThreshold;
}
if (clientCmd.m_updateFlags&SIM_PARAM_ENABLE_FILE_CACHING)
{
b3EnableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching);
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processInitPoseCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_INIT_POSE");
if (m_data->m_verboseOutput)
{
b3Printf("Server Init Pose not implemented yet");
}
int bodyUniqueId = clientCmd.m_initPoseArgs.m_bodyUniqueId;
InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId);
btVector3 baseLinVel(0, 0, 0);
btVector3 baseAngVel(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
baseLinVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[0],
clientCmd.m_initPoseArgs.m_initialStateQdot[1],
clientCmd.m_initPoseArgs.m_initialStateQdot[2]);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
baseAngVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[3],
clientCmd.m_initPoseArgs.m_initialStateQdot[4],
clientCmd.m_initPoseArgs.m_initialStateQdot[5]);
}
btVector3 basePos(0, 0, 0);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
basePos = btVector3(
clientCmd.m_initPoseArgs.m_initialStateQ[0],
clientCmd.m_initPoseArgs.m_initialStateQ[1],
clientCmd.m_initPoseArgs.m_initialStateQ[2]);
}
btQuaternion baseOrn(0, 0, 0, 1);
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
baseOrn.setValue(clientCmd.m_initPoseArgs.m_initialStateQ[3],
clientCmd.m_initPoseArgs.m_initialStateQ[4],
clientCmd.m_initPoseArgs.m_initialStateQ[5],
clientCmd.m_initPoseArgs.m_initialStateQ[6]);
}
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
mb->setBaseVel(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
mb->setBaseOmega(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
btVector3 zero(0,0,0);
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[0] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[1] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[2]);
mb->setBaseVel(baseLinVel);
mb->setBasePos(basePos);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[3] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[4] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[5] &&
clientCmd.m_initPoseArgs.m_hasInitialStateQ[6]);
mb->setBaseOmega(baseAngVel);
btQuaternion invOrn(baseOrn);
mb->setWorldToBaseRot(invOrn.inverse());
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_JOINT_STATE)
{
int uDofIndex = 6;
int posVarCountIndex = 7;
for (int i=0;i<mb->getNumLinks();i++)
{
if ( (clientCmd.m_initPoseArgs.m_hasInitialStateQ[posVarCountIndex]) && (mb->getLink(i).m_dofCount==1))
{
mb->setJointPos(i,clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex]);
mb->setJointVel(i,0);//backwards compatibility
}
if ((clientCmd.m_initPoseArgs.m_hasInitialStateQdot[uDofIndex]) && (mb->getLink(i).m_dofCount==1))
{
btScalar vel = clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex];
mb->setJointVel(i,vel);
}
posVarCountIndex += mb->getLink(i).m_posVarCount;
uDofIndex += mb->getLink(i).m_dofCount;
}
}
btAlignedObjectArray<btQuaternion> scratch_q;
btAlignedObjectArray<btVector3> scratch_m;
mb->forwardKinematics(scratch_q,scratch_m);
int nLinks = mb->getNumLinks();
scratch_q.resize(nLinks+1);
scratch_m.resize(nLinks+1);
mb->updateCollisionObjectWorldTransforms(scratch_q,scratch_m);
}
if (body && body->m_rigidBody)
{
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY)
{
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY)
{
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION)
{
body->m_rigidBody->getWorldTransform().setOrigin(basePos);
body->m_rigidBody->setLinearVelocity(baseLinVel);
}
if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION)
{
body->m_rigidBody->getWorldTransform().setRotation(baseOrn);
body->m_rigidBody->setAngularVelocity(baseAngVel);
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processResetSimulationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_RESET_SIMULATION");
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL,0);
resetSimulation();
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL,1);
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RESET_SIMULATION_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateRigidBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_RIGID_BODY_CREATION_COMPLETED;
BT_PROFILE("CMD_CREATE_RIGID_BODY");
btVector3 halfExtents(1,1,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_HALF_EXTENTS)
{
halfExtents = btVector3(
clientCmd.m_createBoxShapeArguments.m_halfExtentsX,
clientCmd.m_createBoxShapeArguments.m_halfExtentsY,
clientCmd.m_createBoxShapeArguments.m_halfExtentsZ);
}
btTransform startTrans;
startTrans.setIdentity();
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_POSITION)
{
startTrans.setOrigin(btVector3(
clientCmd.m_createBoxShapeArguments.m_initialPosition[0],
clientCmd.m_createBoxShapeArguments.m_initialPosition[1],
clientCmd.m_createBoxShapeArguments.m_initialPosition[2]));
}
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_ORIENTATION)
{
startTrans.setRotation(btQuaternion(
clientCmd.m_createBoxShapeArguments.m_initialOrientation[0],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[1],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[2],
clientCmd.m_createBoxShapeArguments.m_initialOrientation[3]));
}
btScalar mass = 0.f;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_MASS)
{
mass = clientCmd.m_createBoxShapeArguments.m_mass;
}
int shapeType = COLLISION_SHAPE_TYPE_BOX;
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE)
{
shapeType = clientCmd.m_createBoxShapeArguments.m_collisionShapeType;
}
btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
m_data->m_worldImporters.push_back(worldImporter);
btCollisionShape* shape = 0;
switch (shapeType)
{
case COLLISION_SHAPE_TYPE_CYLINDER_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCylinderShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCylinderShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CYLINDER_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCylinderShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_X:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[0];
shape = worldImporter->createCapsuleShapeX(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Y:
{
btScalar radius = halfExtents[0];
btScalar height = halfExtents[1];
shape = worldImporter->createCapsuleShapeY(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_CAPSULE_Z:
{
btScalar radius = halfExtents[1];
btScalar height = halfExtents[2];
shape = worldImporter->createCapsuleShapeZ(radius,height);
break;
}
case COLLISION_SHAPE_TYPE_SPHERE:
{
btScalar radius = halfExtents[0];
shape = worldImporter->createSphereShape(radius);
break;
}
case COLLISION_SHAPE_TYPE_BOX:
default:
{
shape = worldImporter->createBoxShape(halfExtents);
}
}
bool isDynamic = (mass>0);
btRigidBody* rb = worldImporter->createRigidBody(isDynamic,mass,startTrans,shape,0);
//m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
btVector4 colorRGBA(1,0,0,1);
if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLOR)
{
colorRGBA[0] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[0];
colorRGBA[1] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[1];
colorRGBA[2] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[2];
colorRGBA[3] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[3];
}
m_data->m_guiHelper->createCollisionShapeGraphicsObject(rb->getCollisionShape());
m_data->m_guiHelper->createCollisionObjectGraphicsObject(rb,colorRGBA);
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
serverCmd.m_rigidBodyCreateArgs.m_bodyUniqueId = bodyUniqueId;
rb->setUserIndex2(bodyUniqueId);
bodyHandle->m_rootLocalInertialFrame.setIdentity();
bodyHandle->m_rigidBody = rb;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processPickBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_PICK_BODY");
pickBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processMovePickedBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_MOVE_PICKED_BODY");
movePickedBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0],
clientCmd.m_pickBodyArguments.m_rayFromWorld[1],
clientCmd.m_pickBodyArguments.m_rayFromWorld[2]),
btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0],
clientCmd.m_pickBodyArguments.m_rayToWorld[1],
clientCmd.m_pickBodyArguments.m_rayToWorld[2]));
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRemovePickingConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REMOVE_PICKING_CONSTRAINT_BODY");
removePickingConstraint();
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestAabbOverlapCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_AABB_OVERLAP");
SharedMemoryStatus& serverCmd = serverStatusOut;
int curObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
if (0== curObjectIndex)
{
//clientCmd.m_requestContactPointArguments.m_aabbQueryMin
btVector3 aabbMin, aabbMax;
aabbMin.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[2]);
aabbMax.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[0],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[1],
clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[2]);
m_data->m_cachedOverlappingObjects.clear();
m_data->m_dynamicsWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, m_data->m_cachedOverlappingObjects);
}
int totalBytesPerObject = sizeof(b3OverlappingObject);
int overlapCapacity = bufferSizeInBytes / totalBytesPerObject - 1;
int numOverlap = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
int remainingObjects = numOverlap - curObjectIndex;
int curNumObjects = btMin(overlapCapacity, remainingObjects);
if (numOverlap < overlapCapacity)
{
b3OverlappingObject* overlapStorage = (b3OverlappingObject*)bufferServerToClient;
for (int i = 0; i < m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); i++)
{
overlapStorage[i].m_objectUniqueId = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds[i];
overlapStorage[i].m_linkIndex = m_data->m_cachedOverlappingObjects.m_links[i];
}
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_COMPLETED;
//int m_startingOverlappingObjectIndex;
//int m_numOverlappingObjectsCopied;
//int m_numRemainingOverlappingObjects;
serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex;
serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size();
serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects = remainingObjects - curNumObjects;
}
else
{
serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestOpenGLVisualizeCameraCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_OPENGL_VISUALIZER_CAMERA");
SharedMemoryStatus& serverCmd = serverStatusOut;
