mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-07 08:10:08 +00:00
137 lines
4.0 KiB
C
137 lines
4.0 KiB
C
|
/*
|
||
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#ifndef SIMD_TRANSFORM_UTIL_H
|
||
|
#define SIMD_TRANSFORM_UTIL_H
|
||
|
|
||
|
#include "SimdTransform.h"
|
||
|
#define ANGULAR_MOTION_TRESHOLD 0.5f*SIMD_HALF_PI
|
||
|
|
||
|
|
||
|
|
||
|
#define SIMDSQRT12 SimdScalar(0.7071067811865475244008443621048490)
|
||
|
|
||
|
#define SimdRecipSqrt(x) ((float)(1.0f/SimdSqrt(float(x)))) /* reciprocal square root */
|
||
|
|
||
|
|
||
|
inline void SimdPlaneSpace1 (const SimdVector3& n, SimdVector3& p, SimdVector3& q)
|
||
|
{
|
||
|
if (SimdFabs(n[2]) > SIMDSQRT12) {
|
||
|
// choose p in y-z plane
|
||
|
SimdScalar a = n[1]*n[1] + n[2]*n[2];
|
||
|
SimdScalar k = SimdRecipSqrt (a);
|
||
|
p[0] = 0;
|
||
|
p[1] = -n[2]*k;
|
||
|
p[2] = n[1]*k;
|
||
|
// set q = n x p
|
||
|
q[0] = a*k;
|
||
|
q[1] = -n[0]*p[2];
|
||
|
q[2] = n[0]*p[1];
|
||
|
}
|
||
|
else {
|
||
|
// choose p in x-y plane
|
||
|
SimdScalar a = n[0]*n[0] + n[1]*n[1];
|
||
|
SimdScalar k = SimdRecipSqrt (a);
|
||
|
p[0] = -n[1]*k;
|
||
|
p[1] = n[0]*k;
|
||
|
p[2] = 0;
|
||
|
// set q = n x p
|
||
|
q[0] = -n[2]*p[1];
|
||
|
q[1] = n[2]*p[0];
|
||
|
q[2] = a*k;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// Utils related to temporal transforms
|
||
|
class SimdTransformUtil
|
||
|
{
|
||
|
|
||
|
public:
|
||
|
|
||
|
static void IntegrateTransform(const SimdTransform& curTrans,const SimdVector3& linvel,const SimdVector3& angvel,SimdScalar timeStep,SimdTransform& predictedTransform)
|
||
|
{
|
||
|
predictedTransform.setOrigin(curTrans.getOrigin() + linvel * timeStep);
|
||
|
// #define QUATERNION_DERIVATIVE
|
||
|
#ifdef QUATERNION_DERIVATIVE
|
||
|
SimdQuaternion orn = curTrans.getRotation();
|
||
|
orn += (angvel * orn) * (timeStep * 0.5f);
|
||
|
orn.normalize();
|
||
|
#else
|
||
|
//exponential map
|
||
|
SimdVector3 axis;
|
||
|
SimdScalar fAngle = angvel.length();
|
||
|
//limit the angular motion
|
||
|
if (fAngle*timeStep > ANGULAR_MOTION_TRESHOLD)
|
||
|
{
|
||
|
fAngle = ANGULAR_MOTION_TRESHOLD / timeStep;
|
||
|
}
|
||
|
|
||
|
if ( fAngle < 0.001f )
|
||
|
{
|
||
|
// use Taylor's expansions of sync function
|
||
|
axis = angvel*( 0.5f*timeStep-(timeStep*timeStep*timeStep)*(0.020833333333f)*fAngle*fAngle );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// sync(fAngle) = sin(c*fAngle)/t
|
||
|
axis = angvel*( SimdSin(0.5f*fAngle*timeStep)/fAngle );
|
||
|
}
|
||
|
SimdQuaternion dorn (axis.x(),axis.y(),axis.z(),SimdCos( fAngle*timeStep*0.5f ));
|
||
|
SimdQuaternion orn0 = curTrans.getRotation();
|
||
|
|
||
|
SimdQuaternion predictedOrn = dorn * orn0;
|
||
|
#endif
|
||
|
predictedTransform.setRotation(predictedOrn);
|
||
|
}
|
||
|
|
||
|
static void CalculateVelocity(const SimdTransform& transform0,const SimdTransform& transform1,SimdScalar timeStep,SimdVector3& linVel,SimdVector3& angVel)
|
||
|
{
|
||
|
linVel = (transform1.getOrigin() - transform0.getOrigin()) / timeStep;
|
||
|
#ifdef USE_QUATERNION_DIFF
|
||
|
SimdQuaternion orn0 = transform0.getRotation();
|
||
|
SimdQuaternion orn1a = transform1.getRotation();
|
||
|
SimdQuaternion orn1 = orn0.farthest(orn1a);
|
||
|
SimdQuaternion dorn = orn1 * orn0.inverse();
|
||
|
#else
|
||
|
SimdMatrix3x3 dmat = transform1.getBasis() * transform0.getBasis().inverse();
|
||
|
SimdQuaternion dorn;
|
||
|
dmat.getRotation(dorn);
|
||
|
#endif//USE_QUATERNION_DIFF
|
||
|
|
||
|
SimdVector3 axis;
|
||
|
SimdScalar angle;
|
||
|
angle = dorn.getAngle();
|
||
|
axis = SimdVector3(dorn.x(),dorn.y(),dorn.z());
|
||
|
axis[3] = 0.f;
|
||
|
//check for axis length
|
||
|
SimdScalar len = axis.length2();
|
||
|
if (len < SIMD_EPSILON*SIMD_EPSILON)
|
||
|
axis = SimdVector3(1.f,0.f,0.f);
|
||
|
else
|
||
|
axis /= SimdSqrt(len);
|
||
|
|
||
|
|
||
|
angVel = axis * angle / timeStep;
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
};
|
||
|
|
||
|
#endif //SIMD_TRANSFORM_UTIL_H
|
||
|
|