bullet3/examples/Importers/ImportURDFDemo/ImportURDFSetup.cpp

1702 lines
56 KiB
C++
Raw Normal View History

#include "ImportURDFSetup.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
#include "Bullet3Common/b3FileUtils.h"
#include "../ImportObjDemo/LoadMeshFromObj.h"
#include "../ImportSTLDemo/LoadMeshFromSTL.h"
#include "../ImportColladaDemo/LoadMeshFromCollada.h"
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "Bullet3Common/b3FileUtils.h"
#include "BulletCollision/CollisionShapes/btShapeHull.h"//to create a tesselation of a generic btConvexShape
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
static int bodyCollisionFilterGroup=btBroadphaseProxy::CharacterFilter;
static int bodyCollisionFilterMask=btBroadphaseProxy::AllFilter&(~btBroadphaseProxy::CharacterFilter);
static bool enableConstraints = true;//false;
#include "URDF2Bullet.h"
#include "urdf/urdfdom/urdf_parser/include/urdf_parser/urdf_parser.h"
#include "urdf_samples.h"
//#include "BulletCollision/CollisionShapes/btCylinderShape.h"
//#define USE_BARREL_VERTICES
//#include "OpenGLWindow/ShapeData.h"
#include <iostream>
#include <fstream>
using namespace urdf;
#include "../CommonInterfaces/CommonMultiBodyBase.h"
class ImportUrdfSetup : public CommonMultiBodyBase
{
char m_fileName[1024];
struct ImportUrdfInternalData* m_data;
bool m_useMultiBody;
public:
ImportUrdfSetup(struct GUIHelperInterface* helper, int option);
virtual ~ImportUrdfSetup();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
void setFileName(const char* urdfFileName);
};
void convertURDFToVisualShape(const Visual* visual, const char* pathPrefix, const btTransform& visualTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut);
btCollisionShape* convertURDFToCollisionShape(const Collision* visual, const char* pathPrefix);
class MyURDF2Bullet : public URDF2Bullet
{
my_shared_ptr<ModelInterface> m_robot;
std::vector<my_shared_ptr<Link> > m_links;
mutable btMultiBody* m_bulletMultiBody;
struct GUIHelperInterface* m_guiHelper;
public:
mutable btAlignedObjectArray<int> m_urdf2mbLink;
mutable btAlignedObjectArray<int> m_mb2urdfLink;
MyURDF2Bullet(my_shared_ptr<ModelInterface> robot,struct GUIHelperInterface* helper)
:m_robot(robot),
m_guiHelper(helper),
m_bulletMultiBody(0)
{
m_robot->getLinks(m_links);
//initialize the 'index' of each link
for (int i=0;i<m_links.size();i++)
{
m_links[i]->m_link_index = i;
}
m_urdf2mbLink.resize(m_links.size(),-2);
m_mb2urdfLink.resize(m_links.size(),-2);
}
virtual int getRootLinkIndex() const
{
if (m_links.size())
{
int rootLinkIndex = m_robot->getRoot()->m_link_index;
// btAssert(m_links[0]->m_link_index == rootLinkIndex);
return rootLinkIndex;
}
return -1;
};
virtual void getLinkChildIndices(int linkIndex, btAlignedObjectArray<int>& childLinkIndices) const
{
childLinkIndices.resize(0);
int numChildren = m_links[linkIndex]->child_links.size();
for (int i=0;i<numChildren;i++)
{
int childIndex =m_links[linkIndex]->child_links[i]->m_link_index;
childLinkIndices.push_back(childIndex);
}
}
virtual std::string getLinkName(int linkIndex) const
{
std::string n = m_links[linkIndex]->name;
return n;
}
virtual std::string getJointName(int linkIndex) const
{
return m_links[linkIndex]->parent_joint->name;
}
virtual void getMassAndInertia(int linkIndex, btScalar& mass,btVector3& localInertiaDiagonal, btTransform& inertialFrame) const
{
if ((*m_links[linkIndex]).inertial)
{
mass = (*m_links[linkIndex]).inertial->mass;
localInertiaDiagonal.setValue((*m_links[linkIndex]).inertial->ixx,(*m_links[linkIndex]).inertial->iyy,(*m_links[linkIndex]).inertial->izz);
inertialFrame.setOrigin(btVector3((*m_links[linkIndex]).inertial->origin.position.x,(*m_links[linkIndex]).inertial->origin.position.y,(*m_links[linkIndex]).inertial->origin.position.z));
inertialFrame.setRotation(btQuaternion((*m_links[linkIndex]).inertial->origin.rotation.x,(*m_links[linkIndex]).inertial->origin.rotation.y,(*m_links[linkIndex]).inertial->origin.rotation.z,(*m_links[linkIndex]).inertial->origin.rotation.w));
} else
{
mass = 1.f;
localInertiaDiagonal.setValue(1,1,1);
inertialFrame.setIdentity();
}
}
virtual bool getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit) const
{
jointLowerLimit = 0.f;
jointUpperLimit = 0.f;
if ((*m_links[urdfLinkIndex]).parent_joint)
{
my_shared_ptr<Joint> pj =(*m_links[urdfLinkIndex]).parent_joint;
const urdf::Vector3 pos = pj->parent_to_joint_origin_transform.position;
const urdf::Rotation orn = pj->parent_to_joint_origin_transform.rotation;
jointAxisInJointSpace.setValue(pj->axis.x,pj->axis.y,pj->axis.z);
parent2joint.setOrigin(btVector3(pos.x,pos.y,pos.z));
parent2joint.setRotation(btQuaternion(orn.x,orn.y,orn.z,orn.w));
switch (pj->type)
{
case Joint::REVOLUTE:
jointType = URDF2Bullet::RevoluteJoint;
break;
case Joint::FIXED:
jointType = URDF2Bullet::FixedJoint;
break;
case Joint::PRISMATIC:
jointType = URDF2Bullet::PrismaticJoint;
break;
case Joint::PLANAR:
jointType = URDF2Bullet::PlanarJoint;
break;
case Joint::CONTINUOUS:
jointType = URDF2Bullet::ContinuousJoint;
break;
default:
{
printf("Error: unknown joint type %d\n", pj->type);
btAssert(0);
}
};
if (pj->limits)
{
jointLowerLimit = pj->limits.get()->lower;
jointUpperLimit = pj->limits.get()->upper;
}
return true;
} else
{
parent2joint.setIdentity();
return false;
}
}
virtual int convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& inertialFrame) const
{
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans; startTrans.setIdentity();
int graphicsIndex = -1;
for (int v = 0; v < (int)m_links[linkIndex]->visual_array.size(); v++)
