mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-13 13:20:07 +00:00
Add enjoy script for Stable Baselines
This commit is contained in:
parent
cbede4eb6c
commit
21efd84c18
@ -0,0 +1,86 @@
|
||||
# Code adapted from https://github.com/araffin/rl-baselines-zoo
|
||||
# it requires stable-baselines to be installed
|
||||
# Colab Notebook: https://colab.research.google.com/drive/1nZkHO4QTYfAksm9ZTaZ5vXyC7szZxC3F
|
||||
# You can run it using: python -m pybullet_envs.stable_baselines.enjoy --algo td3 --env HalfCheetahBulletEnv-v0
|
||||
# Author: Antonin RAFFIN
|
||||
# MIT License
|
||||
import argparse
|
||||
import multiprocessing
|
||||
|
||||
import gym
|
||||
import numpy as np
|
||||
import pybullet_envs
|
||||
|
||||
from stable_baselines import SAC, TD3
|
||||
from stable_baselines.common.vec_env import SubprocVecEnv
|
||||
from stable_baselines.common.evaluation import evaluate_policy
|
||||
|
||||
from pybullet_envs.stable_baselines.utils import TimeFeatureWrapper
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser("Enjoy an RL agent trained using Stable Baselines")
|
||||
parser.add_argument('--algo', help='RL Algorithm (Soft Actor-Critic by default)', default='sac',
|
||||
type=str, required=False, choices=['sac', 'td3'])
|
||||
parser.add_argument('--env', type=str, default='HalfCheetahBulletEnv-v0', help='environment ID')
|
||||
parser.add_argument('-n', '--n-episodes', help='Number of episodes', default=5,
|
||||
type=int)
|
||||
parser.add_argument('--no-render', action='store_true', default=False,
|
||||
help='Do not render the environment')
|
||||
args = parser.parse_args()
|
||||
|
||||
env_id = args.env
|
||||
# Create an env similar to the training env
|
||||
env = TimeFeatureWrapper(gym.make(env_id))
|
||||
|
||||
# Use SubprocVecEnv for rendering
|
||||
if not args.no_render:
|
||||
# Note: fork is not thread-safe but usually is faster
|
||||
fork_available = 'fork' in multiprocessing.get_all_start_methods()
|
||||
start_method = 'fork' if fork_available else 'spawn'
|
||||
env = SubprocVecEnv([lambda: env], start_method=start_method)
|
||||
|
||||
|
||||
algo = {
|
||||
'sac': SAC,
|
||||
'td3': TD3
|
||||
}[args.algo]
|
||||
|
||||
# We assume that the saved model is in the same folder
|
||||
save_path = '{}_{}.zip'.format(args.algo, env_id)
|
||||
# Load the saved model
|
||||
model = algo.load(save_path, env=env)
|
||||
|
||||
try:
|
||||
# Use deterministic actions for evaluation
|
||||
episode_rewards, episode_lengths = [], []
|
||||
for _ in range(args.n_episodes):
|
||||
obs = env.reset()
|
||||
done = False
|
||||
episode_reward = 0.0
|
||||
episode_length = 0
|
||||
while not done:
|
||||
action, _ = model.predict(obs, deterministic=True)
|
||||
obs, reward, done, _info = env.step(action)
|
||||
episode_reward += reward
|
||||
|
||||
episode_length += 1
|
||||
if not args.no_render:
|
||||
env.render(mode='human')
|
||||
episode_rewards.append(episode_reward)
|
||||
episode_lengths.append(episode_length)
|
||||
print("Episode {} reward={}, length={}".format(len(episode_rewards), episode_reward, episode_length))
|
||||
|
||||
mean_reward = np.mean(episode_rewards)
|
||||
std_reward = np.std(episode_rewards)
|
||||
|
||||
mean_len, std_len = np.mean(episode_lengths), np.std(episode_lengths)
|
||||
|
||||
print("==== Results ====")
|
||||
print("Episode_reward={:.2f} +/- {:.2f}".format(mean_reward, std_reward))
|
||||
print("Episode_length={:.2f} +/- {:.2f}".format(mean_len, std_len))
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
# Close process
|
||||
env.close()
|
@ -1,6 +1,7 @@
|
||||
# Code adapted from https://github.com/araffin/rl-baselines-zoo
|
||||
# it requires stable-baselines to be installed
|
||||
# Colab Notebook: https://colab.research.google.com/drive/1nZkHO4QTYfAksm9ZTaZ5vXyC7szZxC3F
|
||||
# You can run it using: python -m pybullet_envs.stable_baselines.train --algo td3 --env HalfCheetahBulletEnv-v0
|
||||
# Author: Antonin RAFFIN
|
||||
# MIT License
|
||||
import argparse
|
||||
@ -12,11 +13,11 @@ import numpy as np
|
||||
from stable_baselines import SAC, TD3
|
||||
from stable_baselines.common.noise import NormalActionNoise
|
||||
|
||||
from utils import TimeFeatureWrapper, EvalCallback
|
||||
from pybullet_envs.stable_baselines.utils import TimeFeatureWrapper, EvalCallback
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = argparse.ArgumentParser("Train an RL agent using Stable Baselines")
|
||||
parser.add_argument('--algo', help='RL Algorithm (Soft Actor-Critic by default)', default='sac',
|
||||
type=str, required=False, choices=['sac', 'td3'])
|
||||
parser.add_argument('--env', type=str, default='HalfCheetahBulletEnv-v0', help='environment ID')
|
||||
|
Loading…
Reference in New Issue
Block a user