remove ARS files

This commit is contained in:
Erwin Coumans 2018-10-29 19:23:54 -07:00
parent c2b9dc9361
commit 44976780fa
17 changed files with 0 additions and 1494 deletions

View File

@ -1,397 +0,0 @@
"""Internal implementation of the Augmented Random Search method."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
os.sys.path.insert(0,currentdir)
from concurrent import futures
import copy
import os
import time
import gym
import numpy as np
import logz
import utils
import optimizers
#from google3.pyglib import gfile
import policies
import shared_noise
import utility
class Worker(object):
"""Object class for parallel rollout generation."""
def __init__(self,
env_seed,
env_callback,
policy_params=None,
deltas=None,
rollout_length=1000,
delta_std=0.02):
# initialize OpenAI environment for each worker
self.env = env_callback()
self.env.seed(env_seed)
# each worker gets access to the shared noise table
# with independent random streams for sampling
# from the shared noise table.
self.deltas = shared_noise.SharedNoiseTable(deltas, env_seed + 7)
self.policy_params = policy_params
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
else:
raise NotImplementedError
self.delta_std = delta_std
self.rollout_length = rollout_length
def get_weights_plus_stats(self):
"""
Get current policy weights and current statistics of past states.
"""
assert self.policy_params['type'] == 'linear'
return self.policy.get_weights_plus_stats()
def rollout(self, shift=0., rollout_length=None):
"""Performs one rollout of maximum length rollout_length.
At each time-step it substracts shift from the reward.
"""
if rollout_length is None:
rollout_length = self.rollout_length
total_reward = 0.
steps = 0
ob = self.env.reset()
for i in range(rollout_length):
action = self.policy.act(ob)
ob, reward, done, _ = self.env.step(action)
steps += 1
total_reward += (reward - shift)
if done:
break
return total_reward, steps
def do_rollouts(self, w_policy, num_rollouts=1, shift=1, evaluate=False):
"""
Generate multiple rollouts with a policy parametrized by w_policy.
"""
print('Doing {} rollouts'.format(num_rollouts))
rollout_rewards, deltas_idx = [], []
steps = 0
for i in range(num_rollouts):
if evaluate:
self.policy.update_weights(w_policy)
deltas_idx.append(-1)
# set to false so that evaluation rollouts are not used for updating state statistics
self.policy.update_filter = False
# for evaluation we do not shift the rewards (shift = 0) and we use the
# default rollout length (1000 for the MuJoCo locomotion tasks)
reward, r_steps = self.rollout(
shift=0., rollout_length=self.rollout_length)
rollout_rewards.append(reward)
else:
idx, delta = self.deltas.get_delta(w_policy.size)
delta = (self.delta_std * delta).reshape(w_policy.shape)
deltas_idx.append(idx)
# set to true so that state statistics are updated
self.policy.update_filter = True
# compute reward and number of timesteps used for positive perturbation rollout
self.policy.update_weights(w_policy + delta)
pos_reward, pos_steps = self.rollout(shift=shift)
# compute reward and number of timesteps used for negative pertubation rollout
self.policy.update_weights(w_policy - delta)
neg_reward, neg_steps = self.rollout(shift=shift)
steps += pos_steps + neg_steps
rollout_rewards.append([pos_reward, neg_reward])
return {
'deltas_idx': deltas_idx,
'rollout_rewards': rollout_rewards,
'steps': steps
}
def stats_increment(self):
self.policy.observation_filter.stats_increment()
return
def get_weights(self):
return self.policy.get_weights()
def get_filter(self):
return self.policy.observation_filter
def sync_filter(self, other):
self.policy.observation_filter.sync(other)
return
class ARSLearner(object):
"""
Object class implementing the ARS algorithm.
"""
def __init__(self,
env_callback,
policy_params=None,
num_workers=32,
num_deltas=320,
deltas_used=320,
delta_std=0.02,
logdir=None,
rollout_length=1000,
step_size=0.01,
shift='constant zero',
params=None,
seed=123):
logz.configure_output_dir(logdir)
# params_to_save = copy.deepcopy(params)
# params_to_save['env'] = None
# logz.save_params(params_to_save)
utility.save_config(params, logdir)
env = env_callback()
self.timesteps = 0
self.action_size = env.action_space.shape[0]
self.ob_size = env.observation_space.shape[0]
self.num_deltas = num_deltas
self.deltas_used = deltas_used
self.rollout_length = rollout_length
self.step_size = step_size
self.delta_std = delta_std
self.logdir = logdir
self.shift = shift
self.params = params
self.max_past_avg_reward = float('-inf')
self.num_episodes_used = float('inf')
# create shared table for storing noise
print('Creating deltas table.')
deltas = shared_noise.create_shared_noise()
self.deltas = shared_noise.SharedNoiseTable(deltas, seed=seed + 3)
print('Created deltas table.')
# initialize workers with different random seeds
print('Initializing workers.')
self.num_workers = num_workers
self.workers = [
Worker(
seed + 7 * i,
env_callback=env_callback,
policy_params=policy_params,
deltas=deltas,
rollout_length=rollout_length,
delta_std=delta_std) for i in range(num_workers)
]
# initialize policy
if policy_params['type'] == 'linear':