{
const Visual* vis = m_links[linkIndex]->visual_array[v].get();
btVector3 childPos(vis->origin.position.x, vis->origin.position.y, vis->origin.position.z);
btQuaternion childOrn(vis->origin.rotation.x, vis->origin.rotation.y, vis->origin.rotation.z, vis->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
convertURDFToVisualShape(vis, pathPrefix, inertialFrame.inverse()*childTrans, vertices, indices);
}
if (vertices.size() && indices.size())
{
graphicsIndex = m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size());
}
return graphicsIndex;
}
virtual class btCompoundShape* convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const
{
btCompoundShape* compoundShape = new btCompoundShape();
compoundShape->setMargin(0.001);
for (int v=0;v<(int)m_links[linkIndex]->collision_array.size();v++)
{
const Collision* col = m_links[linkIndex]->collision_array[v].get();
btCollisionShape* childShape = convertURDFToCollisionShape(col ,pathPrefix);
if (childShape)
{
btVector3 childPos(col->origin.position.x, col->origin.position.y, col->origin.position.z);
btQuaternion childOrn(col->origin.rotation.x, col->origin.rotation.y, col->origin.rotation.z, col->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
compoundShape->addChildShape(localInertiaFrame.inverse()*childTrans,childShape);
}
}
return compoundShape;
}
virtual class btMultiBody* allocateMultiBody(int /* urdfLinkIndex */, int totalNumJoints,btScalar mass, const btVector3& localInertiaDiagonal, bool isFixedBase, bool canSleep, bool multiDof) const
{
m_bulletMultiBody = new btMultiBody(totalNumJoints,mass,localInertiaDiagonal,isFixedBase,canSleep,multiDof);
return m_bulletMultiBody;
}
virtual class btRigidBody* allocateRigidBody(int urdfLinkIndex, btScalar mass, const btVector3& localInertiaDiagonal, const btTransform& initialWorldTrans, class btCollisionShape* colShape) const
{
btRigidBody::btRigidBodyConstructionInfo rbci(mass, 0, colShape, localInertiaDiagonal);
rbci.m_startWorldTransform = initialWorldTrans;
btRigidBody* body = new btRigidBody(rbci);
return body;
}
virtual class btMultiBodyLinkCollider* allocateMultiBodyLinkCollider(int /*urdfLinkIndex*/, int mbLinkIndex, btMultiBody* multiBody) const
{
btMultiBodyLinkCollider* mbCol= new btMultiBodyLinkCollider(multiBody, mbLinkIndex);
return mbCol;
}
virtual class btGeneric6DofSpring2Constraint* allocateGeneric6DofSpring2Constraint(int urdfLinkIndex, btRigidBody& rbA /*parent*/, btRigidBody& rbB, const btTransform& offsetInA, const btTransform& offsetInB, int rotateOrder) const
{
btGeneric6DofSpring2Constraint* c = new btGeneric6DofSpring2Constraint(rbA,rbB,offsetInA, offsetInB, (RotateOrder)rotateOrder);
return c;
}
virtual void addLinkMapping(int urdfLinkIndex, int mbLinkIndex) const
{
m_urdf2mbLink[urdfLinkIndex] = mbLinkIndex;
m_mb2urdfLink[mbLinkIndex] = urdfLinkIndex;
}
virtual void createRigidBodyGraphicsInstance(int linkIndex, btRigidBody* body, const btVector3& colorRgba, int graphicsIndex) const
{
m_guiHelper->createRigidBodyGraphicsObject(body, colorRgba);
}
virtual void createCollisionObjectGraphicsInstance(int linkIndex, class btCollisionObject* colObj, const btVector3& colorRgba) const
{
m_guiHelper->createCollisionObjectGraphicsObject(colObj,colorRgba);
}
btMultiBody* getBulletMultiBody()
{
return m_bulletMultiBody;
}
};
btAlignedObjectArray<std::string> gFileNameArray;
#define MAX_NUM_MOTORS 1024
struct ImportUrdfInternalData
{
ImportUrdfInternalData()
:m_numMotors(0)
{
}
btScalar m_motorTargetVelocities[MAX_NUM_MOTORS];
btMultiBodyJointMotor* m_jointMotors [MAX_NUM_MOTORS];
int m_numMotors;
};
ImportUrdfSetup::ImportUrdfSetup(struct GUIHelperInterface* helper, int option)
:CommonMultiBodyBase(helper)
{
if (option==1)
{
m_useMultiBody = true;
} else
{
m_useMultiBody = false;
}
static int count = 0;
gFileNameArray.clear();
gFileNameArray.push_back("r2d2.urdf");
m_data = new ImportUrdfInternalData;
//load additional urdf file names from file
FILE* f = fopen("urdf_files.txt","r");
if (f)
{
int result;
//warning: we don't avoid string buffer overflow in this basic example in fscanf
char fileName[1024];
do
{
result = fscanf(f,"%s",fileName);
if (result==1)
{
gFileNameArray.push_back(fileName);
}
} while (result==1);
fclose(f);
}
int numFileNames = gFileNameArray.size();
if (count>=numFileNames)
{
count=0;
}
sprintf(m_fileName,gFileNameArray[count++].c_str());
}
ImportUrdfSetup::~ImportUrdfSetup()
{
delete m_data;
}
static btVector4 colors[4] =
{
btVector4(1,0,0,1),
btVector4(0,1,0,1),
btVector4(0,1,1,1),
btVector4(1,1,0,1),
};
btVector3 selectColor()
{
static int curColor = 0;
btVector4 color = colors[curColor];
curColor++;
curColor&=3;
return color;
}
void ImportUrdfSetup::setFileName(const char* urdfFileName)
{
memcpy(m_fileName,urdfFileName,strlen(urdfFileName)+1);
}
void printTree(my_shared_ptr<const Link> link,int level = 0)
{
level+=2;
int count = 0;
for (std::vector<my_shared_ptr<Link> >::const_iterator child = link->child_links.begin(); child != link->child_links.end(); child++)
{
if (*child)
{
for(int j=0;j<level;j++) std::cout << " "; //indent
std::cout << "child(" << (count++)+1 << "): " << (*child)->name << std::endl;
// first grandchild
printTree(*child,level);
}
else
{
for(int j=0;j<level;j++) std::cout << " "; //indent
std::cout << "root link: " << link->name << " has a null child!" << *child << std::endl;
}
}
}
struct URDF_LinkInformation
{
const Link* m_thisLink;
int m_linkIndex;
//int m_parentIndex;
btTransform m_localInertialFrame;
//btTransform m_localVisualFrame;
