ForkLift demo added

This commit is contained in:
rponom 2008-09-06 00:56:56 +00:00
parent 65f8a7e70e
commit 02112b0687
3 changed files with 714 additions and 77 deletions

View File

@ -13,13 +13,48 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
/// September 2006: ForkLiftDemo is work in progress, this file is mostly just a placeholder
/// This ForkLiftDemo file is very early in development, please check it later
/// September 2006: VehicleDemo is work in progress, this file is mostly just a placeholder
/// This VehicleDemo file is very early in development, please check it later
/// One todo is a basic engine model:
/// A function that maps user input (throttle) into torque/force applied on the wheels
/// with gears etc.
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923
#endif
#ifndef M_PI_4
#define M_PI_4 0.785398163397448309616
#endif
#define LIFT_EPS 0.0000001f
//
// By default, Bullet Vehicle uses Y as up axis.
// You can override the up axis, for example Z-axis up. Enable this define to see how to:
//#define FORCE_ZAXIS_UP 1
//
#ifdef FORCE_ZAXIS_UP
int rightIndex = 0;
int upIndex = 2;
int forwardIndex = 1;
btVector3 wheelDirectionCS0(0,0,-1);
btVector3 wheelAxleCS(1,0,0);
#else
int rightIndex = 0;
int upIndex = 1;
int forwardIndex = 2;
btVector3 wheelDirectionCS0(0,-1,0);
btVector3 wheelAxleCS(-1,0,0);
#endif
#include "GLDebugDrawer.h"
#include <stdio.h> //printf debugging
@ -27,26 +62,32 @@ subject to the following restrictions:
#include "GlutStuff.h"
#include "ForkLiftDemo.h"
#include "BMF_Api.h"
const int maxProxies = 32766;
const int maxOverlap = 65535;
///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle
///notice that for higher-quality slow-moving vehicles, another approach might be better
///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts
float gEngineForce = 0.f;
float maxEngineForce = 100.f;
float gBreakingForce = 0.f;
float maxEngineForce = 1000.f;//this should be engine/velocity dependent
float maxBreakingForce = 100.f;
float gVehicleSteering = 0.f;
float steeringIncrement = 0.1f;
float steeringIncrement = 0.04f;
float steeringClamp = 0.3f;
float wheelRadius = 0.5f;
float wheelWidth = 0.2f;
float wheelFriction = 100.f;
float suspensionStiffness = 10.f;
float suspensionDamping = 1.3f;
float suspensionCompression = 2.4f;
float rollInfluence = 0.1f;
btVector3 wheelDirectionCS0(0,-1,0);
btVector3 wheelAxleCS(1,0,0);
float wheelWidth = 0.4f;
float wheelFriction = 1000;//1e30f;
float suspensionStiffness = 20.f;
float suspensionDamping = 2.3f;
float suspensionCompression = 4.4f;
float rollInfluence = 0.1f;//1.0f;
btScalar suspensionRestLength(0.6);
#define CUBE_HALF_EXTENTS 1
@ -57,37 +98,104 @@ btScalar suspensionRestLength(0.6);
GLDebugDrawer debugDrawer;
int main(int argc,char** argv)
{
ForkLiftDemo* vehicleDemo = new ForkLiftDemo;
vehicleDemo->setupPhysics();
return glutmain(argc, argv,640,480,"Bullet Vehicle Demo. http://www.continuousphysics.com/Bullet/phpBB2/", vehicleDemo);
}
ForkLiftDemo::ForkLiftDemo()
:
m_carChassis(0),
m_liftBody(0),
m_forkBody(0),
m_loadBody(0),
m_cameraHeight(4.f),
m_minCameraDistance(3.f),
m_maxCameraDistance(10.f)
m_maxCameraDistance(10.f),
m_indexVertexArrays(0),
m_vertices(0)
{
m_vehicle = 0;
m_cameraPosition = btVector3(30,30,30);
m_useDefaultCamera = false;
}
void ForkLiftDemo::setupPhysics()
void ForkLiftDemo::termPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
delete m_indexVertexArrays;
delete m_vertices;
//delete dynamics world