self.policy = policies.LinearPolicy(policy_params)
self.w_policy = self.policy.get_weights()
else:
raise NotImplementedError
# initialize optimization algorithm
self.optimizer = optimizers.SGD(self.w_policy, self.step_size)
print('Initialization of ARS complete.')
def aggregate_rollouts(self, num_rollouts=None, evaluate=False):
"""
Aggregate update step from rollouts generated in parallel.
"""
if num_rollouts is None:
num_deltas = self.num_deltas
else:
num_deltas = num_rollouts
results_one = [] #rollout_ids_one
results_two = [] #rollout_ids_two
t1 = time.time()
num_rollouts = int(num_deltas / self.num_workers)
# if num_rollouts > 0:
# with futures.ThreadPoolExecutor(
# max_workers=self.num_workers) as executor:
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=num_rollouts,
# shift=self.shift,
# evaluate=evaluate) for worker in self.workers
# ]
# for worker in futures.as_completed(workers):
# results_one.append(worker.result())
#
# workers = [
# executor.submit(
# worker.do_rollouts,
# self.w_policy,
# num_rollouts=1,
# shift=self.shift,
# evaluate=evaluate)
# for worker in self.workers[:(num_deltas % self.num_workers)]
# ]
# for worker in futures.as_completed(workers):
# results_two.append(worker.result())
# parallel generation of rollouts
rollout_ids_one = [
worker.do_rollouts(
self.w_policy,
num_rollouts=num_rollouts,
shift=self.shift,
evaluate=evaluate) for worker in self.workers
]
rollout_ids_two = [
worker.do_rollouts(
self.w_policy, num_rollouts=1, shift=self.shift, evaluate=evaluate)
for worker in self.workers[:(num_deltas % self.num_workers)]
]
results_one = rollout_ids_one
results_two = rollout_ids_two
# gather results
rollout_rewards, deltas_idx = [], []
for result in results_one:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
for result in results_two:
if not evaluate:
self.timesteps += result['steps']
deltas_idx += result['deltas_idx']
rollout_rewards += result['rollout_rewards']
deltas_idx = np.array(deltas_idx)
rollout_rewards = np.array(rollout_rewards, dtype=np.float64)
print('Maximum reward of collected rollouts:', rollout_rewards.max())
info_dict = {
"max_reward": rollout_rewards.max()
}
t2 = time.time()
print('Time to generate rollouts:', t2 - t1)
if evaluate:
return rollout_rewards
# select top performing directions if deltas_used < num_deltas
max_rewards = np.max(rollout_rewards, axis=1)
if self.deltas_used > self.num_deltas:
self.deltas_used = self.num_deltas
idx = np.arange(max_rewards.size)[max_rewards >= np.percentile(
max_rewards, 100 * (1 - (self.deltas_used / self.num_deltas)))]
deltas_idx = deltas_idx[idx]
rollout_rewards = rollout_rewards[idx, :]
# normalize rewards by their standard deviation
rollout_rewards /= np.std(rollout_rewards)
t1 = time.time()
# aggregate rollouts to form g_hat, the gradient used to compute SGD step
g_hat, count = utils.batched_weighted_sum(
rollout_rewards[:, 0] - rollout_rewards[:, 1],
(self.deltas.get(idx, self.w_policy.size) for idx in deltas_idx),
batch_size=500)
g_hat /= deltas_idx.size
t2 = time.time()
print('time to aggregate rollouts', t2 - t1)
return g_hat, info_dict
def train_step(self):
"""
Perform one update step of the policy weights.
"""
g_hat, info_dict = self.aggregate_rollouts()
print('Euclidean norm of update step:', np.linalg.norm(g_hat))
self.w_policy -= self.optimizer._compute_step(g_hat).reshape(
self.w_policy.shape)
return info_dict
def train(self, num_iter):
start = time.time()
for i in range(num_iter):
t1 = time.time()
info_dict = self.train_step()
t2 = time.time()
print('total time of one step', t2 - t1)
print('iter ', i, ' done')
# record statistics every 10 iterations
if ((i) % 10 == 0):
rewards = self.aggregate_rollouts(num_rollouts=8, evaluate=True)
w = self.workers[0].get_weights_plus_stats()
checkpoint_filename = os.path.join(
self.logdir, 'lin_policy_plus_{:03d}.npz'.format(i))
print('Save checkpoints to {}...', checkpoint_filename)
checkpoint_file = open(checkpoint_filename, 'w')
np.savez(checkpoint_file, w)
print('End save checkpoints.')
print(sorted(self.params.items()))
logz.log_tabular('Time', time.time() - start)
logz.log_tabular('Iteration', i + 1)
logz.log_tabular('AverageReward', np.mean(rewards))
logz.log_tabular('StdRewards', np.std(rewards))
logz.log_tabular('MaxRewardRollout', np.max(rewards))
logz.log_tabular('MinRewardRollout', np.min(rewards))
logz.log_tabular('timesteps', self.timesteps)
logz.dump_tabular()
t1 = time.time()
# get statistics from all workers
for j in range(self.num_workers):
self.policy.observation_filter.update(self.workers[j].get_filter())
self.policy.observation_filter.stats_increment()
# make sure master filter buffer is clear
self.policy.observation_filter.clear_buffer()
# sync all workers
#filter_id = ray.put(self.policy.observation_filter)
setting_filters_ids = [
worker.sync_filter(self.policy.observation_filter)
for worker in self.workers
]
# waiting for sync of all workers
#ray.get(setting_filters_ids)
increment_filters_ids = [
worker.stats_increment() for worker in self.workers
]
# waiting for increment of all workers
#ray.get(increment_filters_ids)
t2 = time.time()
print('Time to sync statistics:', t2 - t1)
return info_dict