btTransform m_bodyWorldTransform;
btVector3 m_localInertiaDiagonal;
btScalar m_mass;
btCollisionShape* m_collisionShape;
btRigidBody* m_bulletRigidBody;
URDF_LinkInformation()
:m_thisLink(0),
m_linkIndex(-2),
//m_parentIndex(-2),
m_collisionShape(0),
m_bulletRigidBody(0)
{
}
virtual ~URDF_LinkInformation()
{
printf("~\n");
}
};
struct URDF_JointInformation
{
};
struct URDF2BulletMappings
{
btHashMap<btHashPtr /*to Link*/, URDF_LinkInformation*> m_link2rigidbody;
btAlignedObjectArray<btScalar> m_linkMasses;
bool m_createMultiBody;
int m_totalNumJoints;
btMultiBody* m_bulletMultiBody;
btAlignedObjectArray<int> m_urdfLinkIndices2BulletLinkIndices;
URDF2BulletMappings()
:m_createMultiBody(false),
m_totalNumJoints(0),
m_bulletMultiBody(0)
{
}
};
enum MyFileType
{
FILE_STL=1,
FILE_COLLADA=2,
FILE_OBJ=3,
};
void convertURDFToVisualShape(const Visual* visual, const char* pathPrefix, const btTransform& visualTransform, btAlignedObjectArray<GLInstanceVertex>& verticesOut, btAlignedObjectArray<int>& indicesOut)
{
GLInstanceGraphicsShape* glmesh = 0;
btConvexShape* convexColShape = 0;
switch (visual->geometry->type)
{
case Geometry::CYLINDER:
{
printf("processing a cylinder\n");
urdf::Cylinder* cyl = (urdf::Cylinder*)visual->geometry.get();
btAlignedObjectArray<btVector3> vertices;
//int numVerts = sizeof(barrel_vertices)/(9*sizeof(float));
int numSteps = 32;
for (int i = 0; i<numSteps; i++)
{
btVector3 vert(cyl->radius*btSin(SIMD_2_PI*(float(i) / numSteps)), cyl->radius*btCos(SIMD_2_PI*(float(i) / numSteps)), cyl->length / 2.);
vertices.push_back(vert);
vert[2] = -cyl->length / 2.;
vertices.push_back(vert);
}
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
cylZShape->setMargin(0.001);
convexColShape = cylZShape;
break;
}
case Geometry::BOX:
{
printf("processing a box\n");
urdf::Box* box = (urdf::Box*)visual->geometry.get();
btVector3 extents(box->dim.x, box->dim.y, box->dim.z);
btBoxShape* boxShape = new btBoxShape(extents*0.5f);
//btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5);
convexColShape = boxShape;
convexColShape->setMargin(0.001);
break;
}
case Geometry::SPHERE:
{
printf("processing a sphere\n");
urdf::Sphere* sphere = (urdf::Sphere*)visual->geometry.get();
btScalar radius = sphere->radius;
btSphereShape* sphereShape = new btSphereShape(radius);
convexColShape = sphereShape;
convexColShape->setMargin(0.001);
break;
break;
}
case Geometry::MESH:
{
if (visual->name.length())
{
printf("visual->name=%s\n", visual->name.c_str());
}
if (visual->geometry)
{
const urdf::Mesh* mesh = (const urdf::Mesh*) visual->geometry.get();
if (mesh->filename.length())
{
const char* filename = mesh->filename.c_str();
printf("mesh->filename=%s\n", filename);
char fullPath[1024];
int fileType = 0;
sprintf(fullPath, "%s%s", pathPrefix, filename);
b3FileUtils::toLower(fullPath);
if (strstr(fullPath, ".dae"))
{
fileType = FILE_COLLADA;
}
if (strstr(fullPath, ".stl"))
{
fileType = FILE_STL;
}
if (strstr(fullPath,".obj"))
{
fileType = FILE_OBJ;
}
sprintf(fullPath, "%s%s", pathPrefix, filename);
FILE* f = fopen(fullPath, "rb");
if (f)
{
fclose(f);
switch (fileType)
{
case FILE_OBJ:
{
glmesh = LoadMeshFromObj(fullPath,pathPrefix);
break;
}
case FILE_STL:
{
glmesh = LoadMeshFromSTL(fullPath);
break;
}
case FILE_COLLADA:
{
btAlignedObjectArray<GLInstanceGraphicsShape> visualShapes;
btAlignedObjectArray<ColladaGraphicsInstance> visualShapeInstances;
btTransform upAxisTrans; upAxisTrans.setIdentity();
float unitMeterScaling = 1;
int upAxis = 2;
LoadMeshFromCollada(fullPath,
visualShapes,
visualShapeInstances,
upAxisTrans,
unitMeterScaling,
upAxis);
glmesh = new GLInstanceGraphicsShape;
int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i<visualShapeInstances.size(); i++)
{
ColladaGraphicsInstance* instance = &visualShapeInstances[i];
GLInstanceGraphicsShape* gfxShape = &visualShapes[instance->m_shapeIndex];
b3AlignedObjectArray<GLInstanceVertex> verts;
verts.resize(gfxShape->m_vertices->size());
int baseIndex = glmesh->m_vertices->size();
for (int i = 0; i<gfxShape->m_vertices->size(); i++)
{
verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0];
verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1];
verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2];
verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0];
verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1];
verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0];
verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1];
verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2];
verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3];
}
int curNumIndices = glmesh->m_indices->size();
int additionalIndices = gfxShape->m_indices->size();
glmesh->m_indices->resize(curNumIndices + additionalIndices);
for (int k = 0; k<additionalIndices; k++)
{
glmesh->m_indices->at(curNumIndices + k) = gfxShape->m_indices->at(k) + baseIndex;
}
//compensate upAxisTrans and unitMeterScaling here
btMatrix4x4 upAxisMat;
upAxisMat.setIdentity();
// upAxisMat.setPureRotation(upAxisTrans.getRotation());
btMatrix4x4 unitMeterScalingMat;
unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling, unitMeterScaling, unitMeterScaling));
btMatrix4x4 worldMat = unitMeterScalingMat*upAxisMat*instance->m_worldTransform;
//btMatrix4x4 worldMat = instance->m_worldTransform;
int curNumVertices = glmesh->m_vertices->size();
int additionalVertices = verts.size();
glmesh->m_vertices->reserve(curNumVertices + additionalVertices);
for (int v = 0; v<verts.size(); v++)
{
btVector3 pos(verts[v].xyzw[0], verts[v].xyzw[1], verts[v].xyzw[2]);
