mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-19 05:20:06 +00:00
Merge pull request #3076 from tfederico/master
Add multiclip loading and reward
This commit is contained in:
commit
2a0f811c3b
@ -0,0 +1,25 @@
|
||||
--scene imitate
|
||||
|
||||
--num_update_substeps 10
|
||||
--num_sim_substeps 2
|
||||
--world_scale 4
|
||||
|
||||
--terrain_file data/terrain/plane.txt
|
||||
|
||||
--char_types general
|
||||
--character_files data/characters/humanoid3d.txt
|
||||
--enable_char_soft_contact false
|
||||
--fall_contact_bodies 0 1 2 3 4 6 7 8 9 10 12 13 14
|
||||
|
||||
--char_ctrls ct_pd
|
||||
--char_ctrl_files data/controllers/humanoid3d_ctrl.txt
|
||||
--motion_file data/motions/walker/walk_forward0.txt
|
||||
--sync_char_root_pos true
|
||||
--sync_char_root_rot false
|
||||
|
||||
--agent_files data/agents/ct_agent_humanoid_ppo.txt
|
||||
--train_agents false
|
||||
|
||||
#--output_path output
|
||||
#--int_output_path output/intermediate
|
||||
--model_files data/policies/humanoid3d/humanoid3d_walker.ckpt
|
@ -0,0 +1,33 @@
|
||||
--scene imitate
|
||||
|
||||
--time_lim_min 0.5
|
||||
--time_lim_max 0.5
|
||||
--time_lim_exp 0.2
|
||||
--time_end_lim_min 20
|
||||
--time_end_lim_max 20
|
||||
--time_end_lim_exp 50
|
||||
--anneal_samples 32000000
|
||||
|
||||
--num_update_substeps 10
|
||||
--num_sim_substeps 2
|
||||
--world_scale 4
|
||||
|
||||
--terrain_file data/terrain/plane.txt
|
||||
|
||||
--char_types general
|
||||
--character_files data/characters/humanoid3d.txt
|
||||
--enable_char_soft_contact false
|
||||
--fall_contact_bodies 0 1 2 3 4 6 7 8 9 10 12 13 14
|
||||
|
||||
--char_ctrls ct_pd
|
||||
--char_ctrl_files data/controllers/humanoid3d_ctrl.txt
|
||||
--motion_file data/motions/walker/
|
||||
--sync_char_root_pos true
|
||||
--sync_char_root_rot false
|
||||
|
||||
--agent_files data/agents/ct_agent_humanoid_ppo.txt
|
||||
#--train_agents false
|
||||
|
||||
--output_path output
|
||||
#--int_output_path output/intermediate
|
||||
#--model_files data/policies/humanoid3d/agent0_model.ckpt
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
@ -0,0 +1,54 @@
|
||||
import numpy as np
|
||||
import sys
|
||||
import os
|
||||
import inspect
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0, parentdir)
|
||||
print("parentdir=", parentdir)
|
||||
|
||||
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env_multiclip import PyBulletDeepMimicEnvMultiClip
|
||||
from pybullet_envs.deep_mimic.learning.rl_world import RLWorld
|
||||
from pybullet_utils.logger import Logger
|
||||
from pybullet_envs.deep_mimic.testrl_multiclip import update_world, update_timestep, build_world
|
||||
import pybullet_utils.mpi_util as MPIUtil
|
||||
|
||||
args = []
|
||||
world = None
|
||||
|
||||
|
||||
def run():
|
||||
global update_timestep
|
||||
global world
|
||||
done = False
|
||||
while not (done):
|
||||
update_world(world, update_timestep)
|
||||
|
||||
return
|
||||
|
||||
|
||||
def shutdown():
|
||||
global world
|
||||
|
||||
Logger.print2('Shutting down...')
|
||||
world.shutdown()
|
||||
return
|
||||
|
||||
|
||||
def main():
|
||||
global args
|
||||
global world
|
||||
|
||||
# Command line arguments
|
||||
args = sys.argv[1:]
|
||||
enable_draw = False
|
||||
world = build_world(args, enable_draw)
|
||||
|
||||
run()
|
||||
shutdown()
|
||||
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
668
examples/pybullet/gym/pybullet_envs/deep_mimic/env/humanoid_stable_pd_multiclip.py
vendored
Normal file
668
examples/pybullet/gym/pybullet_envs/deep_mimic/env/humanoid_stable_pd_multiclip.py
vendored
Normal file
@ -0,0 +1,668 @@
|
||||
from pybullet_utils import pd_controller_stable
|
||||
from pybullet_envs.deep_mimic.env import humanoid_pose_interpolator
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
chest = 1
|
||||
neck = 2
|
||||
rightHip = 3
|
||||
rightKnee = 4
|
||||
rightAnkle = 5
|
||||
rightShoulder = 6
|
||||
rightElbow = 7
|
||||
leftHip = 9
|
||||
leftKnee = 10
|
||||
leftAnkle = 11
|
||||
leftShoulder = 12
|
||||
leftElbow = 13
|
||||
jointFrictionForce = 0
|
||||
|
||||
|
||||
class HumanoidStablePDMultiClip(object):
|
||||
|
||||
def __init__(self, pybullet_client, mocap_data, timeStep,
|
||||
useFixedBase=True, arg_parser=None, useComReward=False):
|
||||
self._pybullet_client = pybullet_client
|
||||
self._mocap_data = mocap_data # this is a dictionary
|
||||
self._arg_parser = arg_parser
|
||||
self._n_clips = self._mocap_data.getNumClips()
|
||||
print("LOADING humanoid!")
|
||||
flags = self._pybullet_client.URDF_MAINTAIN_LINK_ORDER + self._pybullet_client.URDF_USE_SELF_COLLISION + self._pybullet_client.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS
|
||||
self._sim_model = self._pybullet_client.loadURDF(
|
||||
"humanoid/humanoid.urdf", [0, 0.889540259, 0],
|
||||
globalScaling=0.25,
|
||||
useFixedBase=useFixedBase,
|
||||
flags=flags)
|
||||
|
||||
self._end_effectors = [5, 8, 11, 14] # ankle and wrist, both left and right
|
||||
|
||||
self._kin_models = {}
|
||||
self._poseInterpolators = {}
|
||||
|
||||
for i in range(self._n_clips):
|
||||
self._kin_models[i] = self._pybullet_client.loadURDF(
|
||||
"humanoid/humanoid.urdf", [0, 0.85, 0],
|
||||
globalScaling=0.25,
|
||||
useFixedBase=True,
|
||||
flags=self._pybullet_client.URDF_MAINTAIN_LINK_ORDER)
|
||||
|
||||
self._pybullet_client.changeDynamics(self._sim_model, -1, lateralFriction=0.9)
|
||||
for j in range(self._pybullet_client.getNumJoints(self._sim_model)):
|
||||
self._pybullet_client.changeDynamics(self._sim_model, j, lateralFriction=0.9)
|
||||
|
||||
self._pybullet_client.changeDynamics(self._sim_model, -1, linearDamping=0, angularDamping=0)
|
||||
for i in range(self._n_clips):
|
||||
self._pybullet_client.changeDynamics(self._kin_models[i], -1, linearDamping=0, angularDamping=0)
|
||||
|
||||
# todo: add feature to disable simulation for a particular object. Until then, disable all collisions
|
||||
self._pybullet_client.setCollisionFilterGroupMask(self._kin_models[i],
|
||||
-1,
|
||||
collisionFilterGroup=0,
|
||||
collisionFilterMask=0)
|
||||
self._pybullet_client.changeDynamics(
|
||||
self._kin_models[i],
|
||||
-1,
|
||||
activationState=self._pybullet_client.ACTIVATION_STATE_SLEEP +
|
||||
self._pybullet_client.ACTIVATION_STATE_ENABLE_SLEEPING +
|
||||
self._pybullet_client.ACTIVATION_STATE_DISABLE_WAKEUP)
|
||||
alpha = 0.4
|
||||
self._pybullet_client.changeVisualShape(self._kin_models[i], -1, rgbaColor=[1, 1, 1, alpha])
|
||||
for j in range(self._pybullet_client.getNumJoints(self._kin_models[i])):
|
||||
self._pybullet_client.setCollisionFilterGroupMask(self._kin_models[i],
|
||||
j,
|
||||
collisionFilterGroup=0,
|
||||
collisionFilterMask=0)
|
||||
self._pybullet_client.changeDynamics(
|
||||
self._kin_models[i],
|
||||
j,
|
||||
activationState=self._pybullet_client.ACTIVATION_STATE_SLEEP +
|
||||
self._pybullet_client.ACTIVATION_STATE_ENABLE_SLEEPING +
|
||||
self._pybullet_client.ACTIVATION_STATE_DISABLE_WAKEUP)
|
||||
self._pybullet_client.changeVisualShape(self._kin_models[i], j, rgbaColor=[1, 1, 1, alpha])
|
||||
|
||||
self._poseInterpolators[i] = humanoid_pose_interpolator.HumanoidPoseInterpolator()
|
||||
|
||||
for j in range(self._mocap_data.getNumFrames() - 1):
|
||||
frameData = self._mocap_data._motion_data[i]['Frames'][j]
|
||||
self._poseInterpolators[i].PostProcessMotionData(frameData)
|
||||
|
||||
self._stablePD = pd_controller_stable.PDControllerStableMultiDof(self._pybullet_client)
|
||||
self._timeStep = timeStep
|
||||
self._kpOrg = [
|
||||
0, 0, 0, 0, 0, 0, 0, 1000, 1000, 1000, 1000, 100, 100, 100, 100, 500, 500, 500, 500, 500,
|
||||
400, 400, 400, 400, 400, 400, 400, 400, 300, 500, 500, 500, 500, 500, 400, 400, 400, 400,
|
||||
400, 400, 400, 400, 300
|
||||
]
|
||||
self._kdOrg = [
|
||||