View File

@ -1,62 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:ars_server
blaze-bin/experimental/users/jietan/ARS/ars_server \
--config_name=MINITAUR_GYM_CONFIG
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
from absl import app
from absl import flags
from concurrent import futures
import grpc
from grpc import loas2
from google3.robotics.reinforcement_learning.minitaur.envs import minitaur_gym_env
from google3.robotics.reinforcement_learning.minitaur.envs import minitaur_reactive_env
from google3.robotics.reinforcement_learning.minitaur.envs.env_randomizers import minitaur_env_randomizer
from google3.robotics.reinforcement_learning.minitaur.envs.env_randomizers import minitaur_env_randomizer_from_config as randomizer_config_lib
from google3.experimental.users.jietan.ARS import ars_evaluation_service_pb2_grpc
from google3.experimental.users.jietan.ARS import ars_evaluation_service
FLAGS = flags.FLAGS
flags.DEFINE_integer("server_id", 0, "number of servers")
flags.DEFINE_integer("port", 20000, "port number.")
flags.DEFINE_string("config_name", None, "The name of the config dictionary.")
flags.DEFINE_bool('run_on_borg', False,
'Whether the servers are running on borg.')
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
def main(unused_argv):
servers = []
server_creds = loas2.loas2_server_credentials()
port = FLAGS.port
if not FLAGS.run_on_borg:
port = 20000 + FLAGS.server_id
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=10), ports=(port,))
servicer = ars_evaluation_service.ParameterEvaluationServicer(
FLAGS.config_name, worker_id=FLAGS.server_id)
ars_evaluation_service_pb2_grpc.add_EvaluationServicer_to_server(
servicer, server)
server.add_secure_port("[::]:{}".format(port), server_creds)
servers.append(server)
server.start()
print("Start server {}".format(FLAGS.server_id))
# prevent the main thread from exiting
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
for server in servers:
server.stop(0)
if __name__ == "__main__":
app.run(main)

View File

@ -1,83 +0,0 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from pybullet_envs.minitaur.envs import minitaur_gym_env
from pybullet_envs.minitaur.envs import minitaur_reactive_env
from pybullet_envs.minitaur.envs.env_randomizers import minitaur_env_randomizer
from pybullet_envs.minitaur.envs.env_randomizers import minitaur_env_randomizer_from_config as randomizer_config_lib
MAX_LENGTH = 1000
def merge_two_dicts(x, y):
"""Given two dicts, merge them into a new dict as a shallow copy."""
z = dict(x)
z.update(y)
return z
# The default configurations.
DEFAULT_CONFIG = dict(
num_workers=8,
num_directions=8,
num_iterations=1000,
deltas_used=8,
step_size=0.02,
delta_std=0.03,
rollout_length=MAX_LENGTH,
shift=0,
seed=237,
policy_type="linear",
filter="MeanStdFilter",
)
# Configuration specific to minitaur_gym_env.MinitaurGymEnv class.
MINITAUR_GYM_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_gym_env.MinitaurGymEnv,
urdf_version=minitaur_gym_env.DERPY_V0_URDF_VERSION,
accurate_motor_model_enabled=True,
motor_overheat_protection=True,
pd_control_enabled=True,
env_randomizer=None,#minitaur_env_randomizer.MinitaurEnvRandomizer(),
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_GYM_CONFIG = merge_two_dicts(DEFAULT_CONFIG,
MINITAUR_GYM_CONFIG_ADDITIONS)
# Configuration specific to MinitaurReactiveEnv class.
MINITAUR_REACTIVE_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_reactive_env.MinitaurReactiveEnv,
urdf_version=minitaur_gym_env.RAINBOW_DASH_V0_URDF_VERSION,
energy_weight=0.005,
accurate_motor_model_enabled=True,
pd_latency=0.003,
control_latency=0.02,
motor_kd=0.015,
remove_default_joint_damping=True,
env_randomizer=None,
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_REACTIVE_CONFIG = merge_two_dicts(DEFAULT_CONFIG,
MINITAUR_REACTIVE_CONFIG_ADDITIONS)
# Configuration specific to MinitaurReactiveEnv class with randomizer.
MINITAUR_REACTIVE_RANDOMIZER_CONFIG_ADDITIONS = dict(
env=functools.partial(
minitaur_reactive_env.MinitaurReactiveEnv,
urdf_version=minitaur_gym_env.RAINBOW_DASH_V0_URDF_VERSION,
energy_weight=0.005,
accurate_motor_model_enabled=True,
pd_latency=0.003,
control_latency=0.02,
motor_kd=0.015,
remove_default_joint_damping=True,
env_randomizer=randomizer_config_lib.MinitaurEnvRandomizerFromConfig(),
render=False,
num_steps_to_log=MAX_LENGTH))
MINITAUR_REACTIVE_RANDOMIZER_CONFIG = merge_two_dicts(
DEFAULT_CONFIG, MINITAUR_REACTIVE_RANDOMIZER_CONFIG_ADDITIONS)