bool result = this->m_data->m_guiHelper->getCameraInfo(
&serverCmd.m_visualizerCameraResultArgs.m_width,
&serverCmd.m_visualizerCameraResultArgs.m_height,
serverCmd.m_visualizerCameraResultArgs.m_viewMatrix,
serverCmd.m_visualizerCameraResultArgs.m_projectionMatrix,
serverCmd.m_visualizerCameraResultArgs.m_camUp,
serverCmd.m_visualizerCameraResultArgs.m_camForward,
serverCmd.m_visualizerCameraResultArgs.m_horizontal,
serverCmd.m_visualizerCameraResultArgs.m_vertical,
&serverCmd.m_visualizerCameraResultArgs.m_yaw,
&serverCmd.m_visualizerCameraResultArgs.m_pitch,
&serverCmd.m_visualizerCameraResultArgs.m_dist,
serverCmd.m_visualizerCameraResultArgs.m_target);
serverCmd.m_type = result ? CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED: CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processConfigureOpenGLVisualizerCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CONFIGURE_OPENGL_VISUALIZER");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type =CMD_CLIENT_COMMAND_COMPLETED;
hasStatus = true;
if (clientCmd.m_updateFlags&COV_SET_FLAGS)
{
if (clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag == COV_ENABLE_TINY_RENDERER)
{
m_data->m_enableTinyRenderer = clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled!=0;
}
m_data->m_guiHelper->setVisualizerFlag(clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag,
clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled);
}
if (clientCmd.m_updateFlags&COV_SET_CAMERA_VIEW_MATRIX)
{
m_data->m_guiHelper->resetCamera( clientCmd.m_configureOpenGLVisualizerArguments.m_cameraDistance,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraYaw,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraPitch,
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1],
clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2]);
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processInverseDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_INVERSE_DYNAMICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int num_dofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx nu(num_dofs+baseDofs), qdot(num_dofs + baseDofs), q(num_dofs + baseDofs), joint_force(num_dofs + baseDofs);
for (int i = 0; i < num_dofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i];
nu[i+baseDofs] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs;
for (int i = 0; i < num_dofs; i++)
{
serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i+baseDofs];
}
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateJacobianCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_JACOBIAN");
SharedMemoryStatus& serverCmd = serverStatusOut;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateJacobianArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
btInverseDynamics::vecx q(numDofs + baseDofs);
btInverseDynamics::vecx qdot(numDofs + baseDofs);
btInverseDynamics::vecx nu(numDofs + baseDofs);
btInverseDynamics::vecx joint_force(numDofs + baseDofs);
for (int i = 0; i < numDofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointPositionsQ[i];
qdot[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointVelocitiesQdot[i];
nu[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointAccelerations[i];
}
// Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
serverCmd.m_jacobianResultArgs.m_dofCount = numDofs + baseDofs;
// Set jacobian value
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs);
btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_t);
tree->getBodyJacobianRot(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_r);
// Update the translational jacobian based on the desired local point.
// v_pt = v_frame + w x pt
// v_pt = J_t * qd + (J_r * qd) x pt
// v_pt = J_t * qd - pt x (J_r * qd)
// v_pt = J_t * qd - pt_x * J_r * qd)
// v_pt = (J_t - pt_x * J_r) * qd
// J_t_new = J_t - pt_x * J_r
btInverseDynamics::vec3 localPosition;
for (int i = 0; i < 3; ++i) {
localPosition(i) = clientCmd.m_calculateJacobianArguments.m_localPosition[i];
}
// Only calculate if the localPosition is non-zero.
if (btInverseDynamics::maxAbs(localPosition) > 0.0) {
// Write the localPosition into world coordinates.
btInverseDynamics::mat33 world_rotation_body;
tree->getBodyTransform(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &world_rotation_body);
localPosition = world_rotation_body * localPosition;
// Correct the translational jacobian.
btInverseDynamics::mat33 skewCrossProduct;
btInverseDynamics::skew(localPosition, &skewCrossProduct);
btInverseDynamics::mat3x jac_l(3, numDofs + baseDofs);
btInverseDynamics::mul(skewCrossProduct, jac_r, &jac_l);
btInverseDynamics::mat3x jac_t_new(3, numDofs + baseDofs);
btInverseDynamics::sub(jac_t, jac_l, &jac_t_new);
jac_t = jac_t_new;
}
// Fill in the result into the shared memory.
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < (numDofs + baseDofs); ++j)
{
int element = (numDofs + baseDofs) * i + j;
serverCmd.m_jacobianResultArgs.m_linearJacobian[element] = jac_t(i,j);
serverCmd.m_jacobianResultArgs.m_angularJacobian[element] = jac_r(i,j);
}
}
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_COMPLETED;
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateMassMatrixCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_MASS_MATRIX");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateMassMatrixArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
if (tree)
{
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
const int totDofs = numDofs + baseDofs;
btInverseDynamics::vecx q(totDofs);
btInverseDynamics::matxx massMatrix(totDofs, totDofs);
for (int i = 0; i < numDofs; i++)
{
q[i + baseDofs] = clientCmd.m_calculateMassMatrixArguments.m_jointPositionsQ[i];
}
if (-1 != tree->calculateMassMatrix(q, &massMatrix))
{
serverCmd.m_massMatrixResultArgs.m_dofCount = totDofs;
// Fill in the result into the shared memory.
double* sharedBuf = (double*)bufferServerToClient;
int sizeInBytes = totDofs*totDofs*sizeof(double);
if (sizeInBytes < bufferSizeInBytes)
{
for (int i = 0; i < (totDofs); ++i)
{
for (int j = 0; j < (totDofs); ++j)
{
int element = (totDofs) * i + j;
sharedBuf[element] = massMatrix(i,j);
}
}
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_COMPLETED;
}
}
}
}
else
{
serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processApplyExternalForceCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_APPLY_EXTERNAL_FORCE");
if (m_data->m_verboseOutput)
{
b3Printf("CMD_APPLY_EXTERNAL_FORCE clientCmd = %d\n", clientCmd.m_sequenceNumber);
}
for (int i = 0; i < clientCmd.m_externalForceArguments.m_numForcesAndTorques; ++i)
{
InternalBodyData* body = m_data->m_bodyHandles.getHandle(clientCmd.m_externalForceArguments.m_bodyUniqueIds[i]);
bool isLinkFrame = ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_LINK_FRAME) != 0);
if (body && body->m_multiBody)
{
btMultiBody* mb = body->m_multiBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE)!=0)
{
btVector3 tmpForce(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
btVector3 tmpPosition(
clientCmd.m_externalForceArguments.m_positions[i*3+0],
clientCmd.m_externalForceArguments.m_positions[i*3+1],
clientCmd.m_externalForceArguments.m_positions[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 forceWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis()*tmpForce : tmpForce;
btVector3 relPosWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis()*tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin();
mb->addBaseForce(forceWorld);
mb->addBaseTorque(relPosWorld.cross(forceWorld));
//b3Printf("apply base force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2],positionLocal[0],positionLocal[1],positionLocal[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 forceWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis()*tmpForce : tmpForce;
btVector3 relPosWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis()*tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin();
mb->addLinkForce(link, forceWorld);
mb->addLinkTorque(link,relPosWorld.cross(forceWorld));
//b3Printf("apply link force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2], positionLocal[0],positionLocal[1],positionLocal[2]);
}
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE)!=0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i*3+2]);
if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1)
{
btVector3 torqueWorld = isLinkFrame ? torqueLocal : mb->getBaseWorldTransform().getBasis()*torqueLocal;
mb->addBaseTorque(torqueWorld);
//b3Printf("apply base torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
} else
{
int link = clientCmd.m_externalForceArguments.m_linkIds[i];
btVector3 torqueWorld = mb->getLink(link).m_cachedWorldTransform.getBasis()*torqueLocal;
mb->addLinkTorque(link, torqueWorld);
//b3Printf("apply link torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]);
}
}
}
if (body && body->m_rigidBody)
{
btRigidBody* rb = body->m_rigidBody;
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0)
{
btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 positionLocal(
clientCmd.m_externalForceArguments.m_positions[i * 3 + 0],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 1],
clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]);
btVector3 forceWorld = isLinkFrame ? forceLocal : rb->getWorldTransform().getBasis()*forceLocal;
btVector3 relPosWorld = isLinkFrame ? positionLocal : rb->getWorldTransform().getBasis()*positionLocal;
rb->applyForce(forceWorld, relPosWorld);
}
if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0)
{
btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1],
clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]);
btVector3 torqueWorld = isLinkFrame ? torqueLocal : rb->getWorldTransform().getBasis()*torqueLocal;
rb->applyTorque(torqueWorld);
}
}
}
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRemoveBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_REMOVE_BODY_FAILED;
serverCmd.m_removeObjectArgs.m_numBodies = 0;
serverCmd.m_removeObjectArgs.m_numUserConstraints = 0;
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL,0);
for (int i=0;i<clientCmd.m_removeObjectArgs.m_numBodies;i++)
{
int bodyUniqueId = clientCmd.m_removeObjectArgs.m_bodyUniqueIds[i];
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId;
if (m_data->m_pickingMultiBodyPoint2Point && m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()==bodyHandle->m_multiBody)
{
//memory will be deleted in the code that follows
m_data->m_pickingMultiBodyPoint2Point = 0;
}
//also remove user constraints...