0, 0, 0, 0, 0, 0, 0, 100, 100, 100, 100, 10, 10, 10, 10, 50, 50, 50, 50, 50, 40, 40, 40,
|
||||
40, 40, 40, 40, 40, 30, 50, 50, 50, 50, 50, 40, 40, 40, 40, 40, 40, 40, 40, 30
|
||||
]
|
||||
|
||||
self._jointIndicesAll = [
|
||||
chest, neck, rightHip, rightKnee, rightAnkle, rightShoulder, rightElbow, leftHip, leftKnee,
|
||||
leftAnkle, leftShoulder, leftElbow
|
||||
]
|
||||
for j in self._jointIndicesAll:
|
||||
self._pybullet_client.setJointMotorControl2(self._sim_model,
|
||||
j,
|
||||
self._pybullet_client.POSITION_CONTROL,
|
||||
targetPosition=0,
|
||||
positionGain=0,
|
||||
targetVelocity=0,
|
||||
force=jointFrictionForce)
|
||||
self._pybullet_client.setJointMotorControlMultiDof(
|
||||
self._sim_model,
|
||||
j,
|
||||
self._pybullet_client.POSITION_CONTROL,
|
||||
targetPosition=[0, 0, 0, 1],
|
||||
targetVelocity=[0, 0, 0],
|
||||
positionGain=0,
|
||||
velocityGain=1,
|
||||
force=[jointFrictionForce, jointFrictionForce, jointFrictionForce])
|
||||
|
||||
for i in range(self._n_clips):
|
||||
self._pybullet_client.setJointMotorControl2(self._kin_models[i],
|
||||
j,
|
||||
self._pybullet_client.POSITION_CONTROL,
|
||||
targetPosition=0,
|
||||
positionGain=0,
|
||||
targetVelocity=0,
|
||||
force=0)
|
||||
self._pybullet_client.setJointMotorControlMultiDof(
|
||||
self._kin_models[i],
|
||||
j,
|
||||
self._pybullet_client.POSITION_CONTROL,
|
||||
targetPosition=[0, 0, 0, 1],
|
||||
targetVelocity=[0, 0, 0],
|
||||
positionGain=0,
|
||||
velocityGain=1,
|
||||
force=[jointFrictionForce, jointFrictionForce, 0])
|
||||
|
||||
self._jointDofCounts = [4, 4, 4, 1, 4, 4, 1, 4, 1, 4, 4, 1]
|
||||
|
||||
# only those body parts/links are allowed to touch the ground, otherwise the episode terminates
|
||||
fall_contact_bodies = []
|
||||
if self._arg_parser is not None:
|
||||
fall_contact_bodies = self._arg_parser.parse_ints("fall_contact_bodies")
|
||||
self._fall_contact_body_parts = fall_contact_bodies
|
||||
|
||||
# [x,y,z] base position and [x,y,z,w] base orientation
|
||||
self._totalDofs = 7
|
||||
for dof in self._jointDofCounts:
|
||||
self._totalDofs += dof
|
||||
self.setSimTime(0)
|
||||
|
||||
self._useComReward = useComReward
|
||||
|
||||
self.resetPose()
|
||||
|
||||
def resetPose(self):
|
||||
# print("resetPose with self._frame=", self._frame, " and self._frameFraction=",self._frameFraction)
|
||||
pose = self.computePose(self._frameFraction, 0)
|
||||
self.initializePose(self._poseInterpolators[0], self._sim_model, initBase=True)
|
||||
self.initializePose(self._poseInterpolators[0], self._kin_models[0], initBase=False)
|
||||
for i in range(1, self._n_clips):
|
||||
_ = self.computePose(self._frameFraction, i)
|
||||
self.initializePose(self._poseInterpolators[i], self._kin_models[i], initBase=False)
|
||||
|
||||
def initializePose(self, pose, phys_model, initBase, initializeVelocity=True):
|
||||
|
||||
if initializeVelocity:
|
||||
if initBase:
|
||||
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos,
|
||||
pose._baseOrn)
|
||||
self._pybullet_client.resetBaseVelocity(phys_model, pose._baseLinVel, pose._baseAngVel)
|
||||
|
||||
indices = [chest, neck, rightHip, rightKnee,
|
||||
rightAnkle, rightShoulder, rightElbow, leftHip,
|
||||
leftKnee, leftAnkle, leftShoulder, leftElbow]
|
||||
jointPositions = [pose._chestRot, pose._neckRot, pose._rightHipRot, pose._rightKneeRot,
|
||||
pose._rightAnkleRot, pose._rightShoulderRot, pose._rightElbowRot, pose._leftHipRot,
|
||||
pose._leftKneeRot, pose._leftAnkleRot, pose._leftShoulderRot, pose._leftElbowRot]
|
||||
|
||||
jointVelocities = [pose._chestVel, pose._neckVel, pose._rightHipVel, pose._rightKneeVel,
|
||||
pose._rightAnkleVel, pose._rightShoulderVel, pose._rightElbowVel, pose._leftHipVel,
|
||||
pose._leftKneeVel, pose._leftAnkleVel, pose._leftShoulderVel, pose._leftElbowVel]
|
||||
self._pybullet_client.resetJointStatesMultiDof(phys_model, indices,
|
||||
jointPositions, jointVelocities)
|
||||
else:
|
||||
if initBase:
|
||||
self._pybullet_client.resetBasePositionAndOrientation(phys_model, pose._basePos,
|
||||
pose._baseOrn)
|
||||
|
||||
indices = [chest, neck, rightHip, rightKnee,
|
||||
rightAnkle, rightShoulder, rightElbow, leftHip,
|
||||
leftKnee, leftAnkle, leftShoulder, leftElbow]
|
||||
jointPositions = [pose._chestRot, pose._neckRot, pose._rightHipRot, pose._rightKneeRot,
|
||||
pose._rightAnkleRot, pose._rightShoulderRot, pose._rightElbowRot, pose._leftHipRot,
|
||||
pose._leftKneeRot, pose._leftAnkleRot, pose._leftShoulderRot, pose._leftElbowRot]
|
||||
self._pybullet_client.resetJointStatesMultiDof(phys_model, indices, jointPositions)
|
||||
|
||||
def calcCycleCount(self, simTime, cycleTime):
|
||||
phases = simTime / cycleTime
|
||||
count = math.floor(phases)
|
||||
return count
|
||||
|
||||
def getCycleTime(self):
|
||||
keyFrameDuration = self._mocap_data.getKeyFrameDuration()
|
||||
cycleTime = keyFrameDuration * (self._mocap_data.getNumFrames() - 1)
|
||||
return cycleTime
|
||||
|
||||
def setSimTime(self, t):
|
||||
self._simTime = t
|
||||
# print("SetTimeTime time =",t)
|
||||
keyFrameDuration = self._mocap_data.getKeyFrameDuration()
|
||||
cycleTime = self.getCycleTime()
|
||||
# print("self._motion_data.NumFrames()=",self._mocap_data.NumFrames())
|
||||
self._cycleCount = self.calcCycleCount(t, cycleTime)
|
||||
# print("cycles=",cycles)
|
||||
frameTime = t - self._cycleCount * cycleTime
|
||||
if (frameTime < 0):
|
||||
frameTime += cycleTime
|
||||
|
||||
# print("keyFrameDuration=",keyFrameDuration)
|
||||
# print("frameTime=",frameTime)
|
||||
self._frame = int(frameTime / keyFrameDuration)
|
||||
# print("self._frame=",self._frame)
|
||||
|
||||
self._frameNext = self._frame + 1
|
||||
if (self._frameNext >= self._mocap_data.getNumFrames()):
|
||||
self._frameNext = self._frame
|
||||
|
||||
self._frameFraction = (frameTime - self._frame * keyFrameDuration) / (keyFrameDuration)
|
||||
|
||||
def computeCycleOffset(self, i=0):
|
||||
lastFrame = self._mocap_data.getNumFrames() - 1
|
||||
frameData = self._mocap_data._motion_data[i]['Frames'][0]
|
||||
frameDataNext = self._mocap_data._motion_data[i]['Frames'][lastFrame]
|
||||
|
||||
basePosStart = [frameData[1], frameData[2], frameData[3]]
|
||||
basePosEnd = [frameDataNext[1], frameDataNext[2], frameDataNext[3]]
|
||||
self._cycleOffset = [
|
||||
basePosEnd[0] - basePosStart[0], basePosEnd[1] - basePosStart[1],
|
||||
basePosEnd[2] - basePosStart[2]
|
||||
]
|
||||
return self._cycleOffset
|
||||
|
||||
def computePose(self, frameFraction, i=0):
|
||||
frameData = self._mocap_data._motion_data[i]['Frames'][self._frame]
|
||||
frameDataNext = self._mocap_data._motion_data[i]['Frames'][self._frameNext]
|
||||
|
||||
self._poseInterpolators[i].Slerp(frameFraction, frameData, frameDataNext, self._pybullet_client)
|
||||
# print("self._poseInterpolator.Slerp(", frameFraction,")=", pose)
|
||||
self.computeCycleOffset()
|
||||
oldPos = self._poseInterpolators[i]._basePos
|
||||
self._poseInterpolators[i]._basePos = [
|
||||
oldPos[0] + self._cycleCount * self._cycleOffset[0],
|
||||
oldPos[1] + self._cycleCount * self._cycleOffset[1],
|
||||
oldPos[2] + self._cycleCount * self._cycleOffset[2]
|
||||
]
|
||||
pose = self._poseInterpolators[i].GetPose()
|
||||
|
||||
return pose
|
||||
|
||||
def convertActionToPose(self, action, i):
|
||||
pose = self._poseInterpolators[i].ConvertFromAction(self._pybullet_client, action)
|
||||
return pose
|
||||
|
||||
def computeAndApplyPDForces(self, desiredPositions, maxForces):
|
||||
dofIndex = 7
|
||||
scaling = 1
|
||||
indices = []
|
||||
forces = []
|
||||
targetPositions = []
|
||||
targetVelocities = []
|
||||
kps = []
|
||||
kds = []
|
||||
|
||||
for index in range(len(self._jointIndicesAll)):
|
||||
jointIndex = self._jointIndicesAll[index]
|
||||
indices.append(jointIndex)
|
||||
kps.append(self._kpOrg[dofIndex])