View File

@ -1,99 +0,0 @@
"""
blaze run -c opt //experimental/users/jietan/ARS:eval_ars -- \
--logdir=/cns/ij-d/home/jietan/experiment/ARS/ars_react_nr01.191950338.191950550/ \
--checkpoint=lin_policy_plus_990.npz \
--num_rollouts=10
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, inspect
import time
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
os.sys.path.insert(0,currentdir)
from absl import app
from absl import flags
import pdb
import os
import numpy as np
import gym
import config_ars
import utility
import policies
FLAGS = flags.FLAGS
flags.DEFINE_string('logdir', None, 'The path of the checkpoint.')
flags.DEFINE_string('checkpoint', None, 'The file name of the checkpoint.')
flags.DEFINE_integer('num_rollouts', 1, 'The number of rollouts.')
def main(argv):
del argv # Unused.
print('loading and building expert policy')
checkpoint_file = os.path.join(FLAGS.logdir, FLAGS.checkpoint)
lin_policy = np.load(checkpoint_file, encoding='bytes')
lin_policy = lin_policy.items()[0][1]
M = lin_policy[0]
# mean and std of state vectors estimated online by ARS.
mean = lin_policy[1]
std = lin_policy[2]
config = utility.load_config(FLAGS.logdir)
print("config=",config)
env = config['env'](hard_reset=True, render=True)
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
# set policy parameters. Possible filters: 'MeanStdFilter' for v2, 'NoFilter' for v1.
policy_params = {
'type': 'linear',
'ob_filter': config['filter'],
'ob_dim': ob_dim,
'ac_dim': ac_dim,
"weights": M,
"mean": mean,
"std": std,
}
policy = policies.LinearPolicy(policy_params, update_filter=False)
returns = []
observations = []
actions = []
for i in range(FLAGS.num_rollouts):
print('iter', i)
obs = env.reset()
done = False
totalr = 0.
steps = 0
while not done:
action = policy.act(obs)
observations.append(obs)
actions.append(action)
obs, r, done, _ = env.step(action)
time.sleep(1./100.)
totalr += r
steps += 1
if steps % 100 == 0:
print('%i/%i' % (steps, config['rollout_length']))
if steps >= config['rollout_length']:
break
returns.append(totalr)
print('returns', returns)
print('mean return', np.mean(returns))
print('std of return', np.std(returns))
if __name__ == '__main__':
flags.mark_flag_as_required('logdir')
flags.mark_flag_as_required('checkpoint')
app.run(main)

