mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-18 21:10:05 +00:00
add humanoid_deepmimic_gym_env.py for HumanoidDeepMimicBulletEnv-v1 (still untested)
This commit is contained in:
parent
fbfa13894b
commit
2e30a9565b
@ -1,5 +1,11 @@
|
||||
# AI 2018
|
||||
|
||||
import os
|
||||
import inspect
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0,parentdir)
|
||||
|
||||
# Importing the libraries
|
||||
import os
|
||||
import numpy as np
|
||||
|
@ -8,6 +8,13 @@ def register(id,*args,**kvargs):
|
||||
|
||||
# ------------bullet-------------
|
||||
|
||||
register(
|
||||
id='HumanoidDeepMimicBulletEnv-v1',
|
||||
entry_point='pybullet_envs.deep_mimic:HumanoidDeepMimicGymEnv',
|
||||
max_episode_steps=1000,
|
||||
reward_threshold=20000.0,
|
||||
)
|
||||
|
||||
register(
|
||||
id='CartPoleBulletEnv-v1',
|
||||
entry_point='pybullet_envs.bullet:CartPoleBulletEnv',
|
||||
|
@ -0,0 +1 @@
|
||||
from pybullet_envs.deep_mimic.humanoid_deepmimic_gym_env import HumanoidDeepMimicGymEnv
|
@ -177,14 +177,13 @@ class Humanoid(object):
|
||||
self.kin_client.setGravity(0,-9.8,0)
|
||||
|
||||
self._motion_data = motion_data
|
||||
print("LOADING humanoid!")
|
||||
self._humanoid = self._pybullet_client.loadURDF(
|
||||
"humanoid/humanoid.urdf", [0,0.9,0],globalScaling=0.25, useFixedBase=False)
|
||||
|
||||
self._kinematicHumanoid = self.kin_client.loadURDF(
|
||||
"humanoid/humanoid.urdf", [0,0.9,0],globalScaling=0.25, useFixedBase=False)
|
||||
|
||||
#self._humanoidDebug = self._pybullet_client.loadURDF(
|
||||
# "humanoid/humanoid.urdf", [0,0.9,3],globalScaling=0.25, useFixedBase=True)
|
||||
|
||||
#print("human #joints=", self._pybullet_client.getNumJoints(self._humanoid))
|
||||
pose = HumanoidPose()
|
||||
@ -676,5 +675,9 @@ class Humanoid(object):
|
||||
#print("reward = %f (pose_reward=%f, vel_reward=%f, end_eff_reward=%f, root_reward=%f, com_reward=%f)\n", reward,
|
||||
# pose_reward,vel_reward,end_eff_reward, root_reward, com_reward);
|
||||
|
||||
|
||||
return reward
|
||||
|
||||
def GetBasePosition(self):
|
||||
pos,orn = self._pybullet_client.getBasePositionAndOrientation(self._humanoid)
|
||||
return pos
|
||||
|
@ -0,0 +1,277 @@
|
||||
"""This file implements the gym environment of humanoid deepmimic using PyBullet.
|
||||
|
||||
"""
|
||||
import math
|
||||
import time
|
||||
|
||||
import os, inspect
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0,parentdir)
|
||||
|
||||
import gym
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
import random
|
||||
import numpy as np
|
||||
import pybullet
|
||||
import pybullet_data
|
||||
from pybullet_envs.deep_mimic.humanoid import Humanoid
|
||||
from pkg_resources import parse_version
|
||||
from pybullet_utils import bullet_client
|
||||
from pybullet_envs.deep_mimic.motion_capture_data import MotionCaptureData
|
||||
|
||||
RENDER_HEIGHT = 360
|
||||
RENDER_WIDTH = 480
|
||||
|
||||
|
||||
class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
"""The gym environment for the humanoid deep mimic.
|
||||
"""
|
||||
metadata = {
|
||||
"render.modes": ["human", "rgb_array"],
|
||||
"video.frames_per_second": 100
|
||||
}
|
||||
|
||||
def __init__(self,
|
||||
urdf_root=pybullet_data.getDataPath(),
|
||||
render=False):
|
||||
"""Initialize the gym environment.
|
||||
|
||||
Args:
|
||||
urdf_root: The path to the urdf data folder.
|
||||
render: Whether to render the simulation.
|
||||
Raises:
|
||||
ValueError: If the urdf_version is not supported.