for (int i=m_data->m_dynamicsWorld->getNumMultiBodyConstraints()-1;i>=0;i--)
{
btMultiBodyConstraint* mbc = m_data->m_dynamicsWorld->getMultiBodyConstraint(i);
if ((mbc->getMultiBodyA() == bodyHandle->m_multiBody)||(mbc->getMultiBodyB()==bodyHandle->m_multiBody))
{
m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbc);
//also remove user constraint and submit it as removed
for (int c=m_data->m_userConstraints.size()-1;c>=0;c--)
{
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.getAtIndex(c);
int userConstraintKey = m_data->m_userConstraints.getKeyAtIndex(c).getUid1();
if (userConstraintPtr->m_mbConstraint == mbc)
{
m_data->m_userConstraints.remove(userConstraintKey);
serverCmd.m_removeObjectArgs.m_userConstraintUniqueIds[serverCmd.m_removeObjectArgs.m_numUserConstraints++]=userConstraintKey;
}
}
delete mbc;
}
}
if (bodyHandle->m_multiBody->getBaseCollider())
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getBaseCollider()->getBroadphaseHandle()->getUid());
}
m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getBaseCollider());
int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex);
}
for (int link=0;link<bodyHandle->m_multiBody->getNumLinks();link++)
{
if (bodyHandle->m_multiBody->getLink(link).m_collider)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getLink(link).m_collider->getBroadphaseHandle()->getUid());
}
m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getLink(link).m_collider);
int graphicsIndex = bodyHandle->m_multiBody->getLink(link).m_collider->getUserIndex();
m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex);
}
}
int numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects();
m_data->m_dynamicsWorld->removeMultiBody(bodyHandle->m_multiBody);
numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects();
//todo: clear all other remaining data, release memory etc
delete bodyHandle->m_multiBody;
bodyHandle->m_multiBody=0;
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
if (bodyHandle->m_rigidBody)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_rigidBody->getBroadphaseHandle()->getUid());
}
serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId;
if (m_data->m_pickedConstraint && m_data->m_pickedBody==bodyHandle->m_rigidBody)
{
m_data->m_pickedConstraint=0;
m_data->m_pickedBody=0;
}
//todo: clear all other remaining data...
m_data->m_dynamicsWorld->removeRigidBody(bodyHandle->m_rigidBody);
int graphicsInstance = bodyHandle->m_rigidBody->getUserIndex2();
m_data->m_guiHelper->removeGraphicsInstance(graphicsInstance);
delete bodyHandle->m_rigidBody;
bodyHandle->m_rigidBody=0;
serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED;
}
m_data->m_bodyHandles.freeHandle(bodyUniqueId);
}
}
m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL,1);
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCreateUserConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_USER_CONSTRAINT");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_USER_CONSTRAINT_FAILED;
hasStatus = true;
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_STATE)
{
int constraintUid = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(constraintUid);
if (userConstraintPtr)
{
serverCmd.m_userConstraintStateResultArgs.m_numDofs = 0;
for (int i = 0; i < 6; i++)
{
serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = 0;
}
if (userConstraintPtr->m_mbConstraint)
{
serverCmd.m_userConstraintStateResultArgs.m_numDofs = userConstraintPtr->m_mbConstraint->getNumRows();
for (int i = 0; i < userConstraintPtr->m_mbConstraint->getNumRows(); i++)
{
serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = userConstraintPtr->m_mbConstraint->getAppliedImpulse(i) / m_data->m_dynamicsWorld->getSolverInfo().m_timeStep;
}
serverCmd.m_type = CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED;
}
}
};
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_INFO)
{
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
serverCmd.m_userConstraintResultArgs = userConstraintPtr->m_userConstraintData;
serverCmd.m_type = CMD_USER_CONSTRAINT_INFO_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_CONSTRAINT)
{
btScalar defaultMaxForce = 500.0;
InternalBodyData* parentBody = m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex);
if (parentBody && parentBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_parentJointIndex>=-1) && clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_multiBody->getNumLinks())
{
InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex>=0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex):0;
//also create a constraint with just a single multibody/rigid body without child
//if (childBody)
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btMatrix3x3 frameInParent(btQuaternion(clientCmd.m_userConstraintArguments.m_parentFrame[3], clientCmd.m_userConstraintArguments.m_parentFrame[4], clientCmd.m_userConstraintArguments.m_parentFrame[5], clientCmd.m_userConstraintArguments.m_parentFrame[6]));
btMatrix3x3 frameInChild(btQuaternion(clientCmd.m_userConstraintArguments.m_childFrame[3], clientCmd.m_userConstraintArguments.m_childFrame[4], clientCmd.m_userConstraintArguments.m_childFrame[5], clientCmd.m_userConstraintArguments.m_childFrame[6]));
btVector3 jointAxis(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]);
if (clientCmd.m_userConstraintArguments.m_jointType == eGearType)
{
if (childBody && childBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex>=-1) && (clientCmd.m_userConstraintArguments.m_childJointIndex <childBody->m_multiBody->getNumLinks()))
{
btMultiBodyGearConstraint* multibodyGear = new btMultiBodyGearConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild,frameInParent,frameInChild);
multibodyGear->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyGear);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodyGear;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == eFixedType)
{
if (childBody && childBody->m_multiBody)
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex>=-1) && (clientCmd.m_userConstraintArguments.m_childJointIndex <childBody->m_multiBody->getNumLinks()))
{
btMultiBodyFixedConstraint* multibodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild,frameInParent,frameInChild);
multibodyFixed->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodyFixedConstraint* rigidbodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild,frameInParent,frameInChild);
rigidbodyFixed->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodyFixed);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodyFixed;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
}
else if (clientCmd.m_userConstraintArguments.m_jointType == ePrismaticType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodySliderConstraint* multibodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild,frameInParent,frameInChild,jointAxis);
multibodySlider->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = multibodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodySliderConstraint* rigidbodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild,frameInParent,frameInChild,jointAxis);
rigidbodySlider->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(rigidbodySlider);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = rigidbodySlider;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; }
} else if (clientCmd.m_userConstraintArguments.m_jointType == ePoint2PointType)
{
if (childBody && childBody->m_multiBody)
{
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,childBody->m_multiBody,clientCmd.m_userConstraintArguments.m_childJointIndex,pivotInParent,pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
m_data->m_dynamicsWorld->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
else
{
btRigidBody* rb = childBody? childBody->m_rigidBody : 0;
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody,clientCmd.m_userConstraintArguments.m_parentJointIndex,rb,pivotInParent,pivotInChild);
p2p->setMaxAppliedImpulse(defaultMaxForce);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_mbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
} else
{
b3Warning("unknown constraint type");
}
}
}
}
else
{
InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex>=0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex):0;
if (parentBody && childBody)
{
if (parentBody->m_rigidBody)
{
btRigidBody* parentRb = 0;
if (clientCmd.m_userConstraintArguments.m_parentJointIndex==-1)
{
parentRb = parentBody->m_rigidBody;
} else
{
if ((clientCmd.m_userConstraintArguments.m_parentJointIndex>=0) &&
(clientCmd.m_userConstraintArguments.m_parentJointIndex<parentBody->m_rigidBodyJoints.size()))
{
parentRb = &parentBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_parentJointIndex]->getRigidBodyB();
}
}
btRigidBody* childRb = 0;
if (childBody->m_rigidBody)
{
if (clientCmd.m_userConstraintArguments.m_childJointIndex==-1)
{
childRb = childBody->m_rigidBody;
}
else
{
if ((clientCmd.m_userConstraintArguments.m_childJointIndex>=0)
&& (clientCmd.m_userConstraintArguments.m_childJointIndex<childBody->m_rigidBodyJoints.size()))
{
childRb = &childBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_childJointIndex]->getRigidBodyB();
}
}
}
switch (clientCmd.m_userConstraintArguments.m_jointType)
{
case eRevoluteType:
{
break;
}
case ePrismaticType:
{
break;
}
case eFixedType:
{
if (childRb && parentRb && (childRb!=parentRb))
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btTransform offsetTrA,offsetTrB;
offsetTrA.setIdentity();
offsetTrA.setOrigin(pivotInParent);
offsetTrB.setIdentity();
offsetTrB.setOrigin(pivotInChild);