View File

@ -1,280 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/ray-project/ray/blob/master/python/ray/rllib/utils/filter.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
class Filter(object):
"""Processes input, possibly statefully."""
def update(self, other, *args, **kwargs):
"""Updates self with "new state" from other filter."""
raise NotImplementedError
def copy(self):
"""Creates a new object with same state as self.
Returns:
copy (Filter): Copy of self"""
raise NotImplementedError
def sync(self, other):
"""Copies all state from other filter to self."""
raise NotImplementedError
class NoFilter(Filter):
def __init__(self, *args):
pass
def __call__(self, x, update=True):
return np.asarray(x, dtype = np.float64)
def update(self, other, *args, **kwargs):
pass
def copy(self):
return self
def sync(self, other):
pass
def stats_increment(self):
pass
def clear_buffer(self):
pass
def get_stats(self):
return 0, 1
@property
def mean(self):
return 0
@property
def var(self):
return 1
@property
def std(self):
return 1
# http://www.johndcook.com/blog/standard_deviation/
class RunningStat(object):
def __init__(self, shape=None):
self._n = 0
self._M = np.zeros(shape, dtype = np.float64)
self._S = np.zeros(shape, dtype = np.float64)
self._M2 = np.zeros(shape, dtype = np.float64)
def copy(self):
other = RunningStat()
other._n = self._n
other._M = np.copy(self._M)
other._S = np.copy(self._S)
return other
def push(self, x):
x = np.asarray(x)
# Unvectorized update of the running statistics.
assert x.shape == self._M.shape, ("x.shape = {}, self.shape = {}"
.format(x.shape, self._M.shape))
n1 = self._n
self._n += 1
if self._n == 1:
self._M[...] = x
else:
delta = x - self._M
deltaM2 = np.square(x) - self._M2
self._M[...] += delta / self._n
self._S[...] += delta * delta * n1 / self._n
def update(self, other):
n1 = self._n
n2 = other._n
n = n1 + n2
delta = self._M - other._M
delta2 = delta * delta
M = (n1 * self._M + n2 * other._M) / n
S = self._S + other._S + delta2 * n1 * n2 / n
self._n = n
self._M = M
self._S = S
def __repr__(self):
return '(n={}, mean_mean={}, mean_std={})'.format(
self.n, np.mean(self.mean), np.mean(self.std))
@property
def n(self):
return self._n
@property
def mean(self):
return self._M
@property
def var(self):
return self._S / (self._n - 1) if self._n > 1 else np.square(self._M)
@property
def std(self):
return np.sqrt(self.var)
@property
def shape(self):
return self._M.shape
class MeanStdFilter(Filter):
"""Keeps track of a running mean for seen states"""
def __init__(self, shape, demean=True, destd=True):
self.shape = shape
self.demean = demean
self.destd = destd
self.rs = RunningStat(shape)
# In distributed rollouts, each worker sees different states.
# The buffer is used to keep track of deltas amongst all the
# observation filters.
self.buffer = RunningStat(shape)
self.mean = np.zeros(shape, dtype = np.float64)
self.std = np.ones(shape, dtype = np.float64)
def clear_buffer(self):
self.buffer = RunningStat(self.shape)
return
def update(self, other, copy_buffer=False):
"""Takes another filter and only applies the information from the
buffer.
Using notation `F(state, buffer)`
Given `Filter1(x1, y1)` and `Filter2(x2, yt)`,
`update` modifies `Filter1` to `Filter1(x1 + yt, y1)`
If `copy_buffer`, then `Filter1` is modified to
`Filter1(x1 + yt, yt)`.
"""
self.rs.update(other.buffer)
if copy_buffer:
self.buffer = other.buffer.copy()
return
def copy(self):
"""Returns a copy of Filter."""
other = MeanStdFilter(self.shape)
other.demean = self.demean
other.destd = self.destd
other.rs = self.rs.copy()
other.buffer = self.buffer.copy()
return other
def sync(self, other):
"""Syncs all fields together from other filter.
Using notation `F(state, buffer)`
Given `Filter1(x1, y1)` and `Filter2(x2, yt)`,
`sync` modifies `Filter1` to `Filter1(x2, yt)`
"""
assert other.shape == self.shape, "Shapes don't match!"
self.demean = other.demean
self.destd = other.destd
self.rs = other.rs.copy()
self.buffer = other.buffer.copy()
return
def __call__(self, x, update=True):
x = np.asarray(x, dtype = np.float64)
if update:
if len(x.shape) == len(self.rs.shape) + 1:
# The vectorized case.
for i in range(x.shape[0]):
self.rs.push(x[i])
self.buffer.push(x[i])
else:
# The unvectorized case.
self.rs.push(x)
self.buffer.push(x)
if self.demean:
x = x - self.mean
if self.destd:
x = x / (self.std + 1e-8)
return x
def stats_increment(self):
self.mean = self.rs.mean
self.std = self.rs.std
# Set values for std less than 1e-7 to +inf to avoid
# dividing by zero. State elements with zero variance
# are set to zero as a result.
self.std[self.std < 1e-7] = float("inf")
return
def get_stats(self):
return self.rs.mean, (self.rs.std + 1e-8)
def __repr__(self):
return 'MeanStdFilter({}, {}, {}, {}, {}, {})'.format(
self.shape, self.demean,
self.rs, self.buffer)
def get_filter(filter_config, shape = None):
if filter_config == "MeanStdFilter":
return MeanStdFilter(shape)
elif filter_config == "NoFilter":
return NoFilter()
else:
raise Exception("Unknown observation_filter: " +
str(filter_config))
def test_running_stat():
for shp in ((), (3,), (3, 4)):
li = []
rs = RunningStat(shp)
for _ in range(5):
val = np.random.randn(*shp)
rs.push(val)
li.append(val)
m = np.mean(li, axis=0)
assert np.allclose(rs.mean, m)
v = np.square(m) if (len(li) == 1) else np.var(li, ddof=1, axis=0)
assert np.allclose(rs.var, v)
def test_combining_stat():
for shape in [(), (3,), (3, 4)]:
li = []
rs1 = RunningStat(shape)
rs2 = RunningStat(shape)
rs = RunningStat(shape)
for _ in range(5):
val = np.random.randn(*shape)
rs1.push(val)
rs.push(val)
li.append(val)
for _ in range(9):
rs2.push(val)
rs.push(val)
li.append(val)
rs1.update(rs2)
assert np.allclose(rs.mean, rs1.mean)
assert np.allclose(rs.std, rs1.std)
test_running_stat()
test_combining_stat()