pos = worldMat*pos;
verts[v].xyzw[0] = float(pos[0]);
verts[v].xyzw[1] = float(pos[1]);
verts[v].xyzw[2] = float(pos[2]);
glmesh->m_vertices->push_back(verts[v]);
}
}
glmesh->m_numIndices = glmesh->m_indices->size();
glmesh->m_numvertices = glmesh->m_vertices->size();
//glmesh = LoadMeshFromCollada(fullPath);
break;
}
default:
{
printf("Error: unsupported file type for Visual mesh: %s\n", fullPath);
btAssert(0);
}
}
if (glmesh && (glmesh->m_numvertices>0))
{
}
else
{
printf("issue extracting mesh from COLLADA/STL file %s\n", fullPath);
}
}
else
{
printf("mesh geometry not found %s\n", fullPath);
}
}
}
break;
}
default:
{
printf("Error: unknown visual geometry type\n");
}
}
//if we have a convex, tesselate into localVertices/localIndices
if (convexColShape)
{
btShapeHull* hull = new btShapeHull(convexColShape);
hull->buildHull(0.0);
{
// int strideInBytes = 9*sizeof(float);
int numVertices = hull->numVertices();
int numIndices = hull->numIndices();
glmesh = new GLInstanceGraphicsShape;
int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i = 0; i < numVertices; i++)
{
GLInstanceVertex vtx;
btVector3 pos = hull->getVertexPointer()[i];
vtx.xyzw[0] = pos.x();
vtx.xyzw[1] = pos.y();
vtx.xyzw[2] = pos.z();
vtx.xyzw[3] = 1.f;
pos.normalize();
vtx.normal[0] = pos.x();
vtx.normal[1] = pos.y();
vtx.normal[2] = pos.z();
vtx.uv[0] = 0.5f;
vtx.uv[1] = 0.5f;
glmesh->m_vertices->push_back(vtx);
}
btAlignedObjectArray<int> indices;
for (int i = 0; i < numIndices; i++)
{
glmesh->m_indices->push_back(hull->getIndexPointer()[i]);
}
glmesh->m_numvertices = glmesh->m_vertices->size();
glmesh->m_numIndices = glmesh->m_indices->size();
}
delete convexColShape;
convexColShape = 0;
}
if (glmesh && glmesh->m_numIndices>0 && glmesh->m_numvertices >0)
{
int baseIndex = verticesOut.size();
for (int i = 0; i < glmesh->m_indices->size(); i++)
{
indicesOut.push_back(glmesh->m_indices->at(i) + baseIndex);
}
for (int i = 0; i < glmesh->m_vertices->size(); i++)
{
GLInstanceVertex& v = glmesh->m_vertices->at(i);
btVector3 vert(v.xyzw[0],v.xyzw[1],v.xyzw[2]);
btVector3 vt = visualTransform*vert;
v.xyzw[0] = vt[0];
v.xyzw[1] = vt[1];
v.xyzw[2] = vt[2];
btVector3 triNormal(v.normal[0],v.normal[1],v.normal[2]);
triNormal = visualTransform.getBasis()*triNormal;
v.normal[0] = triNormal[0];
v.normal[1] = triNormal[1];
v.normal[2] = triNormal[2];
verticesOut.push_back(v);
}
}
}
btCollisionShape* convertURDFToCollisionShape(const Collision* visual, const char* pathPrefix)
{
btCollisionShape* shape = 0;
switch (visual->geometry->type)
{
case Geometry::CYLINDER:
{
printf("processing a cylinder\n");
urdf::Cylinder* cyl = (urdf::Cylinder*)visual->geometry.get();
btAlignedObjectArray<btVector3> vertices;
//int numVerts = sizeof(barrel_vertices)/(9*sizeof(float));
int numSteps = 32;
for (int i=0;i<numSteps;i++)
{
btVector3 vert(cyl->radius*btSin(SIMD_2_PI*(float(i)/numSteps)),cyl->radius*btCos(SIMD_2_PI*(float(i)/numSteps)),cyl->length/2.);
vertices.push_back(vert);
vert[2] = -cyl->length/2.;
vertices.push_back(vert);
}
btConvexHullShape* cylZShape = new btConvexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
cylZShape->setMargin(0.001);
cylZShape->initializePolyhedralFeatures();
//btConvexShape* cylZShape = new btConeShapeZ(cyl->radius,cyl->length);//(vexHullShape(&vertices[0].x(), vertices.size(), sizeof(btVector3));
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
shape = cylZShape;
break;
}
case Geometry::BOX:
{
printf("processing a box\n");
urdf::Box* box = (urdf::Box*)visual->geometry.get();
btVector3 extents(box->dim.x,box->dim.y,box->dim.z);
btBoxShape* boxShape = new btBoxShape(extents*0.5f);
//btConvexShape* boxShape = new btConeShapeX(extents[2]*0.5,extents[0]*0.5);
shape = boxShape;
shape ->setMargin(0.001);
break;
}
case Geometry::SPHERE:
{
printf("processing a sphere\n");
urdf::Sphere* sphere = (urdf::Sphere*)visual->geometry.get();
btScalar radius = sphere->radius;
btSphereShape* sphereShape = new btSphereShape(radius);
shape = sphereShape;
shape ->setMargin(0.001);
break;
break;
}
case Geometry::MESH:
{
if (visual->name.length())
{
printf("visual->name=%s\n",visual->name.c_str());
}
if (visual->geometry)
{
const urdf::Mesh* mesh = (const urdf::Mesh*) visual->geometry.get();
if (mesh->filename.length())
{
const char* filename = mesh->filename.c_str();
printf("mesh->filename=%s\n",filename);
char fullPath[1024];
int fileType = 0;
sprintf(fullPath,"%s%s",pathPrefix,filename);
b3FileUtils::toLower(fullPath);
if (strstr(fullPath,".dae"))
{
fileType = FILE_COLLADA;
}
if (strstr(fullPath,".stl"))
{
fileType = FILE_STL;
}
if (strstr(fullPath,".obj"))
{
fileType = FILE_OBJ;
}
sprintf(fullPath,"%s%s",pathPrefix,filename);
FILE* f = fopen(fullPath,"rb");
if (f)
{
fclose(f);
GLInstanceGraphicsShape* glmesh = 0;
switch (fileType)
{
case FILE_OBJ:
{
glmesh = LoadMeshFromObj(fullPath,pathPrefix);
break;
}
case FILE_STL:
{
glmesh = LoadMeshFromSTL(fullPath);
break;
}
case FILE_COLLADA:
{
btAlignedObjectArray<GLInstanceGraphicsShape> visualShapes;
btAlignedObjectArray<ColladaGraphicsInstance> visualShapeInstances;
btTransform upAxisTrans;upAxisTrans.setIdentity();
float unitMeterScaling=1;
int upAxis = 2;
LoadMeshFromCollada(fullPath,
visualShapes,
visualShapeInstances,
upAxisTrans,
unitMeterScaling,
upAxis );
glmesh = new GLInstanceGraphicsShape;
int index = 0;
glmesh->m_indices = new b3AlignedObjectArray<int>();
glmesh->m_vertices = new b3AlignedObjectArray<GLInstanceVertex>();
for (int i=0;i<visualShapeInstances.size();i++)
{