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*parentRb, *childRb, offsetTrA, offsetTrB);
dof6->setLinearLowerLimit(btVector3(0,0,0));
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,0));
m_data->m_dynamicsWorld->addConstraint(dof6);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = dof6;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case ePoint2PointType:
{
if (childRb && parentRb && (childRb!=parentRb))
{
btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]);
btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]);
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*parentRb,*childRb,pivotInParent,pivotInChild);
p2p->m_setting.m_impulseClamp = defaultMaxForce;
m_data->m_dynamicsWorld->addConstraint(p2p);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = p2p;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case eGearType:
{
if (childRb && parentRb && (childRb!=parentRb))
{
btVector3 axisA(clientCmd.m_userConstraintArguments.m_jointAxis[0],
clientCmd.m_userConstraintArguments.m_jointAxis[1],
clientCmd.m_userConstraintArguments.m_jointAxis[2]);
//for now we use the same local axis for both objects
btVector3 axisB(clientCmd.m_userConstraintArguments.m_jointAxis[0],
clientCmd.m_userConstraintArguments.m_jointAxis[1],
clientCmd.m_userConstraintArguments.m_jointAxis[2]);
btScalar ratio=1;
btGearConstraint* gear = new btGearConstraint(*parentRb,*childRb, axisA,axisB,ratio);
m_data->m_dynamicsWorld->addConstraint(gear,true);
InteralUserConstraintData userConstraintData;
userConstraintData.m_rbConstraint = gear;
int uid = m_data->m_userConstraintUIDGenerator++;
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid;
serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce;
userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs;
m_data->m_userConstraints.insert(uid,userConstraintData);
serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED;
}
break;
}
case eSphericalType:
{
b3Warning("constraint type not handled yet");
break;
}
case ePlanarType:
{
b3Warning("constraint type not handled yet");
break;
}
default:
{
b3Warning("unknown constraint type");
}
};
}
}
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT)
{
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_FAILED;
int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B)
{
btVector3 pivotInB(clientCmd.m_userConstraintArguments.m_childFrame[0],
clientCmd.m_userConstraintArguments.m_childFrame[1],
clientCmd.m_userConstraintArguments.m_childFrame[2]);
userConstraintPtr->m_userConstraintData.m_childFrame[0] = clientCmd.m_userConstraintArguments.m_childFrame[0];
userConstraintPtr->m_userConstraintData.m_childFrame[1] = clientCmd.m_userConstraintArguments.m_childFrame[1];
userConstraintPtr->m_userConstraintData.m_childFrame[2] = clientCmd.m_userConstraintArguments.m_childFrame[2];
userConstraintPtr->m_mbConstraint->setPivotInB(pivotInB);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B)
{
btQuaternion childFrameOrn(clientCmd.m_userConstraintArguments.m_childFrame[3],
clientCmd.m_userConstraintArguments.m_childFrame[4],
clientCmd.m_userConstraintArguments.m_childFrame[5],
clientCmd.m_userConstraintArguments.m_childFrame[6]);
userConstraintPtr->m_userConstraintData.m_childFrame[3] = clientCmd.m_userConstraintArguments.m_childFrame[3];
userConstraintPtr->m_userConstraintData.m_childFrame[4] = clientCmd.m_userConstraintArguments.m_childFrame[4];
userConstraintPtr->m_userConstraintData.m_childFrame[5] = clientCmd.m_userConstraintArguments.m_childFrame[5];
userConstraintPtr->m_userConstraintData.m_childFrame[6] = clientCmd.m_userConstraintArguments.m_childFrame[6];
btMatrix3x3 childFrameBasis(childFrameOrn);
userConstraintPtr->m_mbConstraint->setFrameInB(childFrameBasis);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce*m_data->m_physicsDeltaTime;
userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce;
userConstraintPtr->m_mbConstraint->setMaxAppliedImpulse(maxImp);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
userConstraintPtr->m_mbConstraint->setGearRatio(clientCmd.m_userConstraintArguments.m_gearRatio);
userConstraintPtr->m_userConstraintData.m_gearRatio = clientCmd.m_userConstraintArguments.m_gearRatio;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET)
{
userConstraintPtr->m_mbConstraint->setRelativePositionTarget(clientCmd.m_userConstraintArguments.m_relativePositionTarget);
userConstraintPtr->m_userConstraintData.m_relativePositionTarget = clientCmd.m_userConstraintArguments.m_relativePositionTarget;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_ERP)
{
userConstraintPtr->m_mbConstraint->setErp(clientCmd.m_userConstraintArguments.m_erp);
userConstraintPtr->m_userConstraintData.m_erp = clientCmd.m_userConstraintArguments.m_erp;
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK)
{
userConstraintPtr->m_mbConstraint->setGearAuxLink(clientCmd.m_userConstraintArguments.m_gearAuxLink);
userConstraintPtr->m_userConstraintData.m_gearAuxLink = clientCmd.m_userConstraintArguments.m_gearAuxLink;
}
}
if (userConstraintPtr->m_rbConstraint)
{
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE)
{
btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce*m_data->m_physicsDeltaTime;
userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce;
//userConstraintPtr->m_rbConstraint->setMaxAppliedImpulse(maxImp);
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO)
{
if (userConstraintPtr->m_rbConstraint->getObjectType()==GEAR_CONSTRAINT_TYPE)
{
btGearConstraint* gear = (btGearConstraint*) userConstraintPtr->m_rbConstraint;
gear->setRatio(clientCmd.m_userConstraintArguments.m_gearRatio);
}
}
}
serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments;
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidChange;
serverCmd.m_updateFlags = clientCmd.m_updateFlags;
serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_COMPLETED;
}
}
if (clientCmd.m_updateFlags & USER_CONSTRAINT_REMOVE_CONSTRAINT)
{
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_FAILED;
int userConstraintUidRemove = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId;
InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidRemove);
if (userConstraintPtr)
{
if (userConstraintPtr->m_mbConstraint)
{
m_data->m_dynamicsWorld->removeMultiBodyConstraint(userConstraintPtr->m_mbConstraint);
delete userConstraintPtr->m_mbConstraint;
m_data->m_userConstraints.remove(userConstraintUidRemove);
}
if (userConstraintPtr->m_rbConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(userConstraintPtr->m_rbConstraint);
delete userConstraintPtr->m_rbConstraint;
m_data->m_userConstraints.remove(userConstraintUidRemove);
}
serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidRemove;
serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_COMPLETED;
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody);
IKTrajectoryHelper* ikHelperPtr = 0;
if (ikHelperPtrPtr)
{
ikHelperPtr = *ikHelperPtrPtr;
}
else
{
IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper;
m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper);
ikHelperPtr = tmpHelper;
}
int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex;
if (ikHelperPtr && (endEffectorLinkIndex<bodyHandle->m_multiBody->getNumLinks()))
{
const int numDofs = bodyHandle->m_multiBody->getNumDofs();
int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6;
b3AlignedObjectArray<double> jacobian_linear;
jacobian_linear.resize(3*numDofs);
b3AlignedObjectArray<double> jacobian_angular;
jacobian_angular.resize(3*numDofs);
int jacSize = 0;
btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody);
btAlignedObjectArray<double> q_current;
q_current.resize(numDofs);
if (tree && ((numDofs+ baseDofs) == tree->numDoFs()))
{
jacSize = jacobian_linear.size();
// Set jacobian value
btInverseDynamics::vecx nu(numDofs+baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs);
int DofIndex = 0;
for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i) {
if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2) { // 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints.
q_current[DofIndex] = bodyHandle->m_multiBody->getJointPos(i);
q[DofIndex+baseDofs] = bodyHandle->m_multiBody->getJointPos(i);
qdot[DofIndex+baseDofs] = 0;
nu[DofIndex+baseDofs] = 0;
DofIndex++;
}
} // Set the gravity to correspond to the world gravity
btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity());
if (-1 != tree->setGravityInWorldFrame(id_grav) &&
-1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force))
{
tree->calculateJacobians(q);
btInverseDynamics::mat3x jac_t(3, numDofs+ baseDofs);
btInverseDynamics::mat3x jac_r(3,numDofs + baseDofs);
// Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link.
tree->getBodyJacobianTrans(endEffectorLinkIndex+1, &jac_t);
tree->getBodyJacobianRot(endEffectorLinkIndex+1, &jac_r);
for (int i = 0; i < 3; ++i)
{
for (int j = 0; j < numDofs; ++j)
{
jacobian_linear[i*numDofs+j] = jac_t(i,(baseDofs+j));
jacobian_angular[i*numDofs+j] = jac_r(i,(baseDofs+j));
}
}
}
btAlignedObjectArray<double> q_new;
q_new.resize(numDofs);
int ikMethod = 0;
if ((clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)&&(clientCmd.m_updateFlags&IK_HAS_NULL_SPACE_VELOCITY))
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE;
}
else if (clientCmd.m_updateFlags& IK_HAS_TARGET_ORIENTATION)
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS_WITH_ORIENTATION;
}
else
{
ikMethod = IK2_VEL_DLS_WITH_ORIENTATION;
}
}
else if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
//Nullspace task only works with DLS now. TODO: add nullspace task to SDLS.