delete m_dynamicsWorld;
delete m_vehicleRayCaster;
delete m_vehicle;
//delete solver
delete m_constraintSolver;
//delete broadphase
delete m_overlappingPairCache;
//delete dispatcher
delete m_dispatcher;
delete m_collisionConfiguration;
}
ForkLiftDemo::~ForkLiftDemo()
{
termPhysics();
}
void ForkLiftDemo::initPhysics()
{
#ifdef FORCE_ZAXIS_UP
m_cameraUp = btVector3(0,0,1);
m_forwardAxis = 1;
#endif
btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
m_dynamicsWorld = new btDiscreteDynamicsWorld();
m_collisionShapes.push_back(groundShape);
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
btVector3 worldMin(-1000,-1000,-1000);
btVector3 worldMax(1000,1000,1000);
m_overlappingPairCache = new btAxisSweep3(worldMin,worldMax);
m_constraintSolver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
#ifdef FORCE_ZAXIS_UP
m_dynamicsWorld->setGravity(btVector3(0,0,-10));
#endif
//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
//either use heightfield or triangle mesh
#define USE_TRIMESH_GROUND 1
#ifdef USE_TRIMESH_GROUND
int i;
@ -98,13 +206,13 @@ const float TRIANGLE_SIZE=20.f;
int vertStride = sizeof(btVector3);
int indexStride = 3*sizeof(int);
const int NUM_VERTS_X = 50;
const int NUM_VERTS_Y = 50;
const int NUM_VERTS_X = 20;
const int NUM_VERTS_Y = 20;
const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y;
const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1);
btVector3* gVertices = new btVector3[totalVerts];
m_vertices = new btVector3[totalVerts];
int* gIndices = new int[totalTriangles*3];
@ -113,7 +221,23 @@ const float TRIANGLE_SIZE=20.f;
{
for (int j=0;j<NUM_VERTS_Y;j++)
{
gVertices[i+j*NUM_VERTS_X].setValue((i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,2.f*sinf((float)i)*cosf((float)j),(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
float wl = .2f;
//height set to zero, but can also use curved landscape, just uncomment out the code
float height = 0.f;//20.f*sinf(float(i)*wl)*cosf(float(j)*wl);
#ifdef FORCE_ZAXIS_UP
m_vertices[i+j*NUM_VERTS_X].setValue(
(i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE,
height
);
#else
m_vertices[i+j*NUM_VERTS_X].setValue(
(i-NUM_VERTS_X*0.5f)*TRIANGLE_SIZE,
height,
(j-NUM_VERTS_Y*0.5f)*TRIANGLE_SIZE);
#endif
}
}
@ -132,45 +256,253 @@ const float TRIANGLE_SIZE=20.f;
}
}
btTriangleIndexVertexArray* indexVertexArrays = new btTriangleIndexVertexArray(totalTriangles,
m_indexVertexArrays = new btTriangleIndexVertexArray(totalTriangles,
gIndices,
indexStride,
totalVerts,(float*) &gVertices[0].x(),vertStride);
totalVerts,(btScalar*) &m_vertices[0].x(),vertStride);
groundShape = new btBvhTriangleMeshShape(indexVertexArrays);
bool useQuantizedAabbCompression = true;
groundShape = new btBvhTriangleMeshShape(m_indexVertexArrays,useQuantizedAabbCompression);
tr.setOrigin(btVector3(0,-4.5f,0));
#else
//testing btHeightfieldTerrainShape
int width=128;
int length=128;
unsigned char* heightfieldData = new unsigned char[width*length];
{
for (int i=0;i<width*length;i++)
{
heightfieldData[i]=0;
}
}
char* filename="heightfield128x128.raw";
FILE* heightfieldFile = fopen(filename,"r");
if (!heightfieldFile)
{
filename="../../heightfield128x128.raw";
heightfieldFile = fopen(filename,"r");
}
if (heightfieldFile)
{
int numBytes =fread(heightfieldData,1,width*length,heightfieldFile);
//btAssert(numBytes);
if (!numBytes)
{
printf("couldn't read heightfield at %s\n",filename);
}
fclose (heightfieldFile);
}
btScalar maxHeight = 20000.f;
bool useFloatDatam=false;