ColladaGraphicsInstance* instance = &visualShapeInstances[i];
GLInstanceGraphicsShape* gfxShape = &visualShapes[instance->m_shapeIndex];
b3AlignedObjectArray<GLInstanceVertex> verts;
verts.resize(gfxShape->m_vertices->size());
int baseIndex = glmesh->m_vertices->size();
for (int i=0;i<gfxShape->m_vertices->size();i++)
{
verts[i].normal[0] = gfxShape->m_vertices->at(i).normal[0];
verts[i].normal[1] = gfxShape->m_vertices->at(i).normal[1];
verts[i].normal[2] = gfxShape->m_vertices->at(i).normal[2];
verts[i].uv[0] = gfxShape->m_vertices->at(i).uv[0];
verts[i].uv[1] = gfxShape->m_vertices->at(i).uv[1];
verts[i].xyzw[0] = gfxShape->m_vertices->at(i).xyzw[0];
verts[i].xyzw[1] = gfxShape->m_vertices->at(i).xyzw[1];
verts[i].xyzw[2] = gfxShape->m_vertices->at(i).xyzw[2];
verts[i].xyzw[3] = gfxShape->m_vertices->at(i).xyzw[3];
}
int curNumIndices = glmesh->m_indices->size();
int additionalIndices = gfxShape->m_indices->size();
glmesh->m_indices->resize(curNumIndices+additionalIndices);
for (int k=0;k<additionalIndices;k++)
{
glmesh->m_indices->at(curNumIndices+k)=gfxShape->m_indices->at(k)+baseIndex;
}
//compensate upAxisTrans and unitMeterScaling here
btMatrix4x4 upAxisMat;
upAxisMat.setPureRotation(upAxisTrans.getRotation());
btMatrix4x4 unitMeterScalingMat;
unitMeterScalingMat.setPureScaling(btVector3(unitMeterScaling,unitMeterScaling,unitMeterScaling));
btMatrix4x4 worldMat = unitMeterScalingMat*instance->m_worldTransform*upAxisMat;
//btMatrix4x4 worldMat = instance->m_worldTransform;
int curNumVertices = glmesh->m_vertices->size();
int additionalVertices = verts.size();
glmesh->m_vertices->reserve(curNumVertices+additionalVertices);
for(int v=0;v<verts.size();v++)
{
btVector3 pos(verts[v].xyzw[0],verts[v].xyzw[1],verts[v].xyzw[2]);
pos = worldMat*pos;
verts[v].xyzw[0] = float(pos[0]);
verts[v].xyzw[1] = float(pos[1]);
verts[v].xyzw[2] = float(pos[2]);
glmesh->m_vertices->push_back(verts[v]);
}
}
glmesh->m_numIndices = glmesh->m_indices->size();
glmesh->m_numvertices = glmesh->m_vertices->size();
//glmesh = LoadMeshFromCollada(fullPath);
break;
}
default:
{
printf("Unsupported file type in Collision: %s\n",fullPath);
btAssert(0);
}
}
if (glmesh && (glmesh->m_numvertices>0))
{
printf("extracted %d verticed from STL file %s\n", glmesh->m_numvertices,fullPath);
//int shapeId = m_glApp->m_instancingRenderer->registerShape(&gvertices[0].pos[0],gvertices.size(),&indices[0],indices.size());
//convex->setUserIndex(shapeId);
btAlignedObjectArray<btVector3> convertedVerts;
convertedVerts.reserve(glmesh->m_numvertices);
for (int i=0;i<glmesh->m_numvertices;i++)
{
convertedVerts.push_back(btVector3(glmesh->m_vertices->at(i).xyzw[0],glmesh->m_vertices->at(i).xyzw[1],glmesh->m_vertices->at(i).xyzw[2]));
}
//btConvexHullShape* cylZShape = new btConvexHullShape(&glmesh->m_vertices->at(0).xyzw[0], glmesh->m_numvertices, sizeof(GLInstanceVertex));
btConvexHullShape* cylZShape = new btConvexHullShape(&convertedVerts[0].getX(), convertedVerts.size(), sizeof(btVector3));
//cylZShape->initializePolyhedralFeatures();
//btVector3 halfExtents(cyl->radius,cyl->radius,cyl->length/2.);
//btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
cylZShape->setMargin(0.001);
shape = cylZShape;
} else
{
printf("issue extracting mesh from STL file %s\n", fullPath);
}
} else
{
printf("mesh geometry not found %s\n",fullPath);
}
}
}
break;
}
default:
{
printf("Error: unknown visual geometry type\n");
}
}
return shape;
}
void URDFvisual2BulletCollisionShape(my_shared_ptr<const Link> link, struct GUIHelperInterface* helper, const btTransform& parentTransformInWorldSpace, btMultiBodyDynamicsWorld* world1, URDF2BulletMappings& mappings, const char* pathPrefix)
{
//btCollisionShape* shape = 0;
btTransform linkTransformInWorldSpace;
linkTransformInWorldSpace.setIdentity();
btScalar mass = 0;
btTransform inertialFrame;
inertialFrame.setIdentity();
const Link* parentLink = (*link).getParent();
URDF_LinkInformation* pp = 0;
int linkIndex = mappings.m_linkMasses.size();//assuming root == 0, child links use contiguous numbering > 0
btVector3 localInertiaDiagonal(0,0,0);
int parentIndex = -1;
if (parentLink)
{
parentIndex = mappings.m_urdfLinkIndices2BulletLinkIndices[parentLink->m_link_index];
btAssert(parentIndex>=0);
}
{
URDF_LinkInformation** ppRigidBody = mappings.m_link2rigidbody.find(parentLink);
if (ppRigidBody)
{
pp = (*ppRigidBody);
btTransform tr = pp->m_bodyWorldTransform;
printf("rigidbody origin (COM) of link(%s) parent(%s): %f,%f,%f\n",(*link).name.c_str(), parentLink->name.c_str(), tr.getOrigin().x(), tr.getOrigin().y(), tr.getOrigin().z());
}
}
mappings.m_urdfLinkIndices2BulletLinkIndices[(*link).m_link_index] = linkIndex;
if ((*link).inertial)
{
mass = (*link).inertial->mass;
localInertiaDiagonal.setValue((*link).inertial->ixx,(*link).inertial->iyy,(*link).inertial->izz);
inertialFrame.setOrigin(btVector3((*link).inertial->origin.position.x,(*link).inertial->origin.position.y,(*link).inertial->origin.position.z));
inertialFrame.setRotation(btQuaternion((*link).inertial->origin.rotation.x,(*link).inertial->origin.rotation.y,(*link).inertial->origin.rotation.z,(*link).inertial->origin.rotation.w));
}
btTransform parent2joint;
parent2joint.setIdentity();
if ((*link).parent_joint)
{
const urdf::Vector3 pos = (*link).parent_joint->parent_to_joint_origin_transform.position;
const urdf::Rotation orn = (*link).parent_joint->parent_to_joint_origin_transform.rotation;
parent2joint.setOrigin(btVector3(pos.x,pos.y,pos.z));
parent2joint.setRotation(btQuaternion(orn.x,orn.y,orn.z,orn.w));