ikMethod = IK2_VEL_DLS_WITH_NULLSPACE;
}
else
{
if (clientCmd.m_updateFlags & IK_SDLS)
{
ikMethod = IK2_VEL_SDLS;
}
else
{
ikMethod = IK2_VEL_DLS;;
}
}
if (clientCmd.m_updateFlags& IK_HAS_NULL_SPACE_VELOCITY)
{
btAlignedObjectArray<double> lower_limit;
btAlignedObjectArray<double> upper_limit;
btAlignedObjectArray<double> joint_range;
btAlignedObjectArray<double> rest_pose;
lower_limit.resize(numDofs);
upper_limit.resize(numDofs);
joint_range.resize(numDofs);
rest_pose.resize(numDofs);
for (int i = 0; i < numDofs; ++i)
{
lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i];
upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i];
joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i];
rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i];
}
ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]);
}
btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse();
btVector3DoubleData endEffectorWorldPosition;
btQuaternionDoubleData endEffectorWorldOrientation;
btVector3 endEffectorPosWorldOrg = endEffectorTransformWorld.getOrigin();
btQuaternion endEffectorOriWorldOrg = endEffectorTransformWorld.getRotation();
btTransform endEffectorWorld;
endEffectorWorld.setOrigin(endEffectorPosWorldOrg);
endEffectorWorld.setRotation(endEffectorOriWorldOrg);
btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform();
btTransform endEffectorBaseCoord = tr.inverse()*endEffectorWorld;
btQuaternion endEffectorOriBaseCoord= endEffectorBaseCoord.getRotation();
btVector4 endEffectorOri(endEffectorOriBaseCoord.x(), endEffectorOriBaseCoord.y(), endEffectorOriBaseCoord.z(), endEffectorOriBaseCoord.w());
endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition);
endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation);
btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetPosition[2]);
btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[0],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[1],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[2],
clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[3]);
btTransform targetWorld;
targetWorld.setOrigin(targetPosWorld);
targetWorld.setRotation(targetOrnWorld);
btTransform targetBaseCoord;
targetBaseCoord = tr.inverse()*targetWorld;
btVector3DoubleData targetPosBaseCoord;
btQuaternionDoubleData targetOrnBaseCoord;
targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord);
targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord);
// Set joint damping coefficents. A small default
// damping constant is added to prevent singularity
// with pseudo inverse. The user can set joint damping
// coefficients differently for each joint. The larger
// the damping coefficient is, the less we rely on
// this joint to achieve the IK target.
btAlignedObjectArray<double> joint_damping;
joint_damping.resize(numDofs,0.5);
if (clientCmd.m_updateFlags& IK_HAS_JOINT_DAMPING)
{
for (int i = 0; i < numDofs; ++i)
{
joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i];
}
}
ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]);
double targetDampCoeff[6] = { 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 };
ikHelperPtr->computeIK(targetPosBaseCoord.m_floats, targetOrnBaseCoord.m_floats,
endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats,
&q_current[0],
numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex,
&q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize*2, targetDampCoeff);
serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId =clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId;
for (int i=0;i<numDofs;i++)
{
serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i];
}
serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs;
serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED;
}
}
}
return hasStatus;
}
// PyModule_AddIntConstant(m, "GEOM_SPHERE", GEOM_SPHERE);
// PyModule_AddIntConstant(m, "GEOM_BOX", GEOM_BOX);
// PyModule_AddIntConstant(m, "GEOM_CYLINDER", GEOM_CYLINDER);
// PyModule_AddIntConstant(m, "GEOM_MESH", GEOM_MESH);
// PyModule_AddIntConstant(m, "GEOM_PLANE", GEOM_PLANE);
// PyModule_AddIntConstant(m, "GEOM_CAPSULE", GEOM_CAPSULE);
int PhysicsServerCommandProcessor::extractCollisionShapes(const btCollisionShape* colShape, const btTransform& transform, b3CollisionShapeData* collisionShapeBuffer, int maxCollisionShapes)
{
if (maxCollisionShapes <= 0)
{
b3Warning("No space in buffer");
return 0;
}
int numConverted = 0;
collisionShapeBuffer[0].m_localCollisionFrame[0] = transform.getOrigin()[0];
collisionShapeBuffer[0].m_localCollisionFrame[1] = transform.getOrigin()[1];
collisionShapeBuffer[0].m_localCollisionFrame[2] = transform.getOrigin()[2];
collisionShapeBuffer[0].m_localCollisionFrame[3] = transform.getRotation()[0];
collisionShapeBuffer[0].m_localCollisionFrame[4] = transform.getRotation()[1];
collisionShapeBuffer[0].m_localCollisionFrame[5] = transform.getRotation()[2];
collisionShapeBuffer[0].m_localCollisionFrame[6] = transform.getRotation()[3];
collisionShapeBuffer[0].m_meshAssetFileName[0] = 0;
switch (colShape->getShapeType())
{
case CONVEX_HULL_SHAPE_PROXYTYPE:
{
UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape);
2018-01-15 23:13:11 +00:00
if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH))
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0];
collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1];
collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2];
strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str());
numConverted += 1;
}
else
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
sprintf(collisionShapeBuffer[0].m_meshAssetFileName, "unknown_file");
collisionShapeBuffer[0].m_dimensions[0] = 1;
collisionShapeBuffer[0].m_dimensions[1] = 1;
collisionShapeBuffer[0].m_dimensions[2] = 1;
numConverted++;
}
break;
}
case CAPSULE_SHAPE_PROXYTYPE:
{
btCapsuleShapeZ* capsule = (btCapsuleShapeZ*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CAPSULE;
collisionShapeBuffer[0].m_dimensions[0] = 2.*capsule->getHalfHeight();
collisionShapeBuffer[0].m_dimensions[1] = capsule->getRadius();
collisionShapeBuffer[0].m_dimensions[2] = 0;
numConverted++;
break;
}
case CYLINDER_SHAPE_PROXYTYPE:
{
btCylinderShapeZ* cyl = (btCylinderShapeZ*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CYLINDER;
collisionShapeBuffer[0].m_dimensions[0] = 2.*cyl->getHalfExtentsWithMargin().getZ();
collisionShapeBuffer[0].m_dimensions[1] = cyl->getHalfExtentsWithMargin().getX();
collisionShapeBuffer[0].m_dimensions[2] = 0;
numConverted++;
break;
}
case BOX_SHAPE_PROXYTYPE:
{
btBoxShape* box = (btBoxShape*)colShape;
btVector3 halfExtents = box->getHalfExtentsWithMargin();
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_BOX;
collisionShapeBuffer[0].m_dimensions[0] = 2.*halfExtents[0];
collisionShapeBuffer[0].m_dimensions[1] = 2.*halfExtents[1];
collisionShapeBuffer[0].m_dimensions[2] = 2.*halfExtents[2];
numConverted++;
break;
}
case SPHERE_SHAPE_PROXYTYPE:
{
btSphereShape* sphere = (btSphereShape*)colShape;
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_SPHERE;
collisionShapeBuffer[0].m_dimensions[0] = sphere->getRadius();
collisionShapeBuffer[0].m_dimensions[1] = sphere->getRadius();
collisionShapeBuffer[0].m_dimensions[2] = sphere->getRadius();
numConverted++;
break;
}
case COMPOUND_SHAPE_PROXYTYPE:
{
//it could be a compound mesh from a wavefront OBJ, check it
UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape);
2018-01-15 23:13:11 +00:00
if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH))
{
collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH;
collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0];
collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1];
collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2];
strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str());
numConverted += 1;
}
else
{
//recurse, accumulate childTransform
btCompoundShape* compound = (btCompoundShape*)colShape;
for (int i = 0; i < compound->getNumChildShapes(); i++)
{
btTransform childTrans = transform*compound->getChildTransform(i);
int remain = maxCollisionShapes - numConverted;
int converted = extractCollisionShapes(compound->getChildShape(i), childTrans, &collisionShapeBuffer[numConverted], remain);
numConverted += converted;
}
}
break;
}
default:
{
b3Warning("Unexpected collision shape type in PhysicsServerCommandProcessor::extractCollisionShapes");
}
};
return numConverted;
}
bool PhysicsServerCommandProcessor::processRequestCollisionShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_COLLISION_SHAPE_INFO");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_FAILED;
int bodyUniqueId = clientCmd.m_requestCollisionShapeDataArguments.m_bodyUniqueId;
int linkIndex = clientCmd.m_requestCollisionShapeDataArguments.m_linkIndex;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
b3CollisionShapeData* collisionShapeStoragePtr = (b3CollisionShapeData*)bufferServerToClient;
int totalBytesPerObject = sizeof(b3CollisionShapeData);
int maxNumColObjects = bufferSizeInBytes / totalBytesPerObject - 1;
btTransform childTrans;
childTrans.setIdentity();
serverCmd.m_sendCollisionShapeArgs.m_bodyUniqueId = bodyUniqueId;
serverCmd.m_sendCollisionShapeArgs.m_linkIndex = linkIndex;
if (linkIndex == -1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
//extract shape info from base collider
int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getBaseCollider()->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects);
serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED;
}
}
else
{
if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks() && bodyHandle->m_multiBody->getLinkCollider(linkIndex))
{
int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getLinkCollider(linkIndex)->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects);
serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes;
serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED;
}
}
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRequestVisualShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_REQUEST_VISUAL_SHAPE_INFO");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_FAILED;
//retrieve the visual shape information for a specific body
if (m_data->m_pluginManager.getRenderInterface())
{
int totalNumVisualShapes = m_data->m_pluginManager.getRenderInterface()->getNumVisualShapes(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId);