bool flipQuadEdges=false;
btHeightfieldTerrainShape* heightFieldShape = new btHeightfieldTerrainShape(width,length,heightfieldData,maxHeight,upIndex,useFloatDatam,flipQuadEdges);;
groundShape = heightFieldShape;
heightFieldShape->setUseDiamondSubdivision(true);
btVector3 localScaling(20,20,20);
localScaling[upIndex]=1.f;
groundShape->setLocalScaling(localScaling);
tr.setOrigin(btVector3(0,-64.5f,0));
#endif //
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-4.5f,0));
m_collisionShapes.push_back(groundShape);
//create ground object
localCreateRigidBody(0,tr,groundShape);
#ifdef FORCE_ZAXIS_UP
// indexRightAxis = 0;
// indexUpAxis = 2;
// indexForwardAxis = 1;
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,2.f, 0.5f));
btCompoundShape* compound = new btCompoundShape();
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,0,1));
#else
btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
m_collisionShapes.push_back(chassisShape);
btCompoundShape* compound = new btCompoundShape();
m_collisionShapes.push_back(compound);
btTransform localTrans;
localTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
localTrans.setOrigin(btVector3(0,1,0));
#endif
compound->addChildShape(localTrans,chassisShape);
{
btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
m_collisionShapes.push_back(chassisShape);
btTransform suppLocalTrans;
suppLocalTrans.setIdentity();
//localTrans effectively shifts the center of mass with respect to the chassis
suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
compound->addChildShape(suppLocalTrans, suppShape);
}
tr.setOrigin(btVector3(0,0.f,0));
m_carChassis = localCreateRigidBody(800,tr,chassisShape);
m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape);
//m_carChassis->setDamping(0.2,0.2);
{
btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
m_collisionShapes.push_back(liftShape);
btTransform liftTrans;
m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
liftTrans.setIdentity();
liftTrans.setOrigin(m_liftStartPos);
m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);
btTransform localA, localB;
localA.setIdentity();
localB.setIdentity();
localA.getBasis().setEulerZYX(0, M_PI_2, 0);
localA.setOrigin(btVector3(0.0, 1.0, 3.05));
localB.getBasis().setEulerZYX(0, M_PI_2, 0);
localB.setOrigin(btVector3(0.0, -1.5, -0.05));
m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_dynamicsWorld->addConstraint(m_liftHinge, true);
btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
m_collisionShapes.push_back(forkShapeA);
btCompoundShape* forkCompound = new btCompoundShape();
m_collisionShapes.push_back(forkCompound);
btTransform forkLocalTrans;
forkLocalTrans.setIdentity();
forkCompound->addChildShape(forkLocalTrans, forkShapeA);
btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
m_collisionShapes.push_back(forkShapeB);
forkLocalTrans.setIdentity();
forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
forkCompound->addChildShape(forkLocalTrans, forkShapeB);
btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
m_collisionShapes.push_back(forkShapeC);
forkLocalTrans.setIdentity();
forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
forkCompound->addChildShape(forkLocalTrans, forkShapeC);
btTransform forkTrans;
m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
forkTrans.setIdentity();
forkTrans.setOrigin(m_forkStartPos);
m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);
localA.setIdentity();
localB.setIdentity();
localA.getBasis().setEulerZYX(0, 0, M_PI_2);
localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
localB.getBasis().setEulerZYX(0, 0, M_PI_2);
localB.setOrigin(btVector3(0.0, 0.0, -0.1));
m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
m_forkSlider->setLowerLinLimit(0.1f);
m_forkSlider->setUpperLinLimit(0.1f);
m_forkSlider->setLowerAngLimit(-LIFT_EPS);
m_forkSlider->setUpperAngLimit(LIFT_EPS);
m_dynamicsWorld->addConstraint(m_forkSlider, true);
btCompoundShape* loadCompound = new btCompoundShape();
m_collisionShapes.push_back(loadCompound);
btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
m_collisionShapes.push_back(loadShapeA);
btTransform loadTrans;
loadTrans.setIdentity();
loadCompound->addChildShape(loadTrans, loadShapeA);
btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
m_collisionShapes.push_back(loadShapeB);
loadTrans.setIdentity();
loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
loadCompound->addChildShape(loadTrans, loadShapeB);
btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
m_collisionShapes.push_back(loadShapeC);
loadTrans.setIdentity();
loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
loadCompound->addChildShape(loadTrans, loadShapeC);
loadTrans.setIdentity();
m_loadStartPos = btVector3(0.0f, -3.5f, 7.0f);
loadTrans.setOrigin(m_loadStartPos);
m_loadBody = localCreateRigidBody(4, loadTrans, loadCompound);
}
clientResetScene();
/// create vehicle
{
///never deactivate the vehicle
m_carChassis->SetActivationState(DISABLE_DEACTIVATION);
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,2*CUBE_HALF_EXTENTS-wheelRadius);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),0,-2*CUBE_HALF_EXTENTS+wheelRadius);
// m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld);
m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster);
///never deactivate the vehicle
m_carChassis->setActivationState(DISABLE_DEACTIVATION);
m_dynamicsWorld->addVehicle(m_vehicle);
float connectionHeight = 1.2f;
bool isFrontWheel=true;
//choose coordinate system
m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex);
#ifdef FORCE_ZAXIS_UP
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif //FORCE_ZAXIS_UP
isFrontWheel = false;
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
#ifdef FORCE_ZAXIS_UP
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight);
#else
connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius);
#endif
m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel);
for (int i=0;i<m_vehicle->getNumWheels();i++)
{
btWheelInfo& wheel = m_vehicle->getWheelInfo(i);
wheel.m_suspensionStiffness = suspensionStiffness;
wheel.m_wheelsDampingRelaxation = suspensionDamping;
wheel.m_wheelsDampingCompression = suspensionCompression;
wheel.m_frictionSlip = wheelFriction;
wheel.m_rollInfluence = rollInfluence;
}
}
@ -185,12 +517,55 @@ void ForkLiftDemo::renderme()
updateCamera();
debugDrawer.setDebugMode(getDebugMode());
float m[16];
btScalar m[16];
int i;
DemoApplication::renderme();
btCylinderShapeX wheelShape(btVector3(wheelWidth,wheelRadius,wheelRadius));
btVector3 wheelColor(1,0,0);
btVector3 worldBoundsMin,worldBoundsMax;
getDynamicsWorld()->getBroadphase()->getBroadphaseAabb(worldBoundsMin,worldBoundsMax);
for (i=0;i<m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle->updateWheelTransform(i,true);
//draw wheels (cylinders)
m_vehicle->getWheelInfo(i).m_worldTransform.getOpenGLMatrix(m);
m_shapeDrawer.drawOpenGL(m,&wheelShape,wheelColor,getDebugMode(),worldBoundsMin,worldBoundsMax);
}