|
||||
kds.append(self._kdOrg[dofIndex])
|
||||
if self._jointDofCounts[index] == 4:
|
||||
force = [
|
||||
scaling * maxForces[dofIndex + 0],
|
||||
scaling * maxForces[dofIndex + 1],
|
||||
scaling * maxForces[dofIndex + 2]
|
||||
]
|
||||
targetVelocity = [0, 0, 0]
|
||||
targetPosition = [
|
||||
desiredPositions[dofIndex + 0],
|
||||
desiredPositions[dofIndex + 1],
|
||||
desiredPositions[dofIndex + 2],
|
||||
desiredPositions[dofIndex + 3]
|
||||
]
|
||||
if self._jointDofCounts[index] == 1:
|
||||
force = [scaling * maxForces[dofIndex]]
|
||||
targetPosition = [desiredPositions[dofIndex + 0]]
|
||||
targetVelocity = [0]
|
||||
forces.append(force)
|
||||
targetPositions.append(targetPosition)
|
||||
targetVelocities.append(targetVelocity)
|
||||
dofIndex += self._jointDofCounts[index]
|
||||
|
||||
|
||||
self._pybullet_client.setJointMotorControlMultiDofArray(self._sim_model,
|
||||
indices,
|
||||
self._pybullet_client.STABLE_PD_CONTROL,
|
||||
targetPositions=targetPositions,
|
||||
targetVelocities=targetVelocities,
|
||||
forces=forces,
|
||||
positionGains=kps,
|
||||
velocityGains=kds,
|
||||
)
|
||||
|
||||
|
||||
def getPhase(self):
|
||||
keyFrameDuration = self._mocap_data.getKeyFrameDuration()
|
||||
cycleTime = keyFrameDuration * (self._mocap_data.getNumFrames() - 1)
|
||||
phase = self._simTime / cycleTime
|
||||
phase = math.fmod(phase, 1.0)
|
||||
if (phase < 0):
|
||||
phase += 1
|
||||
return phase
|
||||
|
||||
def buildHeadingTrans(self, rootOrn):
|
||||
# align root transform 'forward' with world-space x axis
|
||||
eul = self._pybullet_client.getEulerFromQuaternion(rootOrn)
|
||||
refDir = [1, 0, 0]
|
||||
rotVec = self._pybullet_client.rotateVector(rootOrn, refDir)
|
||||
heading = math.atan2(-rotVec[2], rotVec[0])
|
||||
heading2 = eul[1]
|
||||
# print("heading=",heading)
|
||||
headingOrn = self._pybullet_client.getQuaternionFromAxisAngle([0, 1, 0], -heading)
|
||||
return headingOrn
|
||||
|
||||
def buildOriginTrans(self):
|
||||
rootPos, rootOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
|
||||
|
||||
# print("rootPos=",rootPos, " rootOrn=",rootOrn)
|
||||
invRootPos = [-rootPos[0], 0, -rootPos[2]]
|
||||
# invOrigTransPos, invOrigTransOrn = self._pybullet_client.invertTransform(rootPos,rootOrn)
|
||||
headingOrn = self.buildHeadingTrans(rootOrn)
|
||||
# print("headingOrn=",headingOrn)
|
||||
headingMat = self._pybullet_client.getMatrixFromQuaternion(headingOrn)
|
||||
# print("headingMat=",headingMat)
|
||||
# dummy, rootOrnWithoutHeading = self._pybullet_client.multiplyTransforms([0,0,0],headingOrn, [0,0,0], rootOrn)
|
||||
# dummy, invOrigTransOrn = self._pybullet_client.multiplyTransforms([0,0,0],rootOrnWithoutHeading, invOrigTransPos, invOrigTransOrn)
|
||||
|
||||
invOrigTransPos, invOrigTransOrn = self._pybullet_client.multiplyTransforms([0, 0, 0],
|
||||
headingOrn,
|
||||
invRootPos,
|
||||
[0, 0, 0, 1])
|
||||
# print("invOrigTransPos=",invOrigTransPos)
|
||||
# print("invOrigTransOrn=",invOrigTransOrn)
|
||||
invOrigTransMat = self._pybullet_client.getMatrixFromQuaternion(invOrigTransOrn)
|
||||
# print("invOrigTransMat =",invOrigTransMat )
|
||||
return invOrigTransPos, invOrigTransOrn
|
||||
|
||||
def getState(self):
|
||||
|
||||
stateVector = []
|
||||
phase = self.getPhase()
|
||||
# print("phase=",phase)
|
||||
stateVector.append(phase)
|
||||
|
||||
rootTransPos, rootTransOrn = self.buildOriginTrans()
|
||||
basePos, baseOrn = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
|
||||
|
||||
rootPosRel, dummy = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn,
|
||||
basePos, [0, 0, 0, 1])
|
||||
# print("!!!rootPosRel =",rootPosRel )
|
||||
# print("rootTransPos=",rootTransPos)
|
||||
# print("basePos=",basePos)
|
||||
localPos, localOrn = self._pybullet_client.multiplyTransforms(rootTransPos, rootTransOrn,
|
||||
basePos, baseOrn)
|
||||
|
||||
localPos = [
|
||||
localPos[0] - rootPosRel[0], localPos[1] - rootPosRel[1], localPos[2] - rootPosRel[2]
|
||||
]
|
||||
# print("localPos=",localPos)
|
||||
|
||||
stateVector.append(rootPosRel[1])
|
||||
|
||||
self.pb2dmJoints = range(15)
|
||||
|
||||
linkIndicesSim = []
|
||||
for pbJoint in range(self._pybullet_client.getNumJoints(self._sim_model)):
|
||||
linkIndicesSim.append(self.pb2dmJoints[pbJoint])
|
||||
|
||||
linkStatesSim = self._pybullet_client.getLinkStates(self._sim_model, linkIndicesSim,
|
||||
computeForwardKinematics=True, computeLinkVelocity=True)
|
||||
|
||||
for pbJoint in range(self._pybullet_client.getNumJoints(self._sim_model)):
|
||||
j = self.pb2dmJoints[pbJoint]
|
||||
# print("joint order:",j)
|
||||
ls = linkStatesSim[pbJoint]
|
||||
linkPos = ls[0]
|
||||
linkOrn = ls[1]
|
||||
linkPosLocal, linkOrnLocal = self._pybullet_client.multiplyTransforms(
|
||||
rootTransPos, rootTransOrn, linkPos, linkOrn)
|
||||
if (linkOrnLocal[3] < 0):
|
||||
linkOrnLocal = [-linkOrnLocal[0], -linkOrnLocal[1], -linkOrnLocal[2], -linkOrnLocal[3]]
|
||||
linkPosLocal = [
|
||||
linkPosLocal[0] - rootPosRel[0], linkPosLocal[1] - rootPosRel[1],
|
||||
linkPosLocal[2] - rootPosRel[2]
|
||||
]
|
||||
for l in linkPosLocal:
|
||||
stateVector.append(l)
|
||||
# re-order the quaternion, DeepMimic uses w,x,y,z
|
||||
|
||||
if (linkOrnLocal[3] < 0):
|
||||
linkOrnLocal[0] *= -1
|
||||
linkOrnLocal[1] *= -1
|
||||
linkOrnLocal[2] *= -1
|
||||
linkOrnLocal[3] *= -1
|
||||
|
||||
stateVector.append(linkOrnLocal[3])
|
||||
stateVector.append(linkOrnLocal[0])
|
||||
stateVector.append(linkOrnLocal[1])
|
||||
stateVector.append(linkOrnLocal[2])
|
||||
|
||||
for pbJoint in range(self._pybullet_client.getNumJoints(self._sim_model)):
|
||||
j = self.pb2dmJoints[pbJoint]
|
||||
ls = linkStatesSim[pbJoint]
|
||||
|
||||
linkLinVel = ls[6]
|
||||
linkAngVel = ls[7]
|
||||
linkLinVelLocal, unused = self._pybullet_client.multiplyTransforms([0, 0, 0], rootTransOrn,
|
||||
linkLinVel, [0, 0, 0, 1])
|
||||
|
||||
linkAngVelLocal, unused = self._pybullet_client.multiplyTransforms([0, 0, 0], rootTransOrn,
|
||||
linkAngVel, [0, 0, 0, 1])
|
||||
|
||||
for l in linkLinVelLocal:
|
||||
stateVector.append(l)
|
||||
for l in linkAngVelLocal:
|
||||
stateVector.append(l)
|
||||
|
||||
# print("stateVector len=",len(stateVector))
|
||||
# for st in range (len(stateVector)):
|
||||
# print("state[",st,"]=",stateVector[st])
|
||||
return stateVector
|
||||
|
||||
def terminates(self):
|
||||
# check if any non-allowed body part hits the ground
|
||||
terminates = False
|
||||
pts = self._pybullet_client.getContactPoints()
|
||||
for p in pts:
|
||||
part = -1
|
||||
# ignore self-collision
|
||||
if (p[1] == p[2]):
|
||||
continue
|
||||
if (p[1] == self._sim_model):
|
||||
part = p[3]
|
||||
if (p[2] == self._sim_model):
|
||||
part = p[4]
|
||||
if (part >= 0 and part in self._fall_contact_body_parts):
|
||||
# print("terminating part:", part)
|
||||
terminates = True
|
||||
|
||||
return terminates
|
||||
|
||||
def quatMul(self, q1, q2):
|
||||
return [
|
||||
q1[3] * q2[0] + q1[0] * q2[3] + q1[1] * q2[2] - q1[2] * q2[1],
|
||||
q1[3] * q2[1] + q1[1] * q2[3] + q1[2] * q2[0] - q1[0] * q2[2],
|
||||
q1[3] * q2[2] + q1[2] * q2[3] + q1[0] * q2[1] - q1[1] * q2[0],
|
||||
q1[3] * q2[3] - q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2]
|
||||
]
|
||||
|
||||
def calcRootAngVelErr(self, vel0, vel1):
|
||||
diff = [vel0[0] - vel1[0], vel0[1] - vel1[1], vel0[2] - vel1[2]]
|
||||
return diff[0] * diff[0] + diff[1] * diff[1] + diff[2] * diff[2]
|
||||
|
||||
def calcRootRotDiff(self, orn0, orn1):
|
||||
orn0Conj = [-orn0[0], -orn0[1], -orn0[2], orn0[3]]
|
||||
q_diff = self.quatMul(orn1, orn0Conj)
|
||||
axis, angle = self._pybullet_client.getAxisAngleFromQuaternion(q_diff)
|
||||
return angle * angle
|
||||
|
||||
def getReward(self, pose, i=0):
|
||||
"""Compute and return the pose-based reward."""