//int totalBytesPerVisualShape = sizeof (b3VisualShapeData);
//int visualShapeStorage = bufferSizeInBytes / totalBytesPerVisualShape - 1;
b3VisualShapeData* visualShapeStoragePtr = (b3VisualShapeData*)bufferServerToClient;
int remain = totalNumVisualShapes - clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int shapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
int success = m_data->m_pluginManager.getRenderInterface()->getVisualShapesData(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId,
shapeIndex,
visualShapeStoragePtr);
if (success) {
serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = remain-1;
serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 1;
serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex;
serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId;
serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData)*serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied;
serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED;
}
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processUpdateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_UPDATE_VISUAL_SHAPE");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_FAILED;
InternalTextureHandle* texHandle = 0;
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
texHandle = m_data->m_textureHandles.getHandle(clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId);
if (clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId>=0)
{
if (texHandle)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId,
clientCmd.m_updateVisualShapeDataArguments.m_jointIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex,
texHandle->m_tinyRendererTextureId);
}
}
}
}
{
int bodyUniqueId = clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId;
int linkIndex = clientCmd.m_updateVisualShapeDataArguments.m_jointIndex;
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
if (bodyHandle)
{
if (bodyHandle->m_multiBody)
{
if (linkIndex==-1)
{
if (bodyHandle->m_multiBody->getBaseCollider())
{
int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
if (texHandle)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
m_data->m_guiHelper->replaceTexture(shapeIndex,texHandle->m_openglTextureId);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId,linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex,
clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
} else
{
if (linkIndex<bodyHandle->m_multiBody->getNumLinks())
{
if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider)
{
int graphicsIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
if (texHandle)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
m_data->m_guiHelper->replaceTexture(shapeIndex,texHandle->m_openglTextureId);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId,linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
}
}
} else
{
if (bodyHandle->m_rigidBody)
{
int graphicsIndex = bodyHandle->m_rigidBody->getUserIndex();
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE)
{
if (texHandle)
{
int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex);
m_data->m_guiHelper->replaceTexture(shapeIndex,texHandle->m_openglTextureId);
}
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId,linkIndex,
clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
m_data->m_guiHelper->changeRGBAColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor);
}
if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR)
{
m_data->m_guiHelper->changeSpecularColor(graphicsIndex,clientCmd.m_updateVisualShapeDataArguments.m_specularColor);
}
}
}
}
}
serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_COMPLETED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processChangeTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_CHANGE_TEXTURE_COMMAND_FAILED;
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(clientCmd.m_changeTextureArgs.m_textureUniqueId);
if(texH)
{
int gltex = texH->m_openglTextureId;
m_data->m_guiHelper->changeTexture(gltex,
(const unsigned char*)bufferServerToClient, clientCmd.m_changeTextureArgs.m_width,clientCmd.m_changeTextureArgs.m_height);
serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_LOAD_TEXTURE");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
char relativeFileName[1024];
char pathPrefix[1024];
if(b3ResourcePath::findResourcePath(clientCmd.m_loadTextureArguments.m_textureFileName,relativeFileName,1024))
{
b3FileUtils::extractPath(relativeFileName,pathPrefix,1024);
int texHandle = m_data->m_textureHandles.allocHandle();
InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle);
if(texH)
{
texH->m_tinyRendererTextureId = -1;
texH->m_openglTextureId = -1;
int uid = -1;
if (m_data->m_pluginManager.getRenderInterface())
{
2018-03-13 02:40:13 +00:00
uid = m_data->m_pluginManager.getRenderInterface()->loadTextureFile(relativeFileName);
}
if(uid>=0)
{
texH->m_tinyRendererTextureId = uid;
}
{
int width,height,n;
unsigned char* imageData= stbi_load(relativeFileName,&width,&height,&n,3);
if(imageData)
{
texH->m_openglTextureId = m_data->m_guiHelper->registerTexture(imageData,width,height);
free(imageData);
}
else
{
b3Warning("Unsupported texture image format [%s]\n",relativeFileName);
}
}
serverCmd.m_loadTextureResultArguments.m_textureUniqueId = texHandle;
serverCmd.m_type = CMD_LOAD_TEXTURE_COMPLETED;
}
}
else
{
serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_RESTORE_STATE");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_SAVE_STATE_FAILED;
btDefaultSerializer* ser = new btDefaultSerializer();
int currentFlags = ser->getSerializationFlags();
ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS);
m_data->m_dynamicsWorld->serialize(ser);
bParse::btBulletFile* bulletFile = new bParse::btBulletFile((char*)ser->getBufferPointer(), ser->getCurrentBufferSize());
bulletFile->parse(false);
if (bulletFile->ok())
{
serverCmd.m_type = CMD_SAVE_STATE_COMPLETED;
serverCmd.m_saveStateResultArgs.m_stateId = m_data->m_savedStates.size();
SaveStateData sd;
sd.m_bulletFile = bulletFile;
sd.m_serializer = ser;
m_data->m_savedStates.push_back(sd);
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processRestoreStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_RESTORE_STATE");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_RESTORE_STATE_FAILED;
btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
importer->setImporterFlags(eRESTORE_EXISTING_OBJECTS);
bool ok = false;
if (clientCmd.m_loadStateArguments.m_stateId >= 0)
{
if (clientCmd.m_loadStateArguments.m_stateId < m_data->m_savedStates.size())
{
bParse::btBulletFile* bulletFile = m_data->m_savedStates[clientCmd.m_loadStateArguments.m_stateId].m_bulletFile;
ok = importer->convertAllObjects(bulletFile);
}
}
else
{
const char* prefix[] = { "", "./", "./data/", "../data/", "../../data/", "../../../data/", "../../../../data/" };
int numPrefixes = sizeof(prefix) / sizeof(const char*);
char relativeFileName[1024];
FILE* f = 0;
bool found = false;
for (int i = 0; !f && i<numPrefixes; i++)
{
sprintf(relativeFileName, "%s%s", prefix[i], clientCmd.m_fileArguments.m_fileName);
f = fopen(relativeFileName, "rb");
if (f)
{
found = true;
break;
}
}
if (f)
{
fclose(f);
}
if (found)
{
ok = importer->loadFile(relativeFileName);
}
}
if (ok)
{
serverCmd.m_type = CMD_RESTORE_STATE_COMPLETED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processLoadBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
BT_PROFILE("CMD_LOAD_BULLET");
bool hasStatus = true;
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_BULLET_LOADING_FAILED;
//btBulletWorldImporter* importer = new btBulletWorldImporter(m_data->m_dynamicsWorld);
btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld);
const char* prefix[] = { "", "./", "./data/", "../data/", "../../data/", "../../../data/", "../../../../data/" };
int numPrefixes = sizeof(prefix) / sizeof(const char*);
char relativeFileName[1024];
FILE* f = 0;
bool found = false;
for (int i = 0; !f && i<numPrefixes; i++)
{
sprintf(relativeFileName, "%s%s", prefix[i], clientCmd.m_fileArguments.m_fileName);
f = fopen(relativeFileName, "rb");
if (f)
{
found = true;
break;
}
}
if (f)
{
fclose(f);
}
if (found)
{
bool ok = importer->loadFile(relativeFileName);
if (ok)
{
int numRb = importer->getNumRigidBodies();
serverStatusOut.m_sdfLoadedArgs.m_numBodies = 0;
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
for( int i=0;i<numRb;i++)
{
btCollisionObject* colObj = importer->getRigidBodyByIndex(i);
if (colObj)
{
btRigidBody* rb = btRigidBody::upcast(colObj);
if (rb)
{
int bodyUniqueId = m_data->m_bodyHandles.allocHandle();
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId);
colObj->setUserIndex2(bodyUniqueId);
bodyHandle->m_rigidBody = rb;
if (serverStatusOut.m_sdfLoadedArgs.m_numBodies<MAX_SDF_BODIES)
{
serverStatusOut.m_sdfLoadedArgs.m_numBodies++;
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = bodyUniqueId;
}
}
}
}
serverCmd.m_type = CMD_BULLET_LOADING_COMPLETED;
m_data->m_guiHelper->autogenerateGraphicsObjects(m_data->m_dynamicsWorld);
}
}
return hasStatus;
}
2016-11-21 15:42:11 +00:00
bool PhysicsServerCommandProcessor::processLoadMJCFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
2016-11-21 15:42:11 +00:00
BT_PROFILE("CMD_LOAD_MJCF");
SharedMemoryStatus& serverCmd = serverStatusOut;
serverCmd.m_type = CMD_MJCF_LOADING_FAILED;
const MjcfArgs& mjcfArgs = clientCmd.m_mjcfArguments;
if (m_data->m_verboseOutput)
{
b3Printf("Processed CMD_LOAD_MJCF:%s", mjcfArgs.m_mjcfFileName);
}
bool useMultiBody=(clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (mjcfArgs.m_useMultiBody!=0) : true;
int flags = CUF_USE_MJCF;
if (clientCmd.m_updateFlags&URDF_ARGS_HAS_CUSTOM_URDF_FLAGS)
{
flags |= clientCmd.m_mjcfArguments.m_flags;
}
2016-11-21 15:42:11 +00:00
bool completedOk = loadMjcf(mjcfArgs.m_mjcfFileName,bufferServerToClient, bufferSizeInBytes, useMultiBody, flags);
if (completedOk)
{
m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld);
serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size();
serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0;
int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies);
for (int i=0;i<maxBodies;i++)
{
serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i];
}
serverStatusOut.m_type = CMD_MJCF_LOADING_COMPLETED;
} else
{
serverStatusOut.m_type = CMD_MJCF_LOADING_FAILED;
}
return hasStatus;
}
bool PhysicsServerCommandProcessor::processSaveBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = true;