linkTransformInWorldSpace =parentTransformInWorldSpace*parent2joint;
} else
{
linkTransformInWorldSpace = parentTransformInWorldSpace;
}
{
printf("converting visuals of link %s", link->name.c_str());
{
btAlignedObjectArray<GLInstanceVertex> vertices;
btAlignedObjectArray<int> indices;
btTransform startTrans; startTrans.setIdentity();
int graphicsIndex = -1;
for (int v = 0; v < (int)link->visual_array.size(); v++)
{
const Visual* vis = link->visual_array[v].get();
btVector3 childPos(vis->origin.position.x, vis->origin.position.y, vis->origin.position.z);
btQuaternion childOrn(vis->origin.rotation.x, vis->origin.rotation.y, vis->origin.rotation.z, vis->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
convertURDFToVisualShape(vis, pathPrefix, inertialFrame.inverse()*childTrans, vertices, indices);
}
if (vertices.size() && indices.size())
{
graphicsIndex = helper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size());
}
btCompoundShape* compoundShape = new btCompoundShape();
compoundShape->setMargin(0.001);
for (int v=0;v<(int)link->collision_array.size();v++)
{
const Collision* col = link->collision_array[v].get();
btCollisionShape* childShape = convertURDFToCollisionShape(col ,pathPrefix);
if (childShape)
{
btVector3 childPos(col->origin.position.x, col->origin.position.y, col->origin.position.z);
btQuaternion childOrn(col->origin.rotation.x, col->origin.rotation.y, col->origin.rotation.z, col->origin.rotation.w);
btTransform childTrans;
childTrans.setOrigin(childPos);
childTrans.setRotation(childOrn);
compoundShape->addChildShape(inertialFrame.inverse()*childTrans,childShape);
}
}
if (compoundShape)
{
btVector3 color = selectColor();
/* if (visual->material.get())
{
color.setValue(visual->material->color.r,visual->material->color.g,visual->material->color.b);//,visual->material->color.a);
}
*/
//btVector3 localInertiaDiagonal(0, 0, 0);
//if (mass)
//{
// shape->calculateLocalInertia(mass, localInertiaDiagonal);
//}
//btTransform visualFrameInWorldSpace = linkTransformInWorldSpace*visual_frame;
btTransform inertialFrameInWorldSpace = linkTransformInWorldSpace*inertialFrame;
URDF_LinkInformation* linkInfo = new URDF_LinkInformation;
if (!mappings.m_createMultiBody)
{
btRigidBody::btRigidBodyConstructionInfo rbci(mass, 0, compoundShape, localInertiaDiagonal);
rbci.m_startWorldTransform = inertialFrameInWorldSpace;
linkInfo->m_bodyWorldTransform = inertialFrameInWorldSpace;//visualFrameInWorldSpace
//rbci.m_startWorldTransform = inertialFrameInWorldSpace;//linkCenterOfMass;
btRigidBody* body = new btRigidBody(rbci);
world1->addRigidBody(body, bodyCollisionFilterGroup, bodyCollisionFilterMask);
compoundShape->setUserIndex(graphicsIndex);
helper->createRigidBodyGraphicsObject(body, color);
linkInfo->m_bulletRigidBody = body;
} else
{
if (mappings.m_bulletMultiBody==0)
{
bool multiDof = true;
bool canSleep = false;
bool isFixedBase = (mass==0);//todo: figure out when base is fixed
int totalNumJoints = mappings.m_totalNumJoints;
mappings.m_bulletMultiBody = new btMultiBody(totalNumJoints,mass, localInertiaDiagonal, isFixedBase, canSleep, multiDof);
}
}
linkInfo->m_collisionShape = compoundShape;
linkInfo->m_localInertiaDiagonal = localInertiaDiagonal;
linkInfo->m_mass = mass;
//linkInfo->m_localVisualFrame =visual_frame;
linkInfo->m_localInertialFrame =inertialFrame;
linkInfo->m_thisLink = link.get();
const Link* p = link.get();
mappings.m_link2rigidbody.insert(p, linkInfo);
//create a joint if necessary
if ((*link).parent_joint && pp)
{
btAssert(pp);
const Joint* pj = (*link).parent_joint.get();
btTransform offsetInA,offsetInB;
static bool once = true;
offsetInA.setIdentity();
static bool toggle=false;
//offsetInA = pp->m_localVisualFrame.inverse()*parent2joint;
offsetInA = pp->m_localInertialFrame.inverse()*parent2joint;
offsetInB.setIdentity();
//offsetInB = visual_frame.inverse();
offsetInB = inertialFrame.inverse();
bool disableParentCollision = true;
btVector3 jointAxis(pj->axis.x,pj->axis.y,pj->axis.z);
switch (pj->type)
{
case Joint::FIXED:
{
if (mappings.m_createMultiBody)
{
//todo: adjust the center of mass transform and pivot axis properly
printf("Fixed joint (btMultiBody)\n");
//btVector3 dVec = quatRotate(parentComToThisCom.getRotation(),offsetInB.inverse().getOrigin());
btQuaternion rot = offsetInA.inverse().getRotation();//parent2joint.inverse().getRotation();
//toggle=!toggle;
//mappings.m_bulletMultiBody->setupFixed(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
// rot, parent2joint.getOrigin(), btVector3(0,0,0),disableParentCollision);
mappings.m_bulletMultiBody->setupFixed(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
rot*offsetInB.getRotation(), offsetInA.getOrigin(),-offsetInB.getOrigin(),disableParentCollision);
/*
mappings.m_bulletMultiBody->setupRevolute(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
parent2joint.inverse().getRotation(), jointAxis, offsetInA.getOrigin(),//parent2joint.getOrigin(),
-offsetInB.getOrigin(),
disableParentCollision);
*/
btMatrix3x3 rm(rot);
btScalar y,p,r;
rm.getEulerZYX(y,p,r);
//parent2joint.inverse().getRotation(), offsetInA.getOrigin(), -offsetInB.getOrigin(), disableParentCollision);
//linkInfo->m_localVisualFrame.setIdentity();
printf("y=%f,p=%f,r=%f\n", y,p,r);
} else
{
printf("Fixed joint\n");
btMatrix3x3 rm(offsetInA.getBasis());
btScalar y,p,r;
rm.getEulerZYX(y,p,r);
//parent2joint.inverse().getRotation(), offsetInA.getOrigin(), -offsetInB.getOrigin(), disableParentCollision);
//linkInfo->m_localVisualFrame.setIdentity();
printf("y=%f,p=%f,r=%f\n", y,p,r);
