mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-05 15:21:06 +00:00
Merge pull request #3246 from Danfoa/master
Fix Stable-PD Control bug on First Order Taylor approximation of next `q` state
This commit is contained in:
commit
0c7ea68709
@ -70,43 +70,34 @@ class PDControllerStableMultiDof(object):
|
||||
Kp = np.diagflat(kps)
|
||||
Kd = np.diagflat(kds)
|
||||
|
||||
p = Kp.dot(qError)
|
||||
# Compute -Kp(q + qdot - qdes)
|
||||
p_term = Kp.dot(qError - qdot*timeStep)
|
||||
# Compute -Kd(qdot - qdotdes)
|
||||
d_term = Kd.dot(qdoterr)
|
||||
|
||||
#np.savetxt("pb_qError.csv", qError, delimiter=",")
|
||||
#np.savetxt("pb_p.csv", p, delimiter=",")
|
||||
|
||||
d = Kd.dot(qdoterr)
|
||||
|
||||
#np.savetxt("pb_d.csv", d, delimiter=",")
|
||||
#np.savetxt("pbqdoterr.csv", qdoterr, delimiter=",")
|
||||
|
||||
M1 = self._pb.calculateMassMatrix(bodyUniqueId, q1, flags=1)
|
||||
|
||||
M2 = np.array(M1)
|
||||
#np.savetxt("M2.csv", M2, delimiter=",")
|
||||
|
||||
M = (M2 + Kd * timeStep)
|
||||
|
||||
#np.savetxt("pbM_tKd.csv",M, delimiter=",")
|
||||
|
||||
c1 = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations, flags=1)
|
||||
|
||||
c = np.array(c1)
|
||||
#np.savetxt("pbC.csv",c, delimiter=",")
|
||||
A = M
|
||||
#p = [0]*43
|
||||
b = p + d - c
|
||||
#np.savetxt("pb_acc.csv",b, delimiter=",")
|
||||
qddot = np.linalg.solve(A, b)
|
||||
tau = p + d - Kd.dot(qddot) * timeStep
|
||||
#print("len(tau)=",len(tau))
|
||||
# Compute Inertia matrix M(q)
|
||||
M = self._pb.calculateMassMatrix(bodyUniqueId, q1, flags=1)
|
||||
M = np.array(M)
|
||||
# Given: M(q) * qddot + C(q, qdot) = T_ext + T_int
|
||||
# Compute Coriolis and External (Gravitational) terms G = C - T_ext
|
||||
G = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations, flags=1)
|
||||
G = np.array(G)
|
||||
# Obtain estimated generalized accelerations, considering Coriolis and Gravitational forces, and stable PD actions
|
||||
qddot = np.linalg.solve(a=(M + Kd * timeStep),
|
||||
b=p_term + d_term - G)
|
||||
# Compute control generalized forces (T_int)
|
||||
tau = p_term + d_term - Kd.dot(qddot) * timeStep
|
||||
# Clip generalized forces to actuator limits
|
||||
maxF = np.array(maxForces)
|
||||
forces = np.clip(tau, -maxF, maxF)
|
||||
return forces
|
||||
generalized_forces = np.clip(tau, -maxF, maxF)
|
||||
return generalized_forces
|
||||
|
||||
|
||||
class PDControllerStable(object):
|
||||
|
||||
"""
|
||||
Implementation based on: Tan, J., Liu, K., & Turk, G. (2011). "Stable proportional-derivative controllers"
|
||||
DOI: 10.1109/MCG.2011.30
|
||||
"""
|
||||
def __init__(self, pb):
|
||||
self._pb = pb
|
||||
|
||||
@ -121,28 +112,36 @@ class PDControllerStable(object):
|
||||
q1.append(jointStates[i][0])
|
||||
qdot1.append(jointStates[i][1])
|
||||
zeroAccelerations.append(0)
|
||||
|
||||
q = np.array(q1)
|
||||
qdot = np.array(qdot1)
|
||||
qdes = np.array(desiredPositions)
|
||||
qdotdes = np.array(desiredVelocities)
|
||||
|
||||
qError = qdes - q
|
||||
qdotError = qdotdes - qdot
|
||||
|
||||
Kp = np.diagflat(kps)
|
||||
Kd = np.diagflat(kds)
|
||||
p = Kp.dot(qError)
|
||||
d = Kd.dot(qdotError)
|
||||
forces = p + d
|
||||
|
||||
M1 = self._pb.calculateMassMatrix(bodyUniqueId, q1)
|
||||
M2 = np.array(M1)
|
||||
M = (M2 + Kd * timeStep)
|
||||
c1 = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations)
|
||||
c = np.array(c1)
|
||||
A = M
|
||||
b = -c + p + d
|
||||
qddot = np.linalg.solve(A, b)
|
||||
tau = p + d - Kd.dot(qddot) * timeStep
|
||||
# Compute -Kp(q + qdot - qdes)
|
||||
p_term = Kp.dot(qError - qdot*timeStep)
|
||||
# Compute -Kd(qdot - qdotdes)
|
||||
d_term = Kd.dot(qdotError)
|
||||
|
||||
# Compute Inertia matrix M(q)
|
||||
M = self._pb.calculateMassMatrix(bodyUniqueId, q1)
|
||||
M = np.array(M)
|
||||
# Given: M(q) * qddot + C(q, qdot) = T_ext + T_int
|
||||
# Compute Coriolis and External (Gravitational) terms G = C - T_ext
|
||||
G = self._pb.calculateInverseDynamics(bodyUniqueId, q1, qdot1, zeroAccelerations)
|
||||
G = np.array(G)
|
||||
# Obtain estimated generalized accelerations, considering Coriolis and Gravitational forces, and stable PD actions
|
||||
qddot = np.linalg.solve(a=(M + Kd * timeStep),
|
||||
b=(-G + p_term + d_term))
|
||||
# Compute control generalized forces (T_int)
|
||||
tau = p_term + d_term - (Kd.dot(qddot) * timeStep)
|
||||
# Clip generalized forces to actuator limits
|
||||
maxF = np.array(maxForces)
|
||||
forces = np.clip(tau, -maxF, maxF)
|
||||
#print("c=",c)
|
||||
return tau
|
||||
generalized_forces = np.clip(tau, -maxF, maxF)
|
||||
return generalized_forces
|
||||
|
Loading…
Reference in New Issue
Block a user