BT_PROFILE("CMD_SAVE_BULLET");
SharedMemoryStatus& serverCmd = serverStatusOut;
FILE* f = fopen(clientCmd.m_fileArguments.m_fileName, "wb");
if (f)
{
btDefaultSerializer* ser = new btDefaultSerializer();
int currentFlags = ser->getSerializationFlags();
ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS);
m_data->m_dynamicsWorld->serialize(ser);
fwrite(ser->getBufferPointer(), ser->getCurrentBufferSize(), 1, f);
fclose(f);
serverCmd.m_type = CMD_BULLET_SAVING_COMPLETED;
delete ser;
return hasStatus;
}
serverCmd.m_type = CMD_BULLET_SAVING_FAILED;
return hasStatus;
}
bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes )
{
// BT_PROFILE("processCommand");
int sz = sizeof(SharedMemoryStatus);
int sz2 = sizeof(SharedMemoryCommand);
bool hasStatus = false;
if (m_data->m_commandLogger)
{
m_data->m_commandLogger->logCommand(clientCmd);
}
serverStatusOut.m_type = CMD_INVALID_STATUS;
serverStatusOut.m_numDataStreamBytes = 0;
serverStatusOut.m_dataStream = 0;
//consume the command
switch (clientCmd.m_type)
{
case CMD_STATE_LOGGING:
{
hasStatus = processStateLoggingCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SET_VR_CAMERA_STATE:
{
hasStatus = processSetVRCameraStateCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_VR_EVENTS_DATA:
{
hasStatus = processRequestVREventsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_MOUSE_EVENTS_DATA:
{
hasStatus = processRequestMouseEventsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_KEYBOARD_EVENTS_DATA:
{
hasStatus = processRequestKeyboardEventsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_RAY_CAST_INTERSECTIONS:
{
hasStatus = processRequestRaycastIntersectionsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_REQUEST_DEBUG_LINES:
{
hasStatus = processRequestDebugLinesCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_CAMERA_IMAGE_DATA:
{
hasStatus = processRequestCameraImageCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SYNC_BODY_INFO:
{
hasStatus = processSyncBodyInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_BODY_INFO:
{
hasStatus = processRequestBodyInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_WORLD:
{
hasStatus = processSaveWorldCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_SDF:
{
hasStatus = processLoadSDFCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_COLLISION_SHAPE:
{
hasStatus = processCreateCollisionShapeCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_VISUAL_SHAPE:
{
hasStatus = processCreateVisualShapeCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_MULTI_BODY:
{
hasStatus = processCreateMultiBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SET_ADDITIONAL_SEARCH_PATH:
{
hasStatus = processSetAdditionalSearchPathCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_URDF:
{
hasStatus = processLoadURDFCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_SOFT_BODY:
{
hasStatus = processLoadSoftBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_SENSOR:
{
hasStatus = processCreateSensorCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_PROFILE_TIMING:
{
hasStatus = processProfileTimingCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SEND_DESIRED_STATE:
{
hasStatus = processSendDesiredStateCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_COLLISION_INFO:
{
hasStatus = processRequestCollisionInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_ACTUAL_STATE:
{
hasStatus = processRequestActualStateCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_STEP_FORWARD_SIMULATION:
{
hasStatus = processForwardDynamicsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_INTERNAL_DATA:
{
hasStatus = processRequestInternalDataCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_CHANGE_DYNAMICS_INFO:
{
hasStatus = processChangeDynamicsInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_GET_DYNAMICS_INFO:
{
hasStatus = processGetDynamicsInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS:
{
hasStatus = processRequestPhysicsSimulationParametersCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS:
{
hasStatus = processSendPhysicsParametersCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
};
case CMD_INIT_POSE:
{
hasStatus = processInitPoseCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_RESET_SIMULATION:
{
hasStatus = processResetSimulationCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_RIGID_BODY:
{
hasStatus = processCreateRigidBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
{
//for backward compatibility, CMD_CREATE_BOX_COLLISION_SHAPE is the same as CMD_CREATE_RIGID_BODY
hasStatus = processCreateRigidBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_PICK_BODY:
{
hasStatus = processPickBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_MOVE_PICKED_BODY:
{
hasStatus = processMovePickedBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_PICKING_CONSTRAINT_BODY:
{
hasStatus = processRemovePickingConstraintCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_AABB_OVERLAP:
{
hasStatus = processRequestAabbOverlapCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA:
{
hasStatus = processRequestOpenGLVisualizeCameraCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CONFIGURE_OPENGL_VISUALIZER:
{
hasStatus = processConfigureOpenGLVisualizerCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_CONTACT_POINT_INFORMATION:
{
hasStatus = processRequestContactpointInformationCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_INVERSE_DYNAMICS:
{
hasStatus = processInverseDynamicsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_JACOBIAN:
{
hasStatus = processCalculateJacobianCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_MASS_MATRIX:
{
hasStatus = processCalculateMassMatrixCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_APPLY_EXTERNAL_FORCE:
{
hasStatus = processApplyExternalForceCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REMOVE_BODY:
{
hasStatus = processRemoveBodyCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_USER_CONSTRAINT:
{
hasStatus = processCreateUserConstraintCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CALCULATE_INVERSE_KINEMATICS:
{
hasStatus = processCalculateInverseKinematicsCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_VISUAL_SHAPE_INFO:
{
hasStatus = processRequestVisualShapeInfoCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_REQUEST_COLLISION_SHAPE_INFO:
{
hasStatus = processRequestCollisionShapeInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_UPDATE_VISUAL_SHAPE:
{
hasStatus = processUpdateVisualShapeCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CHANGE_TEXTURE:
{
hasStatus = processChangeTextureCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_TEXTURE:
{
hasStatus = processLoadTextureCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_RESTORE_STATE:
{
hasStatus = processRestoreStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_STATE:
{
hasStatus = processSaveStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_BULLET:
{
hasStatus = processLoadBulletCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_SAVE_BULLET:
{
hasStatus = processSaveBulletCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_LOAD_MJCF:
{
hasStatus = processLoadMJCFCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_USER_DEBUG_DRAW:
{
hasStatus = processUserDebugDrawCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
case CMD_CUSTOM_COMMAND:
{
hasStatus = processCustomCommand(clientCmd,serverStatusOut,bufferServerToClient, bufferSizeInBytes);
break;
}
default:
{
BT_PROFILE("CMD_UNKNOWN");
b3Error("Unknown command encountered");
SharedMemoryStatus& serverCmd =serverStatusOut;
serverCmd.m_type = CMD_UNKNOWN_COMMAND_FLUSHED;
hasStatus = true;
}
};
return hasStatus;
}
void PhysicsServerCommandProcessor::syncPhysicsToGraphics()
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
}
void PhysicsServerCommandProcessor::renderScene(int renderFlags)
{
if (m_data->m_guiHelper)
{
if (0==(renderFlags&COV_DISABLE_SYNC_RENDERING))
{
m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld);
2017-05-24 06:34:55 +00:00
}
m_data->m_guiHelper->render(m_data->m_dynamicsWorld);
}
}
void PhysicsServerCommandProcessor::physicsDebugDraw(int debugDrawFlags)
{
if (m_data->m_dynamicsWorld)
{
if (m_data->m_dynamicsWorld->getDebugDrawer())
{
m_data->m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags);
m_data->m_dynamicsWorld->debugDrawWorld();
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
for ( int i=0;i<m_data->m_dynamicsWorld->getSoftBodyArray().size();i++)
{
btSoftBody* psb=(btSoftBody*)m_data->m_dynamicsWorld->getSoftBodyArray()[i];
if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
{
//btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer());
btSoftBodyHelpers::Draw(psb,m_data->m_dynamicsWorld->getDebugDrawer(),m_data->m_dynamicsWorld->getDrawFlags());
}
}
#endif
}
}
}
struct MyResultCallback : public btCollisionWorld::ClosestRayResultCallback
{
MyResultCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld)
:btCollisionWorld::ClosestRayResultCallback(rayFromWorld, rayToWorld)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
return true;
}
};
bool PhysicsServerCommandProcessor::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_dynamicsWorld==0)
return false;
//btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld);
MyResultCallback rayCallback(rayFromWorld, rayToWorld);
m_data->m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_data->m_pickedBody = body;
m_data->m_savedActivationState = body->getActivationState();
m_data->m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot);
m_data->m_dynamicsWorld->addConstraint(p2p, true);
m_data->m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
} else
{
btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject);
if (multiCol && multiCol->m_multiBody)
{
m_data->m_prevCanSleep = multiCol->m_multiBody->getCanSleep();
multiCol->m_multiBody->setCanSleep(false);
btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos);
btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody,multiCol->m_link,0,pivotInA,pickPos);
//if you add too much energy to the system, causing high angular velocities, simulation 'explodes'
//see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949
//so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply
//it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?)