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB);
// btVector3 bulletAxis(pj->axis.x,pj->axis.y,pj->axis.z);
dof6->setLinearLowerLimit(btVector3(0,0,0));
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,0));
if (enableConstraints)
world1->addConstraint(dof6,true);
// btFixedConstraint* fixed = new btFixedConstraint(*parentBody, *body,offsetInA,offsetInB);
// world->addConstraint(fixed,true);
}
break;
}
case Joint::CONTINUOUS:
case Joint::REVOLUTE:
{
if (mappings.m_createMultiBody)
{
//todo: adjust the center of mass transform and pivot axis properly
/*mappings.m_bulletMultiBody->setupRevolute(
linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
parent2joint.inverse().getRotation(), jointAxis, parent2joint.getOrigin(),
btVector3(0,0,0),//offsetInB.getOrigin(),
disableParentCollision);
*/
mappings.m_bulletMultiBody->setupRevolute(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
//parent2joint.inverse().getRotation(), jointAxis, offsetInA.getOrigin(),//parent2joint.getOrigin(),
offsetInA.inverse().getRotation()*offsetInB.getRotation(), quatRotate(offsetInB.inverse().getRotation(),jointAxis), offsetInA.getOrigin(),//parent2joint.getOrigin(),
-offsetInB.getOrigin(),
disableParentCollision);
//linkInfo->m_localVisualFrame.setIdentity();
} else
{
//only handle principle axis at the moment,
//@todo(erwincoumans) orient the constraint for non-principal axis
btVector3 axis(pj->axis.x,pj->axis.y,pj->axis.z);
int principleAxis = axis.closestAxis();
switch (principleAxis)
{
case 0:
{
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_ZYX);
dof6->setLinearLowerLimit(btVector3(0,0,0));
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(-1,0,0));
dof6->setAngularLowerLimit(btVector3(1,0,0));
if (enableConstraints)
world1->addConstraint(dof6,true);
break;
}
case 1:
{
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_XZY);
dof6->setLinearLowerLimit(btVector3(0,0,0));
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,-1,0));
dof6->setAngularLowerLimit(btVector3(0,1,0));
if (enableConstraints)
world1->addConstraint(dof6,true);
break;
}
case 2:
default:
{
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB,RO_XYZ);
dof6->setLinearLowerLimit(btVector3(0,0,0));
dof6->setLinearUpperLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,-1));
dof6->setAngularLowerLimit(btVector3(0,0,0));
if (enableConstraints)
world1->addConstraint(dof6,true);
}
};
printf("Revolute/Continuous joint\n");
}
break;
}
case Joint::PRISMATIC:
{
if (mappings.m_createMultiBody)
{
//mappings.m_bulletMultiBody->setupPrismatic(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
// parent2joint.inverse().getRotation(),jointAxis,parent2joint.getOrigin(),disableParentCollision);
//mappings.m_bulletMultiBody->setupPrismatic(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
// parent2joint.inverse().getRotation(),jointAxis,parent2joint.getOrigin(),disableParentCollision);
mappings.m_bulletMultiBody->setupPrismatic(linkIndex - 1, mass, localInertiaDiagonal, parentIndex - 1,
offsetInA.inverse().getRotation()*offsetInB.getRotation(), quatRotate(offsetInB.inverse().getRotation(),jointAxis), offsetInA.getOrigin(),//parent2joint.getOrigin(),
-offsetInB.getOrigin(),
disableParentCollision);
} else
{
btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*pp->m_bulletRigidBody, *linkInfo->m_bulletRigidBody, offsetInA, offsetInB);
//todo(erwincoumans) for now, we only support principle axis along X, Y or Z
btVector3 axis(pj->axis.x,pj->axis.y,pj->axis.z);
int principleAxis = axis.closestAxis();
switch (principleAxis)
{
case 0:
{
dof6->setLinearLowerLimit(btVector3(pj->limits->lower,0,0));
dof6->setLinearUpperLimit(btVector3(pj->limits->upper,0,0));
break;
}
case 1:
{
dof6->setLinearLowerLimit(btVector3(0,pj->limits->lower,0));
dof6->setLinearUpperLimit(btVector3(0,pj->limits->upper,0));
break;
}
case 2:
default:
{
dof6->setLinearLowerLimit(btVector3(0,0,pj->limits->lower));
dof6->setLinearUpperLimit(btVector3(0,0,pj->limits->upper));
}
};
dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,0));
if (enableConstraints)
world1->addConstraint(dof6,true);
printf("Prismatic\n");
}
break;
}
default:
{
printf("Error: unsupported joint type in URDF (%d)\n", pj->type);
}
}
}
if (mappings.m_createMultiBody)
{
if (compoundShape->getNumChildShapes()>0)
{
btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(mappings.m_bulletMultiBody, linkIndex-1);
//btCompoundShape* comp = new btCompoundShape();
//comp->addChildShape(linkInfo->m_localVisualFrame,shape);
compoundShape->setUserIndex(graphicsIndex);
col->setCollisionShape(compoundShape);
btTransform tr;
tr.setIdentity();
tr = linkTransformInWorldSpace;
//if we don't set the initial pose of the btCollisionObject, the simulator will do this
//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
//tr.setOrigin(local_origin[0]);
//tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
col->setWorldTransform(tr);
bool isDynamic = true;
short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
short collisionFilterMask = isDynamic? short(btBroadphaseProxy::AllFilter) : short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
world1->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);
btVector3 color = selectColor();//(0.0,0.0,0.5);
helper->createCollisionObjectGraphicsObject(col,color);
btScalar friction = 0.5f;
col->setFriction(friction);
if (parentIndex>=0)
{
mappings.m_bulletMultiBody->getLink(linkIndex-1).m_collider=col;
} else
{
mappings.m_bulletMultiBody->setBaseCollider(col);
}
}
}