if((getDebugMode() & btIDebugDraw::DBG_NoHelpText)==0)
{
setOrthographicProjection();
glDisable(GL_LIGHTING);
glColor3f(0, 0, 0);
char buf[124];
glRasterPos3f(400, 20, 0);
sprintf(buf,"PgUp - rotate lift up");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
glRasterPos3f(400, 40, 0);
sprintf(buf,"PgUp - rotate lift down");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
glRasterPos3f(400, 60, 0);
sprintf(buf,"Home - move fork up");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
glRasterPos3f(400, 80, 0);
sprintf(buf,"End - move fork down");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
glRasterPos3f(400, 100, 0);
sprintf(buf,"Insert - move vehicle back");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
glRasterPos3f(400, 120, 0);
sprintf(buf,"F5 - toggle camera mode");
BMF_DrawString(BMF_GetFont(BMF_kHelvetica10),buf);
resetPerspectiveProjection();
glEnable(GL_LIGHTING);
}
DemoApplication::renderme();
}
void ForkLiftDemo::clientMoveAndDisplay()
@ -198,17 +573,38 @@ void ForkLiftDemo::clientMoveAndDisplay()
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float dt = m_clock.getTimeMilliseconds() * 0.001f;
m_clock.reset();
{
int wheelIndex = 2;
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
m_vehicle->setBrake(gBreakingForce,wheelIndex);
wheelIndex = 3;
m_vehicle->applyEngineForce(gEngineForce,wheelIndex);
m_vehicle->setBrake(gBreakingForce,wheelIndex);
wheelIndex = 0;
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
wheelIndex = 1;
m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex);
}
float dt = getDeltaTimeMicroseconds() * 0.000001f;
if (m_dynamicsWorld)
{
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 1;
int maxSimSubSteps = m_idle ? 1 : 2;
if (m_idle)
dt = 1.0/420.f;
int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
//#define VERBOSE_FEEDBACK
#ifdef VERBOSE_FEEDBACK
if (!numSimSteps)
printf("Interpolated transforms\n");
else
@ -222,10 +618,14 @@ void ForkLiftDemo::clientMoveAndDisplay()
printf("Simulated (%i) steps\n",numSimSteps);
}
}
#endif //VERBOSE_FEEDBACK
}
#ifdef USE_QUICKPROF
@ -235,6 +635,10 @@ void ForkLiftDemo::clientMoveAndDisplay()
renderme();
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
#endif
@ -249,18 +653,13 @@ void ForkLiftDemo::clientMoveAndDisplay()
void ForkLiftDemo::displayCallback(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
m_dynamicsWorld->updateAabbs();
//draw contactpoints
//m_physicsEnvironmentPtr->CallbackTriggers();
renderme();
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
glFlush();
glutSwapBuffers();
@ -268,14 +667,92 @@ void ForkLiftDemo::displayCallback(void)
void ForkLiftDemo::clientResetScene()
{
gVehicleSteering = 0.f;
m_carChassis->setCenterOfMassTransform(btTransform::getIdentity());
m_carChassis->setLinearVelocity(btVector3(0,0,0));
m_carChassis->setAngularVelocity(btVector3(0,0,0));
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
if (m_vehicle)
{
m_vehicle->resetSuspension();
for (int i=0;i<m_vehicle->getNumWheels();i++)
{
//synchronize the wheels with the (interpolated) chassis worldtransform
m_vehicle->updateWheelTransform(i,true);
}
}
btTransform liftTrans;
liftTrans.setIdentity();
liftTrans.setOrigin(m_liftStartPos);
m_liftBody->setCenterOfMassTransform(liftTrans);
m_liftBody->setLinearVelocity(btVector3(0,0,0));
m_liftBody->setAngularVelocity(btVector3(0,0,0));
btTransform forkTrans;
forkTrans.setIdentity();
forkTrans.setOrigin(m_forkStartPos);
m_forkBody->setCenterOfMassTransform(forkTrans);