|
||||
# from DeepMimic double cSceneImitate::CalcRewardImitate
|
||||
# todo: compensate for ground height in some parts, once we move to non-flat terrain
|
||||
# not values from the paper, but from the published code.
|
||||
pose_w = 0.5
|
||||
vel_w = 0.05
|
||||
end_eff_w = 0.15
|
||||
# does not exist in paper
|
||||
root_w = 0.2
|
||||
if self._useComReward:
|
||||
com_w = 0.1
|
||||
else:
|
||||
com_w = 0
|
||||
|
||||
total_w = pose_w + vel_w + end_eff_w + root_w + com_w
|
||||
pose_w /= total_w
|
||||
vel_w /= total_w
|
||||
end_eff_w /= total_w
|
||||
root_w /= total_w
|
||||
com_w /= total_w
|
||||
|
||||
pose_scale = 2
|
||||
vel_scale = 0.1
|
||||
end_eff_scale = 40
|
||||
root_scale = 5
|
||||
com_scale = 10
|
||||
err_scale = 1 # error scale
|
||||
|
||||
reward = 0
|
||||
|
||||
pose_err = 0
|
||||
vel_err = 0
|
||||
end_eff_err = 0
|
||||
root_err = 0
|
||||
com_err = 0
|
||||
heading_err = 0
|
||||
|
||||
# create a mimic reward, comparing the dynamics humanoid with a kinematic one
|
||||
|
||||
if self._useComReward:
|
||||
comSim, comSimVel = self.computeCOMposVel(self._sim_model)
|
||||
comKin, comKinVel = self.computeCOMposVel(self._kin_models[i])
|
||||
|
||||
root_id = 0
|
||||
|
||||
mJointWeights = [
|
||||
0.20833, 0.10416, 0.0625, 0.10416, 0.0625, 0.041666666666666671, 0.0625, 0.0416, 0.00,
|
||||
0.10416, 0.0625, 0.0416, 0.0625, 0.0416, 0.0000
|
||||
]
|
||||
|
||||
num_end_effs = 0
|
||||
num_joints = 15
|
||||
|
||||
root_rot_w = mJointWeights[root_id]
|
||||
rootPosSim, rootOrnSim = self._pybullet_client.getBasePositionAndOrientation(self._sim_model)
|
||||
rootPosKin, rootOrnKin = self._pybullet_client.getBasePositionAndOrientation(self._kin_models[i])
|
||||
linVelSim, angVelSim = self._pybullet_client.getBaseVelocity(self._sim_model)
|
||||
# don't read the velocities from the kinematic model (they are zero), use the pose interpolator velocity
|
||||
# see also issue https://github.com/bulletphysics/bullet3/issues/2401
|
||||
linVelKin = self._poseInterpolators[i]._baseLinVel
|
||||
angVelKin = self._poseInterpolators[i]._baseAngVel
|
||||
|
||||
root_rot_err = self.calcRootRotDiff(rootOrnSim, rootOrnKin)
|
||||
pose_err += root_rot_w * root_rot_err
|
||||
|
||||
root_vel_diff = [
|
||||
linVelSim[0] - linVelKin[0], linVelSim[1] - linVelKin[1], linVelSim[2] - linVelKin[2]
|
||||
]
|
||||
root_vel_err = root_vel_diff[0] * root_vel_diff[0] + root_vel_diff[1] * root_vel_diff[
|
||||
1] + root_vel_diff[2] * root_vel_diff[2]
|
||||
|
||||
root_ang_vel_err = self.calcRootAngVelErr(angVelSim, angVelKin)
|
||||
vel_err += root_rot_w * root_ang_vel_err
|
||||
|
||||
jointIndices = range(num_joints)
|
||||
simJointStates = self._pybullet_client.getJointStatesMultiDof(self._sim_model, jointIndices)
|
||||
kinJointStates = self._pybullet_client.getJointStatesMultiDof(self._kin_models[i], jointIndices)
|
||||
linkStatesSim = self._pybullet_client.getLinkStates(self._sim_model, jointIndices)
|
||||
linkStatesKin = self._pybullet_client.getLinkStates(self._kin_models[i], jointIndices)
|
||||
|
||||
for j in range(num_joints):
|
||||
curr_pose_err = 0
|
||||
curr_vel_err = 0
|
||||
w = mJointWeights[j]
|
||||
|
||||
simJointInfo = simJointStates[j]
|
||||
|
||||
# print("simJointInfo.pos=",simJointInfo[0])
|
||||
# print("simJointInfo.vel=",simJointInfo[1])
|
||||
|
||||
kinJointInfo = kinJointStates[j]
|
||||
|
||||
# print("kinJointInfo.pos=",kinJointInfo[0])
|
||||
# print("kinJointInfo.vel=",kinJointInfo[1])
|
||||
if (len(simJointInfo[0]) == 1):
|
||||
angle = simJointInfo[0][0] - kinJointInfo[0][0]
|
||||
curr_pose_err = angle * angle
|
||||
velDiff = simJointInfo[1][0] - kinJointInfo[1][0]
|
||||
curr_vel_err = velDiff * velDiff
|
||||
if (len(simJointInfo[0]) == 4):
|
||||
# print("quaternion diff")
|
||||
diffQuat = self._pybullet_client.getDifferenceQuaternion(simJointInfo[0], kinJointInfo[0])
|
||||
axis, angle = self._pybullet_client.getAxisAngleFromQuaternion(diffQuat)
|
||||
curr_pose_err = angle * angle
|
||||
diffVel = [
|
||||
simJointInfo[1][0] - kinJointInfo[1][0], simJointInfo[1][1] - kinJointInfo[1][1],
|
||||
simJointInfo[1][2] - kinJointInfo[1][2]
|
||||
]
|
||||
curr_vel_err = diffVel[0] * diffVel[0] + diffVel[1] * diffVel[1] + diffVel[2] * diffVel[2]
|
||||
|
||||
pose_err += w * curr_pose_err
|
||||
vel_err += w * curr_vel_err
|
||||
|
||||
is_end_eff = j in self._end_effectors
|
||||
|
||||
if is_end_eff:
|
||||
|
||||
linkStateSim = linkStatesSim[j]
|
||||
linkStateKin = linkStatesKin[j]
|
||||
|
||||
linkPosSim = linkStateSim[0]
|
||||
linkPosKin = linkStateKin[0]
|
||||
linkPosDiff = [
|
||||
linkPosSim[0] - linkPosKin[0], linkPosSim[1] - linkPosKin[1],
|
||||
linkPosSim[2] - linkPosKin[2]
|
||||
]
|
||||
curr_end_err = linkPosDiff[0] * linkPosDiff[0] + linkPosDiff[1] * linkPosDiff[
|
||||
1] + linkPosDiff[2] * linkPosDiff[2]
|
||||
end_eff_err += curr_end_err
|
||||
num_end_effs += 1
|
||||
|
||||
if (num_end_effs > 0):
|
||||
end_eff_err /= num_end_effs
|
||||
|
||||
root_pos_diff = [
|
||||
rootPosSim[0] - rootPosKin[0], rootPosSim[1] - rootPosKin[1], rootPosSim[2] - rootPosKin[2]
|
||||
]
|
||||
root_pos_err = root_pos_diff[0] * root_pos_diff[0] + root_pos_diff[1] * root_pos_diff[
|
||||
1] + root_pos_diff[2] * root_pos_diff[2]
|
||||
|
||||
root_err = root_pos_err + 0.1 * root_rot_err + 0.01 * root_vel_err + 0.001 * root_ang_vel_err
|
||||
|
||||
# COM error in initial code -> COM velocities
|
||||
if self._useComReward:
|
||||
com_err = 0.1 * np.sum(np.square(comKinVel - comSimVel))
|
||||
# com_err = 0.1 * np.sum(np.square(comKin - comSim))
|
||||
# com_err = 0.1 * (com_vel1_world - com_vel0_world).squaredNorm()
|
||||
|
||||
# print("pose_err=",pose_err)
|
||||
# print("vel_err=",vel_err)
|
||||
pose_reward = math.exp(-err_scale * pose_scale * pose_err)
|
||||
vel_reward = math.exp(-err_scale * vel_scale * vel_err)
|
||||
end_eff_reward = math.exp(-err_scale * end_eff_scale * end_eff_err)
|
||||
root_reward = math.exp(-err_scale * root_scale * root_err)
|
||||
com_reward = math.exp(-err_scale * com_scale * com_err)
|
||||
|
||||
reward = pose_w * pose_reward + vel_w * vel_reward + end_eff_w * end_eff_reward + root_w * root_reward + com_w * com_reward
|
||||
|
||||
# pose_reward,vel_reward,end_eff_reward, root_reward, com_reward);
|
||||
# print("reward=",reward)
|
||||
# print("pose_reward=",pose_reward)
|
||||
# print("vel_reward=",vel_reward)
|
||||
# print("end_eff_reward=",end_eff_reward)
|
||||
# print("root_reward=",root_reward)
|
||||
# print("com_reward=",com_reward)
|
||||
|
||||
return reward
|
||||
|
||||
def computeCOMposVel(self, uid: int):
|
||||
"""Compute center-of-mass position and velocity."""