//mappings.m_linkLocalDiagonalInertiaTensors.push_back(localInertiaDiagonal);
//mappings.m_linkLocalInertiaTransforms.push_back(localInertialTransform);
}
}
}
mappings.m_linkMasses.push_back(mass);
for (std::vector<my_shared_ptr<Link> >::const_iterator child = link->child_links.begin(); child != link->child_links.end(); child++)
{
if (*child)
{
URDFvisual2BulletCollisionShape(*child,helper, linkTransformInWorldSpace, world1,mappings,pathPrefix);
}
else
{
std::cout << "root link: " << link->name << " has a null child!" << *child << std::endl;
}
}
}
void ImportUrdfSetup::initPhysics()
{
int upAxis = 2;
m_guiHelper->setUpAxis(2);
this->createEmptyDynamicsWorld();
//m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
btVector3 gravity(0,0,0);
gravity[upAxis]=-9.8;
m_dynamicsWorld->setGravity(gravity);
//int argc=0;
char relativeFileName[1024];
b3FileUtils fu;
printf("m_fileName=%s\n", m_fileName);
bool fileFound = fu.findFile(m_fileName, relativeFileName, 1024);
std::string xml_string;
char pathPrefix[1024];
pathPrefix[0] = 0;
if (!fileFound){
std::cerr << "URDF file not found, using a dummy test URDF" << std::endl;
xml_string = std::string(urdf_char);
} else
{
int maxPathLen = 1024;
fu.extractPath(relativeFileName,pathPrefix,maxPathLen);
std::fstream xml_file(relativeFileName, std::fstream::in);
while ( xml_file.good() )
{
std::string line;
std::getline( xml_file, line);
xml_string += (line + "\n");
}
xml_file.close();
}
my_shared_ptr<ModelInterface> robot = parseURDF(xml_string);
if (!robot){
std::cerr << "ERROR: Model Parsing the xml failed" << std::endl;
return ;
}
std::cout << "robot name is: " << robot->getName() << std::endl;
// get info from parser
std::cout << "---------- Successfully Parsed XML ---------------" << std::endl;
// get root link
my_shared_ptr<const Link> root_link=robot->getRoot();
if (!root_link) return ;
std::cout << "root Link: " << root_link->name << " has " << root_link->child_links.size() << " child(ren)" << std::endl;
// print entire tree
printTree(root_link);
printf("now using new interface\n");
std::cout << "root Link: " << root_link->name << " has " << root_link->child_links.size() << " child(ren)" << std::endl;
//now print the tree using the new interface
MyURDF2Bullet u2b(robot,m_guiHelper);
printTree(u2b, 0,0);
btTransform identityTrans;
identityTrans.setIdentity();
int numJoints = (*robot).m_numJoints;
bool useUrdfInterfaceClass = true;
{
URDF2BulletMappings mappings;
btMultiBody* mb = 0;
if (!useUrdfInterfaceClass)
{
mappings.m_createMultiBody = m_useMultiBody;
mappings.m_totalNumJoints = numJoints;
mappings.m_urdfLinkIndices2BulletLinkIndices.resize(numJoints+1,-2);//root and child links (=1+numJoints)
URDFvisual2BulletCollisionShape(root_link, m_guiHelper, identityTrans,m_dynamicsWorld,mappings,pathPrefix);
mb = mappings.m_bulletMultiBody;
if (m_useMultiBody)
{
mb->setHasSelfCollision(false);
mb->finalizeMultiDof();
m_dynamicsWorld->addMultiBody(mb);
}
} else
{
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
int rootLinkIndex = u2b.getRootLinkIndex();
printf("urdf root link index = %d\n",rootLinkIndex);
ConvertURDF2Bullet(u2b,identityTrans,m_dynamicsWorld,m_useMultiBody,pathPrefix);
mb = u2b.getBulletMultiBody();
if (m_useMultiBody)
{
mb->setHasSelfCollision(false);
mb->finalizeMultiDof();
m_dynamicsWorld->addMultiBody(mb);
//create motors for each joint
for (int i=0;i<mb->getNumLinks();i++)
{
int mbLinkIndex = i;
if (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute)
{
if (m_data->m_numMotors<MAX_NUM_MOTORS)
{
int urdfLinkIndex = u2b.m_mb2urdfLink[mbLinkIndex];
std::string jointName = u2b.getJointName(urdfLinkIndex);
char motorName[1024];
sprintf(motorName,"%s q'", jointName.c_str());
btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors];
*motorVel = 0.f;
SliderParams slider(motorName,motorVel);
slider.m_minVal=-4;
slider.m_maxVal=4;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
float maxMotorImpulse = 0.1f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,0,0,maxMotorImpulse);
m_data->m_jointMotors[m_data->m_numMotors]=motor;
m_dynamicsWorld->addMultiBodyConstraint(motor);
m_data->m_numMotors++;
}
}
}
}
}
}
//the btMultiBody support is work-in-progress :-)
printf("numJoints/DOFS = %d\n", numJoints);
bool createGround=true;
if (createGround)
{
btVector3 groundHalfExtents(20,20,20);
groundHalfExtents[upAxis]=1.f;
btBoxShape* box = new btBoxShape(groundHalfExtents);
box->initializePolyhedralFeatures();
m_guiHelper->createCollisionShapeGraphicsObject(box);
btTransform start; start.setIdentity();
btVector3 groundOrigin(0,0,0);
groundOrigin[upAxis]=-2;//.5;
start.setOrigin(groundOrigin);
btRigidBody* body = createRigidBody(0,start,box);
//m_dynamicsWorld->removeRigidBody(body);
// m_dynamicsWorld->addRigidBody(body,2,1);
btVector3 color(0.5,0.5,0.5);
m_guiHelper->createRigidBodyGraphicsObject(body,color);
}
///this extra stepSimulation call makes sure that all the btMultibody transforms are properly propagates.
m_dynamicsWorld->stepSimulation(1. / 240., 0);// 1., 10, 1. / 240.);
}
void ImportUrdfSetup::stepSimulation(float deltaTime)
{
if (m_dynamicsWorld)
{
for (int i=0;i<m_data->m_numMotors;i++)
{
m_data->m_jointMotors[i]->setVelocityTarget(m_data->m_motorTargetVelocities[i]);
}
//the maximal coordinates/iterative MLCP solver requires a smallish timestep to converge
m_dynamicsWorld->stepSimulation(deltaTime,10,1./240.);
}
}
class ExampleInterface* ImportURDFCreateFunc(struct PhysicsInterface* pint, struct GUIHelperInterface* helper, int option)
{
return new ImportUrdfSetup(helper, option);
}