m_forkBody->setLinearVelocity(btVector3(0,0,0));
m_forkBody->setAngularVelocity(btVector3(0,0,0));
m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
m_liftHinge->enableAngularMotor(false, 0, 0);
m_forkSlider->setLowerLinLimit(0.1f);
m_forkSlider->setUpperLinLimit(0.1f);
m_forkSlider->setPoweredLinMotor(false);
btTransform loadTrans;
loadTrans.setIdentity();
loadTrans.setOrigin(m_loadStartPos);
m_loadBody->setCenterOfMassTransform(loadTrans);
m_loadBody->setLinearVelocity(btVector3(0,0,0));
m_loadBody->setAngularVelocity(btVector3(0,0,0));
}
void ForkLiftDemo::specialKeyboardUp(int key, int x, int y)
{
switch (key)
{
case GLUT_KEY_UP :
{
gEngineForce = 0.f;
break;
}
case GLUT_KEY_DOWN :
{
gBreakingForce = 0.f;
break;
}
case GLUT_KEY_PAGE_UP:
lockLiftHinge();
break;
case GLUT_KEY_PAGE_DOWN:
lockLiftHinge();
break;
case GLUT_KEY_HOME:
lockForkSlider();
break;
case GLUT_KEY_END:
lockForkSlider();
break;
default:
DemoApplication::specialKeyboardUp(key,x,y);
break;
}
}
void ForkLiftDemo::specialKeyboard(int key, int x, int y)
{
printf("key = %i x=%i y=%i\n",key,x,y);
// printf("key = %i x=%i y=%i\n",key,x,y);
switch (key)
{
@ -297,14 +774,47 @@ void ForkLiftDemo::specialKeyboard(int key, int x, int y)
}
case GLUT_KEY_UP :
{
gEngineForce = -maxEngineForce;
gEngineForce = maxEngineForce;
gBreakingForce = 0.f;
break;
}
case GLUT_KEY_DOWN :
{
gEngineForce = maxEngineForce;
gBreakingForce = maxBreakingForce;
gEngineForce = 0.f;
break;
}
case GLUT_KEY_INSERT :
{
gEngineForce = -maxEngineForce;
gBreakingForce = 0.f;
break;
}
case GLUT_KEY_PAGE_UP:
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
m_liftHinge->enableAngularMotor(true, 0.1, 10.0);
break;
case GLUT_KEY_PAGE_DOWN:
m_liftHinge->setLimit(-M_PI/16.0f, M_PI/8.0f);
m_liftHinge->enableAngularMotor(true, -0.1, 10.0);
break;
case GLUT_KEY_HOME:
m_forkSlider->setLowerLinLimit(0.1f);
m_forkSlider->setUpperLinLimit(3.9f);
m_forkSlider->setPoweredLinMotor(true);
m_forkSlider->setMaxLinMotorForce(10.0);
m_forkSlider->setTargetLinMotorVelocity(1.0);
break;
case GLUT_KEY_END:
m_forkSlider->setLowerLinLimit(0.1f);
m_forkSlider->setUpperLinLimit(3.9f);
m_forkSlider->setPoweredLinMotor(true);
m_forkSlider->setMaxLinMotorForce(10.0);
m_forkSlider->setTargetLinMotorVelocity(-1.0);
break;
case GLUT_KEY_F5:
m_useDefaultCamera = !m_useDefaultCamera;
break;
default:
DemoApplication::specialKeyboard(key,x,y);
break;
@ -315,10 +825,15 @@ void ForkLiftDemo::specialKeyboard(int key, int x, int y)
}
void ForkLiftDemo::updateCamera()
{
//#define DISABLE_CAMERA 1
if(m_useDefaultCamera)
{
DemoApplication::updateCamera();
return;
}
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
@ -330,7 +845,11 @@ void ForkLiftDemo::updateCamera()
m_cameraTargetPosition = chassisWorldTrans.getOrigin();
//interpolate the camera height
#ifdef FORCE_ZAXIS_UP
m_cameraPosition[2] = (15.0*m_cameraPosition[2] + m_cameraTargetPosition[2] + m_cameraHeight)/16.0;
#else
m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0;
#endif
btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition;
@ -350,11 +869,58 @@ void ForkLiftDemo::updateCamera()
//update OpenGL camera settings
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 10000.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(m_cameraPosition[0],m_cameraPosition[1],m_cameraPosition[2],
m_cameraTargetPosition[0],m_cameraTargetPosition[1], m_cameraTargetPosition[2],
m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ());
glMatrixMode(GL_MODELVIEW);