View File

@ -1,29 +0,0 @@
delta_std: 0.03
deltas_used: 8
env: !!python/object/apply:functools.partial
args:
- &id001 !!python/name:pybullet_envs.minitaur.envs.minitaur_reactive_env.MinitaurReactiveEnv ''
state: !!python/tuple
- *id001
- !!python/tuple []
- accurate_motor_model_enabled: true
control_latency: 0.02
energy_weight: 0.005
env_randomizer: null
motor_kd: 0.015
num_steps_to_log: 1000
pd_latency: 0.003
remove_default_joint_damping: true
render: false
urdf_version: rainbow_dash_v0
- null
filter: MeanStdFilter
num_directions: 8
num_iterations: 1000
num_workers: 8
policy_type: linear
rollout_length: 1000
seed: 237
shift: 0
step_size: 0.02

View File

@ -1,104 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/berkeleydeeprlcourse
import json
"""
Some simple logging functionality, inspired by rllab's logging.
Assumes that each diagnostic gets logged each iteration
Call logz.configure_output_dir() to start logging to a
tab-separated-values file (some_folder_name/log.txt)
"""
import os.path as osp, shutil, time, atexit, os, subprocess
color2num = dict(
gray=30,
red=31,
green=32,
yellow=33,
blue=34,
magenta=35,
cyan=36,
white=37,
crimson=38
)
def colorize(string, color, bold=False, highlight=False):
attr = []
num = color2num[color]
if highlight: num += 10
attr.append(str(num))
if bold: attr.append('1')
return '\x1b[%sm%s\x1b[0m' % (';'.join(attr), string)
class G(object):
output_dir = None
output_file = None
first_row = True
log_headers = []
log_current_row = {}
def configure_output_dir(d=None):
"""
Set output directory to d, or to /tmp/somerandomnumber if d is None
"""
G.first_row = True
G.log_headers = []
G.log_current_row = {}
G.output_dir = d or "/tmp/experiments/%i"%int(time.time())
if not osp.exists(G.output_dir):
os.makedirs(G.output_dir)
G.output_file = open(osp.join(G.output_dir, "log.txt"), 'w')
atexit.register(G.output_file.close)
print(colorize("Logging data to %s"%G.output_file.name, 'green', bold=True))
def log_tabular(key, val):
"""
Log a value of some diagnostic
Call this once for each diagnostic quantity, each iteration
"""
if G.first_row:
G.log_headers.append(key)
else:
assert key in G.log_headers, "Trying to introduce a new key %s that you didn't include in the first iteration"%key
assert key not in G.log_current_row, "You already set %s this iteration. Maybe you forgot to call dump_tabular()"%key
G.log_current_row[key] = val
def save_params(params):
with open(osp.join(G.output_dir, "params.json"), 'w') as out:
out.write(json.dumps(params, separators=(',\n','\t:\t'), sort_keys=True))
def dump_tabular():
"""
Write all of the diagnostics from the current iteration
"""
vals = []
key_lens = [len(key) for key in G.log_headers]
max_key_len = max(15,max(key_lens))
keystr = '%'+'%d'%max_key_len
fmt = "| " + keystr + "s | %15s |"
n_slashes = 22 + max_key_len
print("-"*n_slashes)
for key in G.log_headers:
val = G.log_current_row.get(key, "")
if hasattr(val, "__float__"): valstr = "%8.3g"%val
else: valstr = val
print(fmt%(key, valstr))
vals.append(val)
print("-"*n_slashes)
if G.output_file is not None:
if G.first_row:
G.output_file.write("\t".join(G.log_headers))
G.output_file.write("\n")
G.output_file.write("\t".join(map(str,vals)))
G.output_file.write("\n")
G.output_file.flush()
G.log_current_row.clear()
G.first_row=False

View File

@ -1,35 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
# OPTIMIZERS FOR MINIMIZING OBJECTIVES
class Optimizer(object):
def __init__(self, w_policy):
self.w_policy = w_policy.flatten()
self.dim = w_policy.size
self.t = 0
def update(self, globalg):
self.t += 1
step = self._compute_step(globalg)
ratio = np.linalg.norm(step) / (np.linalg.norm(self.w_policy) + 1e-5)
return self.w_policy + step, ratio
def _compute_step(self, globalg):
raise NotImplementedError
class SGD(Optimizer):
def __init__(self, pi, stepsize):
Optimizer.__init__(self, pi)
self.stepsize = stepsize
def _compute_step(self, globalg):
step = -self.stepsize * globalg
return step

