mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-18 21:10:05 +00:00
added the learning algorithm from RL-lab
This commit is contained in:
parent
923fbe8588
commit
37a809f5d1
@ -24,13 +24,8 @@ class CartPoleBulletEnv(gym.Env):
|
||||
|
||||
def __init__(self):
|
||||
# start the bullet physics server
|
||||
# cmdStartBulletServer=['/Users/jietan/Projects/bullet3/build_cmake_python3/examples/SharedMemory/App_SharedMemoryPhysics_GUI']
|
||||
# subprocess.Popen(cmdStartBulletServer)
|
||||
# wait to make sure that the physics server is ready
|
||||
# time.sleep(1)
|
||||
# connect to the physics server
|
||||
# p.connect(p.SHARED_MEMORY)
|
||||
p.connect(p.GUI)
|
||||
# p.connect(p.DIRECT)
|
||||
observation_high = np.array([
|
||||
np.finfo(np.float32).max,
|
||||
np.finfo(np.float32).max,
|
||||
|
@ -1,27 +0,0 @@
|
||||
import gym
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from envs.bullet.minitaur_bullet import MinitaurBulletEnv
|
||||
|
||||
def main():
|
||||
environment = gym.make('MinitaurBulletEnv-v0')
|
||||
sum_reward = 0
|
||||
steps = 1000
|
||||
amplitude = 0.5
|
||||
speed = 0.3
|
||||
|
||||
for stepCounter in range(steps):
|
||||
a1 = math.sin(stepCounter*speed)*amplitude
|
||||
a2 = math.sin(stepCounter*speed+3.14)*amplitude
|
||||
action = [a1, 0, a2, 0, 0, a1, 0, a2]
|
||||
state, reward, done, info = environment.step(action)
|
||||
sum_reward += reward
|
||||
print(state)
|
||||
if done:
|
||||
environment.reset()
|
||||
average_reward = sum_reward / steps
|
||||
print("avg reward: ", average_reward)
|
||||
|
||||
|
||||
main()
|
51
examples/pybullet/gym/trpo_cartpole_bullet_gym.py
Normal file
51
examples/pybullet/gym/trpo_cartpole_bullet_gym.py
Normal file
@ -0,0 +1,51 @@
|
||||
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
|
||||
from rllab.algos.trpo import TRPO
|
||||
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
|
||||
from rllab.envs.gym_env import GymEnv
|
||||
from rllab.envs.normalized_env import normalize
|
||||
from rllab.misc.instrument import stub, run_experiment_lite
|
||||
from rllab.policies.gaussian_mlp_policy import GaussianMLPPolicy
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
stub(globals())
|
||||
|
||||
env = normalize(GymEnv("CartPoleBulletEnv-v0"))
|
||||
|
||||
policy = GaussianMLPPolicy(
|
||||
env_spec=env.spec,
|
||||
# The neural network policy should have two hidden layers, each with 32 hidden units.
|
||||
hidden_sizes=(8,)
|
||||
)
|
||||
|
||||
baseline = LinearFeatureBaseline(env_spec=env.spec)
|
||||
|
||||
algo = TRPO(
|
||||
env=env,
|
||||
policy=policy,
|
||||
baseline=baseline,
|
||||
batch_size=5000,
|
||||
max_path_length=env.horizon,
|
||||
n_itr=50,
|
||||
discount=0.999,
|
||||
step_size=0.01,
|
||||
# Uncomment both lines (this and the plot parameter below) to enable plotting
|
||||
# plot=True,
|
||||
)
|
||||
|
||||
#cmdStartBulletServer=['~/Projects/rllab/bullet_examples/run_physics_server.sh']
|
||||
#subprocess.Popen(cmdStartBulletServer, shell=True)
|
||||
#time.sleep(1)
|
||||
|
||||
|
||||
run_experiment_lite(
|
||||
algo.train(),
|
||||
# Number of parallel workers for sampling
|
||||
n_parallel=1,
|
||||
# Only keep the snapshot parameters for the last iteration
|
||||
snapshot_mode="last",
|
||||
# Specifies the seed for the experiment. If this is not provided, a random seed
|
||||
# will be used
|
||||
seed=1,
|
||||
# plot=True,
|
||||
)
|
48
examples/pybullet/gym/trpo_tf_cartpole_bullet_gym.py
Normal file
48
examples/pybullet/gym/trpo_tf_cartpole_bullet_gym.py
Normal file
@ -0,0 +1,48 @@
|
||||
from envs.bullet.cartpole_bullet import CartPoleBulletEnv
|
||||
from sandbox.rocky.tf.algos.trpo import TRPO
|
||||
from sandbox.rocky.tf.policies.gaussian_mlp_policy import GaussianMLPPolicy
|
||||
from sandbox.rocky.tf.envs.base import TfEnv
|
||||
|
||||
from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline
|
||||
from rllab.envs.gym_env import GymEnv
|
||||
from rllab.envs.normalized_env import normalize
|
||||
from rllab.misc.instrument import stub, run_experiment_lite
|
||||
|
||||
stub(globals())
|
||||
|
||||
env = TfEnv(normalize(GymEnv("CartPoleBulletEnv-v0")))
|
||||
|
||||
policy = GaussianMLPPolicy(
|
||||
name = "tf_gaussian_mlp",
|
||||
env_spec=env.spec,
|
||||
# The neural network policy should have two hidden layers, each with 32 hidden units.
|
||||
hidden_sizes=(8,)
|
||||
)
|
||||
|
||||
baseline = LinearFeatureBaseline(env_spec=env.spec)
|
||||
|
||||
algo = TRPO(
|
||||
env=env,
|
||||
policy=policy,
|
||||
baseline=baseline,
|
||||
batch_size=5000,
|
||||
max_path_length=env.horizon,
|
||||
n_itr=50,
|
||||
discount=0.999,
|
||||
step_size=0.01,
|
||||
force_batch_sampler=True,
|
||||
# Uncomment both lines (this and the plot parameter below) to enable plotting
|
||||
#plot=True,
|
||||
)
|
||||
|
||||
run_experiment_lite(
|
||||
algo.train(),
|
||||
# Number of parallel workers for sampling
|
||||
n_parallel=1,
|
||||
# Only keep the snapshot parameters for the last iteration
|
||||
snapshot_mode="last",
|
||||
# Specifies the seed for the experiment. If this is not provided, a random seed
|
||||
# will be used
|
||||
seed=1,
|
||||
#plot=True,
|
||||
)
|
Loading…
Reference in New Issue
Block a user