|
||||
"""
|
||||
# Set up logging.
|
||||
self._urdf_root = urdf_root
|
||||
self._observation = []
|
||||
self._env_step_counter = 0
|
||||
self._is_render = render
|
||||
self._cam_dist = 1.0
|
||||
self._cam_yaw = 0
|
||||
self._cam_pitch = -30
|
||||
self._ground_id = None
|
||||
self._pybullet_client = None
|
||||
self._humanoid = None
|
||||
self._control_time_step = 8.*(1./240.)#0.033333
|
||||
self._seed()
|
||||
observation_high = (self._get_observation_upper_bound())
|
||||
observation_low = (self._get_observation_lower_bound())
|
||||
action_dim = 36
|
||||
self._action_bound = 3.14 #todo: check this
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high)
|
||||
|
||||
def _close(self):
|
||||
self._humanoid = None
|
||||
self._pybullet_client.disconnect()
|
||||
|
||||
|
||||
def _reset(self):
|
||||
if (self._pybullet_client==None):
|
||||
if self._is_render:
|
||||
self._pybullet_client = bullet_client.BulletClient(
|
||||
connection_mode=pybullet.GUI)
|
||||
else:
|
||||
self._pybullet_client = bullet_client.BulletClient()
|
||||
self._pybullet_client.setAdditionalSearchPath(pybullet_data.getDataPath())
|
||||
self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_Y_AXIS_UP,1)
|
||||
self._motion=MotionCaptureData()
|
||||
motionPath = pybullet_data.getDataPath()+"/motions/humanoid3d_walk.txt"#humanoid3d_spinkick.txt"#/motions/humanoid3d_backflip.txt"
|
||||
self._motion.Load(motionPath)
|
||||
self._pybullet_client.configureDebugVisualizer(
|
||||
self._pybullet_client.COV_ENABLE_RENDERING, 0)
|
||||
self._pybullet_client.resetSimulation()
|
||||
self._pybullet_client.setGravity(0,-9.8,0)
|
||||
y2zOrn = self._pybullet_client.getQuaternionFromEuler([-1.57,0,0])
|
||||
self._ground_id = self._pybullet_client.loadURDF(
|
||||
"%s/plane.urdf" % self._urdf_root, [0,0,0], y2zOrn)
|
||||
#self._pybullet_client.changeVisualShape(self._ground_id,-1,rgbaColor=[1,1,1,0.8])
|
||||
#self._pybullet_client.configureDebugVisualizer(self._pybullet_client.COV_ENABLE_PLANAR_REFLECTION,self._ground_id)
|
||||
shift=[0,0,0]
|
||||
self._humanoid = Humanoid(self._pybullet_client,self._motion,shift)
|
||||
|
||||
self._humanoid.Reset()
|
||||
simTime = random.randint(0,self._motion.NumFrames()-2)
|
||||
self._humanoid.SetSimTime(simTime)
|
||||
pose = self._humanoid.InitializePoseFromMotionData()
|
||||
self._humanoid.ApplyPose(pose, True, True, self._humanoid._humanoid,self._pybullet_client)
|
||||
|
||||
self._env_step_counter = 0
|
||||
self._objectives = []
|
||||
self._pybullet_client.resetDebugVisualizerCamera(
|
||||
self._cam_dist, self._cam_yaw, self._cam_pitch, [0, 0, 0])
|
||||
self._pybullet_client.configureDebugVisualizer(
|
||||
self._pybullet_client.COV_ENABLE_RENDERING, 1)
|
||||
return self._get_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def _step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
action: A list of desired motor angles for eight motors.
|
||||
|
||||
Returns:
|
||||
observations: The angles, velocities and torques of all motors.
|
||||
reward: The reward for the current state-action pair.
|
||||
done: Whether the episode has ended.
|
||||
info: A dictionary that stores diagnostic information.
|
||||
|
||||
Raises:
|
||||
ValueError: The action dimension is not the same as the number of motors.
|
||||
ValueError: The magnitude of actions is out of bounds.
|
||||
"""
|
||||
self._last_base_position = self._humanoid.GetBasePosition()
|
||||
|
||||
if self._is_render:
|
||||
# Sleep, otherwise the computation takes less time than real time,
|
||||
# which will make the visualization like a fast-forward video.
|
||||
#time_spent = time.time() - self._last_frame_time
|
||||
#self._last_frame_time = time.time()
|
||||
#time_to_sleep = self._control_time_step - time_spent
|
||||
#if time_to_sleep > 0:
|
||||
# time.sleep(time_to_sleep)
|
||||
base_pos = self._humanoid.GetBasePosition()