View File

@ -1,72 +0,0 @@
"""
Policy class for computing action from weights and observation vector.
Horia Mania --- hmania@berkeley.edu
Aurelia Guy
Benjamin Recht
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import filter
class Policy(object):
def __init__(self, policy_params):
self.ob_dim = policy_params['ob_dim']
self.ac_dim = policy_params['ac_dim']
self.weights = np.empty(0)
# a filter for updating statistics of the observations and normalizing
# inputs to the policies
self.observation_filter = filter.get_filter(
policy_params['ob_filter'], shape=(self.ob_dim,))
self.update_filter = True
def update_weights(self, new_weights):
self.weights[:] = new_weights[:]
return
def get_weights(self):
return self.weights
def get_observation_filter(self):
return self.observation_filter
def act(self, ob):
raise NotImplementedError
def copy(self):
raise NotImplementedError
class LinearPolicy(Policy):
"""
Linear policy class that computes action as <w, ob>.
"""
def __init__(self, policy_params, update_filter=True):
Policy.__init__(self, policy_params)
self.weights = np.zeros(self.ac_dim * self.ob_dim, dtype=np.float64)
if "weights" in policy_params:
self.weights = policy_params["weights"]
if "mean" in policy_params:
self.observation_filter.mean = policy_params["mean"]
if "std" in policy_params:
self.observation_filter.std = policy_params["std"]
self.update_filter = update_filter
def act(self, ob):
ob = self.observation_filter(ob, update=self.update_filter)
matrix_weights = np.reshape(self.weights, (self.ac_dim, self.ob_dim))
return np.clip(np.dot(matrix_weights, ob), -1.0, 1.0)
def get_weights_plus_stats(self):
mu, std = self.observation_filter.get_stats()
aux = np.asarray([self.weights, mu, std])
return aux

View File

@ -1,40 +0,0 @@
"""
Code in this file is copied and adapted from
https://github.com/ray-project/ray/tree/master/python/ray/rllib/es
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def create_shared_noise():
"""
Create a large array of noise to be shared by all workers. Used
for avoiding the communication of the random perturbations delta.
"""
seed = 12345
count = 250000000
noise = np.random.RandomState(seed).randn(count).astype(np.float64)
return noise
class SharedNoiseTable(object):
def __init__(self, noise, seed = 11):
self.rg = np.random.RandomState(seed)
self.noise = noise
assert self.noise.dtype == np.float64
def get(self, i, dim):
return self.noise[i:i + dim]
def sample_index(self, dim):
return self.rg.randint(0, len(self.noise) - dim + 1)
def get_delta(self, dim):
idx = self.sample_index(dim)
return idx, self.get(idx, dim)

View File

@ -1,27 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:start_ars_servers
blaze-bin/experimental/users/jietan/ARS/start_ars_servers
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import subprocess
from absl import app
from absl import flags
FLAGS = flags.FLAGS
flags.DEFINE_integer("num_servers", 8, "number of servers")
def main(argv):
del argv # Unused.
for server_id in xrange(FLAGS.num_servers):
args = ["blaze-bin/experimental/users/jietan/ARS/ars_server", "--config_name=MINITAUR_GYM_CONFIG", "--server_id={}".format(server_id), "--run_on_borg=False"]
subprocess.Popen(args)
if __name__ == '__main__':
app.run(main)

View File

@ -1,93 +0,0 @@
// Example borg file to do a parameter sweep.
//
// To run:
// echo `srcfs get_readonly`-`g4 p | head -1 | awk '{print $2}'`
// blaze build -c opt experimental/users/jietan/ARS:ars_server.par
// blaze build -c opt experimental/users/jietan/ARS:ars_client.par
// borgcfg --skip_confirmation --vars 'base_cl=191950338,my_cl=191950550,label=ars_react_nr01,config=MINITAUR_REACTIVE_CONFIG' experimental/users/jietan/ARS/train_ars.borg reload
// borgcfg --skip_confirmation --vars 'base_cl=191950338,my_cl=191950550,label=ars_react_rd01,config=MINITAUR_REACTIVE_RANDOMIZER_CONFIG' experimental/users/jietan/ARS/train_ars.borg reload
import '//production/borg/templates/lambda/buildtool_support.borg' as build
import '//production/borg/templates/lambda/dnsname.borg' as dns
vars = {
cell = 'atlanta'
charged_user = 'robotics'
base_cl = 0
my_cl = 0
label = external
user = real_username()
workers = 8
config = external
cns_home = "/cns/ij-d/home/%user%"
logdir = "%cns_home%/experiment/ARS/%label%.%base_cl%.%my_cl%/"
}
service augmented_random_search {
runtime {
cell = vars.cell
}
scheduling = {
priority = 100
batch_quota = {
strategy = 'RUN_SOON'
}
deadline = 3600 * 24
}
accounting = {
charged_user = vars.charged_user
}
requirements {
autopilot = true
}
params = {
mygoogle3 = build.google3dir(myfilename())
experiment_dir = 'experimental/users/jietan/ARS/'
}
job ars_server = {
runtime {
cell = vars.cell
}
name = real_username() + '_server_' + vars.label
replicas = vars.workers
binary_path = build.binfile_v2(params.mygoogle3,
params.experiment_dir + 'ars_server')
runfiles = binary_path + '.runfiles/google3/'
packages = {
package third_party = {
directory = runfiles + 'third_party/'
}
}
binary = build.binfile(params.mygoogle3,
params.experiment_dir + 'ars_server.par')
args = {
server_id = '%task%'
config_name = vars.config
port = '%port%'
run_on_borg = true
}
}
job ars_client = {
name = real_username() + '_client_' + vars.label
binary_path = build.binfile_v2(params.mygoogle3,
params.experiment_dir + 'ars_client')
runfiles = binary_path + '.runfiles/google3/'
packages = {
package third_party = {
directory = runfiles + 'third_party/'
}
}
binary = build.binfile(params.mygoogle3,
params.experiment_dir + 'ars_client.par')
args = {
server_address = dns.borg_dns_name(ars_server)
num_servers = vars.workers
config_name = vars.config
logdir = vars.logdir
run_on_borg = true
}
}
}