|
||||
pb = self._pybullet_client
|
||||
num_joints = 15
|
||||
jointIndices = range(num_joints)
|
||||
link_states = pb.getLinkStates(uid, jointIndices, computeLinkVelocity=1)
|
||||
link_pos = np.array([s[0] for s in link_states])
|
||||
link_vel = np.array([s[-2] for s in link_states])
|
||||
tot_mass = 0.
|
||||
masses = []
|
||||
for j in jointIndices:
|
||||
mass_, *_ = pb.getDynamicsInfo(uid, j)
|
||||
masses.append(mass_)
|
||||
tot_mass += mass_
|
||||
masses = np.asarray(masses)[:, None]
|
||||
com_pos = np.sum(masses * link_pos, axis=0) / tot_mass
|
||||
com_vel = np.sum(masses * link_vel, axis=0) / tot_mass
|
||||
return com_pos, com_vel
|
244
examples/pybullet/gym/pybullet_envs/deep_mimic/env/motion_capture_data_multiclip.py
vendored
Normal file
244
examples/pybullet/gym/pybullet_envs/deep_mimic/env/motion_capture_data_multiclip.py
vendored
Normal file
@ -0,0 +1,244 @@
|
||||
import json
|
||||
import math
|
||||
import random
|
||||
import numpy as np
|
||||
from os import listdir
|
||||
from os.path import isfile, join
|
||||
|
||||
from scipy.spatial.transform import Rotation as R
|
||||
from scipy.spatial.transform import Slerp
|
||||
|
||||
|
||||
class MotionCaptureDataMultiClip(object):
|
||||
|
||||
def __init__(self):
|
||||
self.Reset()
|
||||
|
||||
def Reset(self):
|
||||
self._motion_data = {}
|
||||
self._num_frames_min = 9999
|
||||
self._num_frames_max = -1
|
||||
self._num_clips = -1
|
||||
self._names = []
|
||||
|
||||
def Load(self, path):
|
||||
if isfile(path):
|
||||
files = [path]
|
||||
else:
|
||||
files = [join(path, f) for f in listdir(path) if isfile(join(path, f))]
|
||||
files.sort()
|
||||
for i in range(len(files)):
|
||||
with open(files[i], 'r') as f:
|
||||
self._names.append(files[i].split('/')[-1])
|
||||
self._motion_data[i] = json.load(f)
|
||||
t = len(self._motion_data[i]['Frames'])
|
||||
self._num_frames_min = min(t, self._num_frames_min)
|
||||
self._num_frames_max = max(t, self._num_frames_max)
|
||||
self._num_clips = len(self._motion_data)
|
||||
self._downsample = True
|
||||
if self._downsample:
|
||||
self.downsampleClips()
|
||||
self._num_frames_max = self._num_frames_min
|
||||
else:
|
||||
self.upsampleClips()
|
||||
self._num_frames_min = self._num_frames_max
|
||||
|
||||
def getNumFrames(self):
|
||||
if self._downsample:
|
||||
return self._num_frames_min
|
||||
else:
|
||||
return self._num_frames_max
|
||||
|
||||
def getKeyFrameDuration(self, id=0):
|
||||
return self._motion_data[id]['Frames'][0][0]
|
||||
|
||||
def getCycleTime(self):
|
||||
keyFrameDuration = self.getKeyFrameDuration()
|
||||
cycleTime = keyFrameDuration * (self.getNumFrames() - 1)
|
||||
return cycleTime
|
||||
|
||||
def calcCycleCount(self, simTime, cycleTime):
|
||||
phases = simTime / cycleTime
|
||||
count = math.floor(phases)
|
||||
return count
|
||||
|
||||
def computeCycleOffset(self, id=0):
|
||||
lastFrame = self.getNumFrames() - 1
|
||||
frameData = self._motion_data[id]['Frames'][0]
|
||||
frameDataNext = self._motion_data[id]['Frames'][lastFrame]
|
||||
|
||||
basePosStart = [frameData[1], frameData[2], frameData[3]]
|
||||
basePosEnd = [frameDataNext[1], frameDataNext[2], frameDataNext[3]]
|
||||
self._cycleOffset = [
|
||||
basePosEnd[0] - basePosStart[0], basePosEnd[1] - basePosStart[1],
|
||||
basePosEnd[2] - basePosStart[2]
|
||||
]
|
||||
return self._cycleOffset
|
||||
|
||||
def getNumClips(self):
|
||||
return self._num_clips
|
||||
|
||||
def downsampleClips(self):
|
||||
for i in range(self._num_clips):
|
||||
n_frames = len(self._motion_data[i]['Frames'])
|
||||
if n_frames != self._num_frames_min:
|
||||
sample = random.sample(range(n_frames), self._num_frames_min)
|
||||
sample.sort()
|
||||
downsampled = np.array(self._motion_data[i]['Frames'])[sample]
|
||||
self._motion_data[i]['Frames'] = downsampled.tolist()
|
||||
#s = json.dumps(self._motion_data[i])
|
||||
#with open("output/{}".format(self._names[i]), 'w') as f:
|
||||
# f.writelines(s)
|
||||
|
||||
def upsampleClips(self):
|
||||
print("Max number of frames: ", self._num_frames_max)
|
||||
for i in range(self._num_clips):
|
||||
#print("Uspsampling clip number: ", i)
|
||||
keyframe_duration = self.getKeyFrameDuration(i)
|
||||
old_times = np.arange(0, len(self._motion_data[i]['Frames']) * keyframe_duration, keyframe_duration)
|
||||
while len(old_times) < self._num_frames_max:
|
||||
new_times, new_vals = self.slerpSingleClip(self._motion_data[i]['Frames'], old_times)
|
||||
#print("Number of final frames: ", len(new_vals))
|
||||
self._motion_data[i]['Frames'] = new_vals
|
||||
old_times = new_times
|
||||
#s = json.dumps(self._motion_data[i])
|
||||
#with open("output/{}".format(self._names[i]), 'w') as f:
|
||||
# f.writelines(s)
|
||||
|
||||
|
||||
def slerpSingleClip(self, clip, key_times):
|
||||
#print("Number of initial frames: ", len(key_times))
|
||||
org_clip = self.quatlist_to_quatlists(clip)
|
||||
org_clip = np.asarray(org_clip)
|
||||
t = org_clip[:, 0]
|
||||
root_pos = org_clip[:, 1]
|
||||
key_rots = org_clip[:, 2]
|
||||
n_frames = len(key_rots)
|
||||
assert len(key_times) == n_frames
|
||||
needed_frames = self._num_frames_max - n_frames
|
||||
#print("Needed frames: ", needed_frames)
|
||||
inter_times = self.calc_inter_times(key_times)
|
||||
inter_times = sorted(random.sample(inter_times, min(len(inter_times), needed_frames)))
|
||||
#print("Number of frames to interpolate: ", len(inter_times))
|
||||
#print("Number of rots: ", len(key_rots[0]))
|
||||
inter_joint = []
|
||||
for i in range(len(key_rots[0])):
|
||||
quats = [rot[i] for rot in key_rots]
|
||||
if len(quats[0]) == 4:
|
||||
joint = R.from_quat(quats)
|
||||
slerp = Slerp(key_times, joint)
|
||||
interp_rots = slerp(inter_times)
|
||||
interp_rots = interp_rots.as_quat().tolist()
|
||||
else:
|
||||
interp_rots = []
|
||||
for tim in range(len(inter_times)):
|
||||
lb = key_times.tolist().index(max([st for st in key_times if st < inter_times[tim]]))
|
||||
ub = lb + 1
|
||||
#print(lb, ub)
|
||||
new_rot = (quats[ub][0] + quats[lb][0])/2
|
||||
interp_rots.append([new_rot])
|
||||
inter_joint.append(interp_rots)
|
||||
inter_joint = np.array(inter_joint).T
|
||||
#print("Shape of interpolated joints: ", inter_joint.shape)
|
||||
old_dict = dict(zip(key_times, key_rots))
|
||||
new_dict = dict(zip(inter_times, inter_joint))
|
||||
old_root_pos = dict(zip(key_times, root_pos))
|
||||
inter_root_pos = self.calc_inter_root_pos(root_pos, key_times, inter_times)
|
||||
new_root_pos = dict(zip(inter_times, inter_root_pos))
|
||||
new_dict = {**old_dict, **new_dict}
|
||||
new_rp_dict = {**old_root_pos, **new_root_pos}
|
||||
ord_keys = sorted(new_dict.keys())
|
||||
ord_rots = [new_dict[k] for k in ord_keys]
|
||||
ord_root_pos = [new_rp_dict[k] for k in ord_keys]
|
||||
new_clip = self.quatlists_to_quatlist(t, ord_root_pos, ord_rots)
|
||||
|
||||
return np.array(ord_keys), new_clip
|
||||
|
||||