|
||||
# Keep the previous orientation of the camera set by the user.
|
||||
[yaw, pitch,
|
||||
dist] = self._pybullet_client.getDebugVisualizerCamera()[8:11]
|
||||
self._pybullet_client.resetDebugVisualizerCamera(dist, yaw, pitch,
|
||||
base_pos)
|
||||
|
||||
|
||||
self._humanoid.ApplyAction(action)
|
||||
for s in range (8):
|
||||
#print("step:",s)
|
||||
self._pybullet_client.stepSimulation()
|
||||
reward = self._reward()
|
||||
done = self._termination()
|
||||
self._env_step_counter += 1
|
||||
return np.array(self._get_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
if mode == "human":
|
||||
self._is_render = True
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos = self._humanoid.GetBasePosition()
|
||||
view_matrix = self._pybullet_client.computeViewMatrixFromYawPitchRoll(
|
||||
cameraTargetPosition=base_pos,
|
||||
distance=self._cam_dist,
|
||||
yaw=self._cam_yaw,
|
||||
pitch=self._cam_pitch,
|
||||
roll=0,
|
||||
upAxisIndex=1)
|
||||
proj_matrix = self._pybullet_client.computeProjectionMatrixFOV(
|
||||
fov=60,
|
||||
aspect=float(RENDER_WIDTH) / RENDER_HEIGHT,
|
||||
nearVal=0.1,
|
||||
farVal=100.0)
|
||||
(_, _, px, _, _) = self._pybullet_client.getCameraImage(
|
||||
width=RENDER_WIDTH,
|
||||
height=RENDER_HEIGHT,
|
||||
renderer=self._pybullet_client.ER_BULLET_HARDWARE_OPENGL,
|
||||
viewMatrix=view_matrix,
|
||||
projectionMatrix=proj_matrix)
|
||||
rgb_array = np.array(px)
|
||||
rgb_array = rgb_array[:, :, :3]
|
||||
return rgb_array
|
||||
|
||||
def _termination(self):
|
||||
if (self._humanoid):
|
||||
term = self._humanoid.Terminates()
|
||||
return term
|
||||
return False
|
||||
|
||||
def _reward(self):
|
||||
reward = 0
|
||||
if (self._humanoid):
|
||||
reward = self._humanoid.GetReward()
|
||||
return reward
|
||||
|
||||
def get_objectives(self):
|
||||
return self._objectives
|
||||
|
||||
@property
|
||||
def objective_weights(self):
|
||||
"""Accessor for the weights for all the objectives.
|
||||
|
||||
Returns:
|
||||
List of floating points that corresponds to weights for the objectives in
|
||||
the order that objectives are stored.
|
||||
"""
|
||||
return self._objective_weights
|
||||
|
||||
def _get_observation(self):
|
||||
"""Get observation of this environment.
|
||||
"""
|
||||
|
||||
observation = []
|
||||
if (self._humanoid):
|
||||
observation = self._humanoid.GetState()
|
||||
else:
|
||||
observation = [0]*197
|
||||
|
||||
self._observation = observation
|
||||
return self._observation
|
||||
|
||||
|
||||
def _get_observation_upper_bound(self):
|
||||
"""Get the upper bound of the observation.
|
||||
|
||||
Returns:
|
||||
The upper bound of an observation. See GetObservation() for the details
|
||||
of each element of an observation.
|
||||
"""
|
||||
upper_bound = np.zeros(self._get_observation_dimension())
|
||||
upper_bound[0] = 10 #height
|
||||
upper_bound[1:107] = math.pi # Joint angle.
|
||||
upper_bound[107:197] = 10 #joint velocity, check it
|
||||
return upper_bound
|
||||
|
||||
def _get_observation_lower_bound(self):
|
||||
"""Get the lower bound of the observation."""
|
||||
return -self._get_observation_upper_bound()
|
||||
|
||||
def _get_observation_dimension(self):
|
||||
"""Get the length of the observation list.
|
||||
|
||||
Returns:
|
||||
The length of the observation list.
|
||||
"""
|
||||
return len(self._get_observation())
|
||||
|
||||
def configure(self, args):
|
||||
pass
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
close = _close
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
|
||||
|
||||
@property
|
||||
def pybullet_client(self):
|
||||
return self._pybullet_client
|
||||
|
||||
@property
|
||||
def ground_id(self):
|
||||
return self._ground_id
|
||||
|
||||
@ground_id.setter
|
||||
def ground_id(self, new_ground_id):
|
||||
self._ground_id = new_ground_id
|
||||
|
||||
@property
|
||||
def env_step_counter(self):
|
||||
return self._env_step_counter
|
||||
|
||||
|
@ -3,9 +3,9 @@ currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentfram
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0,parentdir)
|
||||
|
||||
from pybullet_envs.mimic.humanoid import Humanoid
|
||||
from pybullet_envs.deep_mimic.humanoid import Humanoid
|
||||
from pybullet_utils.bullet_client import BulletClient
|
||||
from pybullet_envs.mimic.motion_capture_data import MotionCaptureData
|
||||
from pybullet_envs.deep_mimic.motion_capture_data import MotionCaptureData
|
||||
import pybullet_data
|
||||
import pybullet
|
||||
import time
|
||||
@ -72,6 +72,9 @@ while (1):
|
||||
Reset(humanoid)
|
||||
|
||||
state = humanoid.GetState()
|
||||
print("len(state)=",len(state))
|
||||
print("state=", state)
|
||||
|
||||
action = [0]*36
|
||||
humanoid.ApplyAction(action)
|
||||
for s in range (8):
|
Loading…
Reference in New Issue
Block a user