}
void ForkLiftDemo::lockLiftHinge(void)
{
btScalar hingeAngle = m_liftHinge->getHingeAngle();
btScalar lowLim = m_liftHinge->getLowerLimit();
btScalar hiLim = m_liftHinge->getUpperLimit();
m_liftHinge->enableAngularMotor(false, 0, 0);
if(hingeAngle < lowLim)
{
m_liftHinge->setLimit(lowLim, lowLim + LIFT_EPS);
}
else if(hingeAngle > hiLim)
{
m_liftHinge->setLimit(hiLim - LIFT_EPS, hiLim);
}
else
{
m_liftHinge->setLimit(hingeAngle - LIFT_EPS, hingeAngle + LIFT_EPS);
}
return;
} // ForkLiftDemo::lockLiftHinge()
void ForkLiftDemo::lockForkSlider(void)
{
btScalar linDepth = m_forkSlider->getLinearPos();
btScalar lowLim = m_forkSlider->getLowerLinLimit();
btScalar hiLim = m_forkSlider->getUpperLinLimit();
m_forkSlider->setPoweredLinMotor(false);
if(linDepth <= lowLim)
{
m_forkSlider->setLowerLinLimit(lowLim);
m_forkSlider->setUpperLinLimit(lowLim);
}
else if(linDepth > hiLim)
{
m_forkSlider->setLowerLinLimit(hiLim);
m_forkSlider->setUpperLinLimit(hiLim);
}
else
{
m_forkSlider->setLowerLinLimit(linDepth);
m_forkSlider->setUpperLinLimit(linDepth);
}
return;
} // ForkLiftDemo::lockForkSlider()

View File

@ -17,17 +17,59 @@ subject to the following restrictions:
class btVehicleTuning;
struct btVehicleRaycaster;
class btCollisionShape;
#include "BulletDynamics/Vehicle/btRaycastVehicle.h"
#include "BulletDynamics/ConstraintSolver/btHingeConstraint.h"
#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
#include "DemoApplication.h"
///ForkLiftDemo shows how to setup and use the built-in raycast vehicle
///VehicleDemo shows how to setup and use the built-in raycast vehicle
class ForkLiftDemo : public DemoApplication
{
public:
btRigidBody* m_carChassis;
//----------------------------
btRigidBody* m_liftBody;
btVector3 m_liftStartPos;
btHingeConstraint* m_liftHinge;
btRigidBody* m_forkBody;
btVector3 m_forkStartPos;
btSliderConstraint* m_forkSlider;
btRigidBody* m_loadBody;
btVector3 m_loadStartPos;
void lockLiftHinge(void);
void lockForkSlider(void);
bool m_useDefaultCamera;
//----------------------------
btAlignedObjectArray<btCollisionShape*> m_collisionShapes;
class btBroadphaseInterface* m_overlappingPairCache;
class btCollisionDispatcher* m_dispatcher;
class btConstraintSolver* m_constraintSolver;
class btDefaultCollisionConfiguration* m_collisionConfiguration;
class btTriangleIndexVertexArray* m_indexVertexArrays;
btVector3* m_vertices;
btRaycastVehicle::btVehicleTuning m_tuning;
btVehicleRaycaster* m_vehicleRayCaster;
btRaycastVehicle* m_vehicle;
float m_cameraHeight;
float m_minCameraDistance;
@ -36,8 +78,11 @@ class ForkLiftDemo : public DemoApplication
ForkLiftDemo();
virtual ~ForkLiftDemo();
virtual void clientMoveAndDisplay();
virtual void clientResetScene();
virtual void displayCallback();
@ -46,11 +91,22 @@ class ForkLiftDemo : public DemoApplication
virtual void specialKeyboard(int key, int x, int y);
virtual void specialKeyboardUp(int key, int x, int y);
void renderme();
void setupPhysics();
void initPhysics();
void termPhysics();
static DemoApplication* Create()
{
ForkLiftDemo* demo = new ForkLiftDemo();
demo->myinit();
demo->initPhysics();
return demo;
}
};
#endif //FORKLIFT_DEMO_H
#endif // FORKLIFT_DEMO_H

View File

@ -0,0 +1,15 @@
#include "ForkLiftDemo.h"
#include "GlutStuff.h"
int main(int argc,char** argv)
{
ForkLiftDemo* pForkLiftDemo = new ForkLiftDemo;
pForkLiftDemo->initPhysics();
return glutmain(argc, argv,640,480,"Bullet ForkLift Demo. http://www.continuousphysics.com/Bullet/phpBB2/", pForkLiftDemo);
}