def quatlist_to_quatlists(self, clip):
|
||||
new_clips = []
|
||||
for c in clip:
|
||||
t = c[0]
|
||||
root_pos = c[1:4]
|
||||
root_rotation = c[4:8]
|
||||
chest_rotation = c[8:12]
|
||||
neck_rotation = c[12:16]
|
||||
right_hip_rotation = c[16:20]
|
||||
right_knee_rotation = c[20]
|
||||
right_ankle_rotation = c[21:25]
|
||||
right_shoulder_rotation = c[25:29]
|
||||
right_elbow_rotation = c[29]
|
||||
left_hip_rotation = c[30:34]
|
||||
left_knee_rotation = c[34]
|
||||
left_ankle_rotation = c[35:39]
|
||||
left_shoulder_rotation = c[39:43]
|
||||
left_elbow_rotation = c[43]
|
||||
d = [
|
||||
t,
|
||||
root_pos,
|
||||
[
|
||||
self.deepmimic_to_scipy_quaternion(root_rotation),
|
||||
self.deepmimic_to_scipy_quaternion(chest_rotation),
|
||||
self.deepmimic_to_scipy_quaternion(neck_rotation),
|
||||
self.deepmimic_to_scipy_quaternion(right_hip_rotation),
|
||||
[right_knee_rotation],
|
||||
self.deepmimic_to_scipy_quaternion(right_ankle_rotation),
|
||||
self.deepmimic_to_scipy_quaternion(right_shoulder_rotation),
|
||||
[right_elbow_rotation],
|
||||
self.deepmimic_to_scipy_quaternion(left_hip_rotation),
|
||||
[left_knee_rotation],
|
||||
self.deepmimic_to_scipy_quaternion(left_ankle_rotation),
|
||||
self.deepmimic_to_scipy_quaternion(left_shoulder_rotation),
|
||||
[left_elbow_rotation]
|
||||
]
|
||||
]
|
||||
new_clips.append(d)
|
||||
return new_clips
|
||||
|
||||
def deepmimic_to_scipy_quaternion(self, quat):
|
||||
return quat[1:] + [quat[0]]
|
||||
|
||||
def scipy_to_deepmimic_quaternion(self, quat):
|
||||
return [quat[-1]] + quat[:-1]
|
||||
|
||||
def calc_inter_times(self, times, method="intermediate"):
|
||||
if method == "intermediate":
|
||||
inter_times = []
|
||||
for i in range(1, len(times)):
|
||||
it = (times[i] - times[i-1])/2 + times[i-1]
|
||||
inter_times.append(it)
|
||||
return inter_times
|
||||
|
||||
def calc_inter_root_pos(self, root_pos, times, inter_times):
|
||||
inter_root_pos = []
|
||||
all_times = sorted([*times.tolist(), *inter_times])
|
||||
for i in range(len(inter_times)):
|
||||
low_index = times.tolist().index(all_times[all_times.index(inter_times[i]) - 1])
|
||||
up_index = times.tolist().index(all_times[all_times.index(inter_times[i]) + 1])
|
||||
assert low_index == up_index - 1
|
||||
inter_root_pos.append(((np.array(root_pos[up_index]) + np.array(root_pos[low_index]))/2).tolist())
|
||||
return inter_root_pos
|
||||
|
||||
def quatlists_to_quatlist(self, t, ord_root_pos, ord_rots):
|
||||
delta_t = t[0]
|
||||
new_quats = self.merge_quaternions(ord_rots)
|
||||
a = []
|
||||
for i in range(len(ord_root_pos)):
|
||||
rot = new_quats[i]
|
||||
|
||||
a.append([
|
||||
delta_t,
|
||||
*ord_root_pos[i],
|
||||
*rot
|
||||
])
|
||||
return a
|
||||
|
||||
def merge_quaternions(self, rotations):
|
||||
quats = []
|
||||
for rot in rotations:
|
||||
rots = []
|
||||
for r in rot:
|
||||
if len(r) == 4:
|
||||
r = self.scipy_to_deepmimic_quaternion(r)
|
||||
rots += [el for el in r]
|
||||
quats.append(rots)
|
||||
return quats
|
313
examples/pybullet/gym/pybullet_envs/deep_mimic/env/pybullet_deep_mimic_env_multiclip.py
vendored
Normal file
313
examples/pybullet/gym/pybullet_envs/deep_mimic/env/pybullet_deep_mimic_env_multiclip.py
vendored
Normal file
@ -0,0 +1,313 @@
|
||||
import numpy as np
|
||||
import math
|
||||
from pybullet_envs.deep_mimic.env.env import Env
|
||||
from pybullet_envs.deep_mimic.env.action_space import ActionSpace
|
||||
from pybullet_utils import bullet_client
|
||||
import time
|
||||
from pybullet_envs.deep_mimic.env import motion_capture_data_multiclip
|
||||
from pybullet_envs.deep_mimic.env import humanoid_stable_pd_multiclip
|
||||
import pybullet_data
|
||||
import pybullet as p1
|
||||
import random
|
||||
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class InitializationStrategy(Enum):
|
||||
"""Set how the environment is initialized."""
|
||||
START = 0
|
||||
RANDOM = 1 # random state initialization (RSI)
|
||||
|
||||
|
||||
class PyBulletDeepMimicEnvMultiClip(Env):
|
||||
|
||||
def __init__(self, arg_parser=None, enable_draw=False, pybullet_client=None,
|
||||
time_step=1. / 240,
|
||||
init_strategy=InitializationStrategy.RANDOM):
|
||||
super().__init__(arg_parser, enable_draw)
|
||||
self._num_agents = 1
|
||||
self._pybullet_client = pybullet_client
|
||||
self._isInitialized = False
|
||||
#self._useStablePD = True
|
||||
self._arg_parser = arg_parser
|
||||
self.timeStep = time_step
|
||||
self._init_strategy = init_strategy
|
||||
self._n_clips = -1
|
||||
print("Initialization strategy: {:s}".format(init_strategy))
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
|
||||
if not self._isInitialized:
|
||||
if self.enable_draw:
|
||||
self._pybullet_client = bullet_client.BulletClient(connection_mode=p1.GUI)
|
||||
# disable 'GUI' since it slows down a lot on Mac OSX and some other platforms
|
||||
self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_GUI, 0)
|
||||
else:
|
||||
self._pybullet_client = bullet_client.BulletClient()
|
||||
|
||||
self._pybullet_client.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||
z2y = self._pybullet_client.getQuaternionFromEuler([-math.pi * 0.5, 0, 0])
|
||||
self._planeId = self._pybullet_client.loadURDF("plane_implicit.urdf", [0, 0, 0],
|
||||
z2y,
|
||||
useMaximalCoordinates=True)
|
||||
# print("planeId=",self._planeId)
|
||||
self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_Y_AXIS_UP, 1)
|
||||
self._pybullet_client.setGravity(0, -9.8, 0)
|
||||
|
||||
self._pybullet_client.setPhysicsEngineParameter(numSolverIterations=10)
|
||||
self._pybullet_client.changeDynamics(self._planeId, linkIndex=-1, lateralFriction=0.9)
|
||||
|
||||
self._mocapData = motion_capture_data_multiclip.MotionCaptureDataMultiClip()
|
||||
|
||||
motion_file = self._arg_parser.parse_strings('motion_file')
|
||||
print("motion_file=", motion_file[0])
|
||||
|
||||
motionPath = pybullet_data.getDataPath() + "/" + motion_file[0]
|
||||
|
||||
self._mocapData.Load(motionPath)
|
||||
self._n_clips = self._mocapData.getNumClips()
|
||||
timeStep = self.timeStep
|
||||
useFixedBase = False
|
||||
self._humanoid = humanoid_stable_pd_multiclip.HumanoidStablePDMultiClip(self._pybullet_client, self._mocapData,
|
||||
timeStep, useFixedBase, self._arg_parser)
|
||||
self._isInitialized = True
|
||||
|
||||
self._pybullet_client.setTimeStep(timeStep)
|
||||
self._pybullet_client.setPhysicsEngineParameter(numSubSteps=1)
|
||||
|
||||
# print("numframes = ", self._humanoid._mocap_data.NumFrames())
|
||||
|
||||
if self._init_strategy == InitializationStrategy.RANDOM:
|
||||
rnrange = 1000
|
||||
rn = random.randint(0, rnrange)
|
||||
startTime = float(rn) / rnrange * self._humanoid.getCycleTime()
|
||||
elif self._init_strategy == InitializationStrategy.START:
|
||||
startTime = 0
|
||||
|
||||
self.t = startTime
|
||||
|
||||
self._humanoid.setSimTime(startTime)
|
||||
|
||||
self._humanoid.resetPose()