View File

@ -1,64 +0,0 @@
"""
blaze build -c opt //experimental/users/jietan/ARS:train_ars
blaze-bin/experimental/users/jietan/ARS/train_ars \
--logdir=/cns/ij-d/home/jietan/experiment/ARS/test1 \
--config_name=MINITAUR_GYM_CONFIG
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import ars
import config_ars
FLAGS = flags.FLAGS
flags.DEFINE_string('logdir', None, 'The directory to write the log file.')
flags.DEFINE_string('config_name', None, 'The name of the config dictionary')
def run_ars(config, logdir):
env = config["env"]()
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
# set policy parameters. Possible filters: 'MeanStdFilter' for v2, 'NoFilter' for v1.
policy_params = {
'type': 'linear',
'ob_filter': config['filter'],
'ob_dim': ob_dim,
'ac_dim': ac_dim
}
ARS = ars.ARSLearner(
env_callback=config['env'],
policy_params=policy_params,
num_deltas=config['num_directions'],
deltas_used=config['deltas_used'],
step_size=config['step_size'],
delta_std=config['delta_std'],
logdir=logdir,
rollout_length=config['rollout_length'],
shift=config['shift'],
params=config,
seed=config['seed'])
return ARS.train(config['num_iterations'])
def main(argv):
del argv # Unused.
config = getattr(config_ars, FLAGS.config_name)
run_ars(config=config, logdir=FLAGS.logdir)
if __name__ == '__main__':
flags.mark_flag_as_required('logdir')
flags.mark_flag_as_required('config_name')
app.run(main)

View File

@ -1,29 +0,0 @@
"""Tests for google3.experimental.users.jietan.ARS.train_ars.
blaze build -c opt //experimental/users/jietan/ARS:train_ars_test
blaze-bin/experimental/users/jietan/ARS/train_ars_test
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from google3.testing.pybase import googletest
from google3.experimental.users.jietan.ARS import train_ars
from google3.experimental.users.jietan.ARS import config_ars
FLAGS = flags.FLAGS
MAX_RETURN_AFTER_TWO_ITEATIONS = 0.0890905394617
class TrainArsTest(googletest.TestCase):
def testArsTwoStepResult(self):
config = getattr(config_ars, "MINITAUR_REACTIVE_CONFIG")
config['num_iterations'] = 2
info = train_ars.run_ars(config=config, logdir=FLAGS.test_tmpdir)
print (info)
self.assertAlmostEqual(info["max_reward"], MAX_RETURN_AFTER_TWO_ITEATIONS)
if __name__ == '__main__':
googletest.main()

View File

@ -1,52 +0,0 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import ruamel.yaml as yaml
def save_config(config, logdir):
"""Save a new configuration by name.
If a logging directory is specified, is will be created and the configuration
will be stored there. Otherwise, a log message will be printed.
Args:
config: Configuration object.
logdir: Location for writing summaries and checkpoints if specified.
Returns:
Configuration object.
"""
message = 'Start a new run and write summaries and checkpoints to {}.'
print(message.format(logdir))
config_path = os.path.join(logdir, 'config.yaml')
yaml.dump(config, config_path, default_flow_style=False)
return config
def load_config(logdir):
"""Load a configuration from the log directory.
Args:
logdir: The logging directory containing the configuration file.
Raises:
IOError: The logging directory does not contain a configuration file.
Returns:
Configuration object.
"""
config_path = logdir and os.path.join(logdir, 'config.yaml')
if not config_path:
message = (
'Cannot resume an existing run since the logging directory does not '
'contain a configuration file.')
raise IOError(message)
print("config_path=",config_path)
stream = open(config_path, 'r')
config = yaml.load(stream)
message = 'Resume run and write summaries and checkpoints to {}.'
print(message.format(logdir))
return config

View File

@ -1,28 +0,0 @@
# Code in this file is copied and adapted from
# https://github.com/openai/evolution-strategies-starter.
import numpy as np
def itergroups(items, group_size):
assert group_size >= 1
group = []
for x in items:
group.append(x)
if len(group) == group_size:
yield tuple(group)
del group[:]
if group:
yield tuple(group)
def batched_weighted_sum(weights, vecs, batch_size):
total = 0
num_items_summed = 0
for batch_weights, batch_vecs in zip(itergroups(weights, batch_size),
itergroups(vecs, batch_size)):
assert len(batch_weights) == len(batch_vecs) <= batch_size
total += np.dot(np.asarray(batch_weights, dtype=np.float64),
np.asarray(batch_vecs, dtype=np.float64))
num_items_summed += len(batch_weights)
return total, num_items_summed