btScalar scaling=1;
p2p->setMaxAppliedImpulse(2*scaling);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->addMultiBodyConstraint(p2p);
m_data->m_pickingMultiBodyPoint2Point =p2p;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_data->m_oldPickingPos = rayToWorld;
m_data->m_hitPos = pickPos;
m_data->m_oldPickingDist = (pickPos - rayFromWorld).length();
// printf("hit !\n");
//add p2p
}
return false;
}
bool PhysicsServerCommandProcessor::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld)
{
if (m_data->m_pickedBody && m_data->m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_data->m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
pickCon->setPivotB(newPivotB);
}
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
//keep it at the same picking distance
btVector3 dir = rayToWorld-rayFromWorld;
dir.normalize();
dir *= m_data->m_oldPickingDist;
btVector3 newPivotB = rayFromWorld + dir;
m_data->m_pickingMultiBodyPoint2Point->setPivotInB(newPivotB);
}
return false;
}
void PhysicsServerCommandProcessor::removePickingConstraint()
{
if (m_data->m_pickedConstraint)
{
m_data->m_dynamicsWorld->removeConstraint(m_data->m_pickedConstraint);
delete m_data->m_pickedConstraint;
m_data->m_pickedConstraint = 0;
m_data->m_pickedBody->forceActivationState(m_data->m_savedActivationState);
m_data->m_pickedBody = 0;
}
if (m_data->m_pickingMultiBodyPoint2Point)
{
m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(m_data->m_prevCanSleep);
btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld;
world->removeMultiBodyConstraint(m_data->m_pickingMultiBodyPoint2Point);
delete m_data->m_pickingMultiBodyPoint2Point;
m_data->m_pickingMultiBodyPoint2Point = 0;
}
}
void PhysicsServerCommandProcessor::enableCommandLogging(bool enable, const char* fileName)
{
if (enable)
{
if (0==m_data->m_commandLogger)
{
m_data->m_commandLogger = new CommandLogger(fileName);
}
} else
{
if (0!=m_data->m_commandLogger)
{
delete m_data->m_commandLogger;
m_data->m_commandLogger = 0;
}
}
}
void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName)
{
CommandLogPlayback* pb = new CommandLogPlayback(fileName);
m_data->m_logPlayback = pb;
}
2016-09-09 18:28:38 +00:00
int gDroppedSimulationSteps = 0;
int gNumSteps = 0;
double gDtInSec = 0.f;
double gSubStep = 0.f;
void PhysicsServerCommandProcessor::enableRealTimeSimulation(bool enableRealTimeSim)
{
m_data->m_useRealTimeSimulation = enableRealTimeSim;
}
bool PhysicsServerCommandProcessor::isRealTimeSimulationEnabled() const
{
return m_data->m_useRealTimeSimulation;
}
void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec,const struct b3VRControllerEvent* vrControllerEvents, int numVRControllerEvents, const struct b3KeyboardEvent* keyEvents, int numKeyEvents, const struct b3MouseEvent* mouseEvents, int numMouseEvents)
{
m_data->m_vrControllerEvents.addNewVREvents(vrControllerEvents,numVRControllerEvents);
m_data->m_pluginManager.addEvents(vrControllerEvents, numVRControllerEvents, keyEvents, numKeyEvents, mouseEvents, numMouseEvents);
for (int i=0;i<m_data->m_stateLoggers.size();i++)
{
if (m_data->m_stateLoggers[i]->m_loggingType==STATE_LOGGING_VR_CONTROLLERS)
{
VRControllerStateLogger* vrLogger = (VRControllerStateLogger*) m_data->m_stateLoggers[i];
vrLogger->m_vrEvents.addNewVREvents(vrControllerEvents,numVRControllerEvents);
}
}
for (int ii=0;ii<numMouseEvents;ii++)
{
const b3MouseEvent& event = mouseEvents[ii];
bool found = false;
//search a matching one first, otherwise add new event
for (int e=0;e<m_data->m_mouseEvents.size();e++)
{
if (event.m_eventType == m_data->m_mouseEvents[e].m_eventType)
{
if (event.m_eventType == MOUSE_MOVE_EVENT)
{
m_data->m_mouseEvents[e].m_mousePosX = event.m_mousePosX;
m_data->m_mouseEvents[e].m_mousePosY = event.m_mousePosY;
found = true;
} else
if ((event.m_eventType == MOUSE_BUTTON_EVENT) && event.m_buttonIndex == m_data->m_mouseEvents[e].m_buttonIndex)
{
m_data->m_mouseEvents[e].m_buttonState |= event.m_buttonState;
if (event.m_buttonState & eButtonIsDown)
{
m_data->m_mouseEvents[e].m_buttonState |= eButtonIsDown;
} else
{
m_data->m_mouseEvents[e].m_buttonState &= ~eButtonIsDown;
}
found = true;
}
}
}
if (!found)
{
m_data->m_mouseEvents.push_back(event);
}
}
for (int i=0;i<numKeyEvents;i++)
{
const b3KeyboardEvent& event = keyEvents[i];
bool found = false;
//search a matching one first, otherwise add new event
for (int e=0;e<m_data->m_keyboardEvents.size();e++)
{
if (event.m_keyCode == m_data->m_keyboardEvents[e].m_keyCode)
{
m_data->m_keyboardEvents[e].m_keyState |= event.m_keyState;
if (event.m_keyState & eButtonIsDown)
{
m_data->m_keyboardEvents[e].m_keyState |= eButtonIsDown;
} else
{
m_data->m_keyboardEvents[e].m_keyState &= ~eButtonIsDown;
}
found=true;
}
}
if (!found)
{
m_data->m_keyboardEvents.push_back(event);
}
}
if (gResetSimulation)
{
resetSimulation();
gResetSimulation = false;
}
if (gVRTrackingObjectUniqueId >= 0)
{
InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(gVRTrackingObjectUniqueId);
if (bodyHandle && bodyHandle->m_multiBody)
{
// gVRTrackingObjectTr = bodyHandle->m_multiBody->getBaseWorldTransform();
if (gVRTrackingObjectUniqueId>=0)
{
gVRTrackingObjectTr.setOrigin(bodyHandle->m_multiBody->getBaseWorldTransform().getOrigin());
gVRTeleportPos1 = gVRTrackingObjectTr.getOrigin();
}
if (gVRTrackingObjectFlag&VR_CAMERA_TRACK_OBJECT_ORIENTATION)
{
gVRTrackingObjectTr.setBasis(bodyHandle->m_multiBody->getBaseWorldTransform().getBasis());
gVRTeleportOrn = gVRTrackingObjectTr.getRotation();
}
}
}
if ((m_data->m_useRealTimeSimulation) && m_data->m_guiHelper)
{
int maxSteps = m_data->m_numSimulationSubSteps+3;
if (m_data->m_numSimulationSubSteps)
{
gSubStep = m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps;
}
else
{
gSubStep = m_data->m_physicsDeltaTime;
}
int numSteps = m_data->m_dynamicsWorld->stepSimulation(dtInSec*simTimeScalingFactor,maxSteps, gSubStep);
gDroppedSimulationSteps += numSteps > maxSteps ? numSteps - maxSteps : 0;
if (numSteps)
{
gNumSteps = numSteps;
gDtInSec = dtInSec;
}
}
}
void PhysicsServerCommandProcessor::resetSimulation()
{
//clean up all data
#ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD
2018-04-30 18:01:53 +00:00
if (m_data && m_data->m_dynamicsWorld)
{
m_data->m_dynamicsWorld->getWorldInfo().m_sparsesdf.Reset();
}
#endif
if (m_data && m_data->m_guiHelper)
{
m_data->m_guiHelper->removeAllGraphicsInstances();
m_data->m_guiHelper->removeAllUserDebugItems();
}
if (m_data)
{
if (m_data->m_pluginManager.getRenderInterface())
{
m_data->m_pluginManager.getRenderInterface()->resetAll();
}
for (int i = 0; i < m_data->m_savedStates.size(); i++)
{
delete m_data->m_savedStates[i].m_bulletFile;
delete m_data->m_savedStates[i].m_serializer;
}
m_data->m_savedStates.clear();
}
removePickingConstraint();
deleteDynamicsWorld();
createEmptyDynamicsWorld();
m_data->m_bodyHandles.exitHandles();
m_data->m_bodyHandles.initHandles();
m_data->m_userCollisionShapeHandles.exitHandles();
m_data->m_userCollisionShapeHandles.initHandles();
}
void PhysicsServerCommandProcessor::setTimeOut(double /*timeOutInSeconds*/)
{
2016-11-01 22:46:09 +00:00
}
const btVector3& PhysicsServerCommandProcessor::getVRTeleportPosition() const
{
return gVRTeleportPos1;
}
void PhysicsServerCommandProcessor::setVRTeleportPosition(const btVector3& vrTeleportPos)
{
gVRTeleportPos1 = vrTeleportPos;
}
const btQuaternion& PhysicsServerCommandProcessor::getVRTeleportOrientation() const
{
return gVRTeleportOrn;
}
void PhysicsServerCommandProcessor::setVRTeleportOrientation(const btQuaternion& vrTeleportOrn)
{
gVRTeleportOrn = vrTeleportOrn;
}