|
||||
# this clears the contact points. Todo: add API to explicitly clear all contact points?
|
||||
self._humanoid.resetPose()
|
||||
self.needs_update_time = self.t - 1 # force update
|
||||
|
||||
def get_num_agents(self):
|
||||
return self._num_agents
|
||||
|
||||
def get_action_space(self, agent_id):
|
||||
return ActionSpace(ActionSpace.Continuous)
|
||||
|
||||
def get_reward_min(self, agent_id):
|
||||
return 0
|
||||
|
||||
def get_reward_max(self, agent_id):
|
||||
return 1
|
||||
|
||||
def get_reward_fail(self, agent_id):
|
||||
return self.get_reward_min(agent_id)
|
||||
|
||||
def get_reward_succ(self, agent_id):
|
||||
return self.get_reward_max(agent_id)
|
||||
|
||||
# scene_name == "imitate" -> cDrawSceneImitate
|
||||
def get_state_size(self, agent_id):
|
||||
# cCtController::GetStateSize()
|
||||
# int state_size = cDeepMimicCharController::GetStateSize();
|
||||
# state_size += GetStatePoseSize();#106
|
||||
# state_size += GetStateVelSize(); #(3+3)*numBodyParts=90
|
||||
# state_size += GetStatePhaseSize();#1
|
||||
# 197
|
||||
return 197
|
||||
|
||||
def build_state_norm_groups(self, agent_id):
|
||||
groups = [0] * self.get_state_size(agent_id)
|
||||
groups[0] = -1
|
||||
return groups
|
||||
|
||||
def build_state_offset(self, agent_id):
|
||||
out_offset = [0] * self.get_state_size(agent_id)
|
||||
phase_offset = -0.5
|
||||
out_offset[0] = phase_offset
|
||||
return np.array(out_offset)
|
||||
|
||||
def build_state_scale(self, agent_id):
|
||||
out_scale = [1] * self.get_state_size(agent_id)
|
||||
phase_scale = 2
|
||||
out_scale[0] = phase_scale
|
||||
return np.array(out_scale)
|
||||
|
||||
def get_goal_size(self, agent_id):
|
||||
return 0
|
||||
|
||||
def get_action_size(self, agent_id):
|
||||
ctrl_size = 43 # numDof
|
||||
root_size = 7
|
||||
return ctrl_size - root_size
|
||||
|
||||
def build_goal_norm_groups(self, agent_id):
|
||||
return np.array([])
|
||||
|
||||
def build_goal_offset(self, agent_id):
|
||||
return np.array([])
|
||||
|
||||
def build_goal_scale(self, agent_id):
|
||||
return np.array([])
|
||||
|
||||
def build_action_offset(self, agent_id):
|
||||
out_offset = [
|
||||
0.0000000000, 0.0000000000, 0.0000000000, -0.200000000, 0.0000000000, 0.0000000000,
|
||||
0.0000000000, -0.200000000, 0.0000000000, 0.0000000000, 0.00000000, -0.2000000, 1.57000000,
|
||||
0.00000000, 0.00000000, 0.00000000, -0.2000000, 0.00000000, 0.00000000, 0.00000000,
|
||||
-0.2000000, -1.5700000, 0.00000000, 0.00000000, 0.00000000, -0.2000000, 1.57000000,
|
||||
0.00000000, 0.00000000, 0.00000000, -0.2000000, 0.00000000, 0.00000000, 0.00000000,
|
||||
-0.2000000, -1.5700000
|
||||
]
|
||||
# see cCtCtrlUtil::BuildOffsetScalePDPrismatic and
|
||||
# see cCtCtrlUtil::BuildOffsetScalePDSpherical
|
||||
return np.array(out_offset)
|
||||
|
||||
def build_action_scale(self, agent_id):
|
||||
# see cCtCtrlUtil::BuildOffsetScalePDPrismatic and
|
||||
# see cCtCtrlUtil::BuildOffsetScalePDSpherical
|
||||
out_scale = [
|
||||
0.20833333333333, 1.00000000000000, 1.00000000000000, 1.00000000000000, 0.25000000000000,
|
||||
1.00000000000000, 1.00000000000000, 1.00000000000000, 0.12077294685990, 1.00000000000000,
|
||||
1.000000000000, 1.000000000000, 0.159235668789, 0.159235668789, 1.000000000000,
|
||||
1.000000000000, 1.000000000000, 0.079617834394, 1.000000000000, 1.000000000000,
|
||||
1.000000000000, 0.159235668789, 0.120772946859, 1.000000000000, 1.000000000000,
|
||||
1.000000000000, 0.159235668789, 0.159235668789, 1.000000000000, 1.000000000000,
|
||||
1.000000000000, 0.107758620689, 1.000000000000, 1.000000000000, 1.000000000000,
|
||||
0.159235668789
|
||||
]
|
||||
return np.array(out_scale)
|
||||
|
||||
def build_action_bound_min(self, agent_id):
|
||||
# see cCtCtrlUtil::BuildBoundsPDSpherical
|
||||
out_scale = [
|
||||
-4.79999999999, -1.00000000000, -1.00000000000, -1.00000000000, -4.00000000000,
|
||||
-1.00000000000, -1.00000000000, -1.00000000000, -7.77999999999, -1.00000000000,
|
||||
-1.000000000, -1.000000000, -7.850000000, -6.280000000, -1.000000000, -1.000000000,
|
||||
-1.000000000, -12.56000000, -1.000000000, -1.000000000, -1.000000000, -4.710000000,
|
||||
-7.779999999, -1.000000000, -1.000000000, -1.000000000, -7.850000000, -6.280000000,
|
||||
-1.000000000, -1.000000000, -1.000000000, -8.460000000, -1.000000000, -1.000000000,
|
||||
-1.000000000, -4.710000000
|
||||
]
|
||||
|
||||
return out_scale
|
||||
|
||||
def build_action_bound_max(self, agent_id):
|
||||
out_scale = [
|
||||
4.799999999, 1.000000000, 1.000000000, 1.000000000, 4.000000000, 1.000000000, 1.000000000,
|
||||
1.000000000, 8.779999999, 1.000000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000,
|
||||
1.0000000, 1.0000000, 1.0000000, 12.560000, 1.0000000, 1.0000000, 1.0000000, 7.8500000,
|
||||
8.7799999, 1.0000000, 1.0000000, 1.0000000, 4.7100000, 6.2800000, 1.0000000, 1.0000000,
|
||||
1.0000000, 10.100000, 1.0000000, 1.0000000, 1.0000000, 7.8500000
|
||||
]
|
||||
return out_scale
|
||||
|
||||
def set_mode(self, mode):
|
||||
self._mode = mode
|
||||
|
||||
def need_new_action(self, agent_id):
|
||||
if self.t >= self.needs_update_time:
|
||||
self.needs_update_time = self.t + 1. / 30.
|
||||
return True
|
||||
return False
|
||||
|
||||
def record_state(self, agent_id):
|
||||
state = self._humanoid.getState()
|
||||
return np.array(state)
|
||||
|
||||
def record_goal(self, agent_id):
|
||||
return np.array([])
|
||||
|
||||
def calc_reward(self, agent_id):
|
||||
rewards = {}
|
||||
for i in range(self._n_clips):
|
||||
kinPose = self._humanoid.computePose(self._humanoid._frameFraction, i)
|
||||
rewards[i] = self._humanoid.getReward(kinPose, i)
|
||||
reward = self.select_reward(rewards)
|
||||
return reward
|
||||
|
||||
def set_action(self, agent_id, action):
|
||||
# print("action=",)
|
||||
# for a in action:
|
||||
# print(a)
|
||||
self.desiredPose = {}
|
||||
for i in range(self._n_clips):
|
||||
self.desiredPose[i] = self._humanoid.convertActionToPose(action, i)
|
||||
# we need the target root positon and orientation to be zero, to be compatible with deep mimic
|
||||
self.desiredPose[i][0] = 0
|
||||
self.desiredPose[i][1] = 0
|
||||
self.desiredPose[i][2] = 0
|
||||
self.desiredPose[i][3] = 0
|
||||
self.desiredPose[i][4] = 0
|
||||
self.desiredPose[i][5] = 0
|
||||
self.desiredPose[i][6] = 0
|
||||
target_pose = np.array(self.desiredPose[i])
|
||||
|
||||
# print("set_action: desiredPose=", self.desiredPose)
|
||||
|
||||
def log_val(self, agent_id, val):
|
||||
pass
|
||||
|
||||
def update(self, timeStep):
|
||||
# print("pybullet_deep_mimic_env:update timeStep=",timeStep," t=",self.t)
|
||||
self._pybullet_client.setTimeStep(timeStep)
|
||||
self._humanoid._timeStep = timeStep
|
||||
self.timeStep = timeStep
|
||||
|
||||
self.t += timeStep
|
||||
self._humanoid.setSimTime(self.t)
|
||||
|
||||
if self.desiredPose:
|
||||
for i in range(self._n_clips):
|
||||
kinPose = self._humanoid.computePose(self._humanoid._frameFraction, i)
|
||||
self._humanoid.initializePose(self._humanoid._poseInterpolators[i],
|
||||
self._humanoid._kin_models[i],
|
||||
initBase=True)
|
||||
# print("desiredPositions=",self.desiredPose[i])
|
||||
maxForces = [
|
||||
0, 0, 0, 0, 0, 0, 0, 200, 200, 200, 200, 50, 50, 50, 50, 200, 200, 200, 200, 150, 90,
|
||||
90, 90, 90, 100, 100, 100, 100, 60, 200, 200, 200, 200, 150, 90, 90, 90, 90, 100, 100,
|
||||
100, 100, 60
|
||||
]
|
||||
|
||||
self._humanoid.computeAndApplyPDForces(self.desiredPose[0], maxForces=maxForces) # TODO check if this should be inside the for loop
|
||||
|
||||
self._pybullet_client.stepSimulation()
|
||||
|
||||
def set_sample_count(self, count):
|
||||
return
|
||||
|
||||
def check_terminate(self, agent_id):
|
||||
return Env.Terminate(self.is_episode_end())
|
||||
|
||||
def is_episode_end(self):
|
||||
isEnded = self._humanoid.terminates()
|
||||
# also check maximum time, 20 seconds (todo get from file)
|
||||
# print("self.t=",self.t)
|
||||
if (self.t > 20):
|
||||
isEnded = True
|
||||
return isEnded
|
||||
|
||||
def check_valid_episode(self):
|
||||
# could check if limbs exceed velocity threshold
|
||||
return True
|
||||
|
||||
def getKeyboardEvents(self):
|
||||
return self._pybullet_client.getKeyboardEvents()
|
||||
|
||||
def isKeyTriggered(self, keys, key):
|
||||
o = ord(key)
|
||||
# print("ord=",o)
|
||||
if o in keys:
|
||||
return keys[ord(key)] & self._pybullet_client.KEY_WAS_TRIGGERED
|
||||
return False
|
||||
|
||||
def select_reward(self, rewards, criterion=None):
|
||||
# todo create enum for criterion
|
||||
return max(rewards.values())
|
@ -0,0 +1,25 @@
|
||||
import sys
|
||||
import subprocess
|
||||
from pybullet_utils.arg_parser import ArgParser
|
||||
from pybullet_utils.logger import Logger
|
||||
|
||||
|
||||
def main():
|
||||
# Command line arguments
|
||||
args = sys.argv[1:]
|
||||
arg_parser = ArgParser()
|
||||
arg_parser.load_args(args)
|
||||
|
||||
num_workers = arg_parser.parse_int('num_workers', 1)
|
||||
assert (num_workers > 0)
|
||||
|
||||
Logger.print2('Running with {:d} workers'.format(num_workers))
|
||||
cmd = 'mpiexec -n {:d} python3 DeepMimic_Optimizer_multiclip.py '.format(num_workers)
|
||||
cmd += ' '.join(args)
|
||||
Logger.print2('cmd: ' + cmd)
|
||||
subprocess.call(cmd, shell=True)
|
||||
return
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -0,0 +1,30 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
content = []
|
||||
|
||||
with open("output/agent0_log.txt", "r") as f:
|
||||
content = f.readlines()
|
||||
|
||||
for i in range(len(content)):
|
||||
content[i] = ' '.join(content[i].split())
|
||||
content[i] = content[i].split(" ")
|
||||
|
||||
header = content[0]
|
||||
df = pd.DataFrame(content[1:], columns=header, dtype=float)
|
||||
|
||||
tr_vals = df["Train_Return"].values
|
||||
te_vals = df["Test_Return"].values
|
||||
x = range(0, len(tr_vals)*400, 400)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(x, tr_vals, label="Train")
|
||||
ax.plot(x, te_vals, label="Test")
|
||||
ax.set_xlim(0, (len(tr_vals)+1)*400)
|
||||
ax.set_xlabel('Iterations')
|
||||
ax.set_ylim(0, 100, 10)
|
||||
ax.set_ylabel('Return')
|
||||
ax.legend()
|
||||
plt.savefig("output/rewards_log.png")
|
@ -0,0 +1,112 @@
|
||||
import time
|
||||
import os
|
||||
import inspect
|
||||
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0, parentdir)
|
||||
print("parentdir=", parentdir)
|
||||
import json
|
||||
from pybullet_envs.deep_mimic.learning.rl_world import RLWorld
|
||||
from pybullet_envs.deep_mimic.learning.ppo_agent import PPOAgent
|
||||
|
||||
import pybullet_data
|
||||
from pybullet_utils.arg_parser import ArgParser
|
||||
from pybullet_utils.logger import Logger
|
||||
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env_multiclip import PyBulletDeepMimicEnvMultiClip
|
||||
import sys
|
||||
import random
|
||||
|
||||
update_timestep = 1. / 240.
|
||||
animating = True
|
||||
step = False
|
||||
total_reward = 0
|
||||
steps = 0
|
||||
|
||||
|
||||
def update_world(world, time_elapsed):
|
||||
timeStep = update_timestep
|
||||
world.update(timeStep)
|
||||
reward = world.env.calc_reward(agent_id=0)
|
||||
global total_reward
|
||||
total_reward += reward
|
||||
global steps
|
||||
steps += 1
|
||||
|
||||
end_episode = world.env.is_episode_end()
|
||||
if (end_episode or steps >= 1000):
|
||||
print("total_reward=", total_reward)
|
||||
total_reward = 0
|
||||
steps = 0
|
||||
world.end_episode()
|
||||
world.reset()
|
||||
|
||||
|
||||
def build_arg_parser(args):
|
||||
arg_parser = ArgParser()
|
||||
arg_parser.load_args(args)
|
||||
|
||||
arg_file = arg_parser.parse_string('arg_file', '')
|
||||
if arg_file == '':
|
||||
arg_file = "run_humanoid3d_backflip_args.txt"
|
||||
if (arg_file != ''):
|
||||
path = pybullet_data.getDataPath() + "/args/" + arg_file
|
||||
if os.path.isfile(path):
|
||||
succ = arg_parser.load_file(path)
|
||||
else:
|
||||
files = [arg_parser.load_file(f) for f in os.listdir(path) if os.path.isfile(os.path.join(path, f))]
|
||||
succ = all(files)
|
||||
Logger.print2(arg_file)
|
||||
assert succ, Logger.print2('Failed to load args from: ' + arg_file)
|
||||
return arg_parser
|
||||
|
||||
|
||||
args = sys.argv[1:]
|
||||
|
||||
|
||||
def build_world(args, enable_draw):
|
||||
arg_parser = build_arg_parser(args)
|
||||
print("enable_draw=", enable_draw)
|
||||
env = PyBulletDeepMimicEnvMultiClip(arg_parser, enable_draw)
|
||||
world = RLWorld(env, arg_parser)
|
||||
|
||||
motion_file = arg_parser.parse_string("motion_file")
|
||||
print("motion_file=", motion_file)
|
||||
bodies = arg_parser.parse_ints("fall_contact_bodies")
|
||||
print("bodies=", bodies)
|
||||
int_output_path = arg_parser.parse_string("int_output_path")
|
||||
print("int_output_path=", int_output_path)
|
||||
agent_files = pybullet_data.getDataPath() + "/" + arg_parser.parse_string("agent_files")
|
||||
|
||||
AGENT_TYPE_KEY = "AgentType"
|
||||
|
||||
print("agent_file=", agent_files)
|
||||
with open(agent_files) as data_file:
|
||||
json_data = json.load(data_file)
|
||||
print("json_data=", json_data)
|
||||
assert AGENT_TYPE_KEY in json_data
|
||||
agent_type = json_data[AGENT_TYPE_KEY]
|
||||
print("agent_type=", agent_type)
|
||||
agent = PPOAgent(world, id, json_data)
|
||||
|
||||
agent.set_enable_training(False)
|
||||
world.reset()
|
||||
return world
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
world = build_world(args, True)
|
||||
while (world.env._pybullet_client.isConnected()):
|
||||
|
||||
timeStep = update_timestep
|
||||
time.sleep(timeStep)
|
||||
keys = world.env.getKeyboardEvents()
|
||||
|
||||
if world.env.isKeyTriggered(keys, ' '):
|
||||
animating = not animating
|
||||
if world.env.isKeyTriggered(keys, 'i'):
|
||||
step = True
|
||||
if (animating or step):
|
||||
update_world(world, timeStep)
|
||||
step = False
|
Loading…
Reference in New Issue
Block a user