Add preliminary support for VR/OpenVR for HTC Vive and Oculus Rift,

(Windows-only first, later Linux and OSX)
Use premake to build, use --enable_openvr flag
This commit is contained in:
erwin coumans 2016-06-30 16:03:38 -07:00
parent eae90eb201
commit 58206b7962
27 changed files with 26764 additions and 2 deletions

View File

@ -29,6 +29,11 @@
description = "Try to link and use the system OpenGL headers version instead of dynamically loading OpenGL (dlopen is default)" description = "Try to link and use the system OpenGL headers version instead of dynamically loading OpenGL (dlopen is default)"
} }
newoption
{
trigger = "enable_openvr",
description = "Enable experimental Virtual Reality examples, using OpenVR for HTC Vive and Oculus Rift"
}
newoption newoption
{ {
trigger = "enable_system_x11", trigger = "enable_system_x11",

View File

@ -59,6 +59,7 @@ end
project "App_BasicExampleGuiWithSoftwareRenderer" project "App_BasicExampleGuiWithSoftwareRenderer"
if _OPTIONS["ios"] then if _OPTIONS["ios"] then
@ -133,3 +134,62 @@ files {
"../TinyRenderer/TinyRenderer.cpp", "../TinyRenderer/TinyRenderer.cpp",
"../Utils/b3ResourcePath.cpp" "../Utils/b3ResourcePath.cpp"
} }
if _OPTIONS["enable_openvr"] then
project "App_BasicExampleVR"
if _OPTIONS["ios"] then
kind "WindowedApp"
else
kind "ConsoleApp"
end
defines {"B3_USE_STANDALONE_EXAMPLE","BT_ENABLE_VR"}
includedirs {"../../src",
"../ThirdPartyLibs/openvr/headers",
"../ThirdPartyLibs/openvr/samples/shared"}
links {
"BulletDynamics","BulletCollision", "LinearMath", "OpenGL_Window","Bullet3Common", "openvr_api"
}
initOpenGL()
initGlew()
language "C++"
files {
"BasicExample.cpp",
"*.h",
"../StandaloneMain/hellovr_opengl_main.cpp",
"../ExampleBrowser/OpenGLGuiHelper.cpp",
"../ExampleBrowser/GL_ShapeDrawer.cpp",
"../ExampleBrowser/CollisionShape2TriangleMesh.cpp",
"../ThirdPartyLibs/openvr/samples/shared/lodepng.cpp",
"../ThirdPartyLibs/openvr/samples/shared/lodepng.h",
"../ThirdPartyLibs/openvr/samples/shared/Matrices.cpp",
"../ThirdPartyLibs/openvr/samples/shared/Matrices.h",
"../ThirdPartyLibs/openvr/samples/shared/pathtools.cpp",
"../ThirdPartyLibs/openvr/samples/shared/pathtools.h",
"../ThirdPartyLibs/openvr/samples/shared/Vectors.h",
}
if os.is("Windows") then
libdirs {"../ThirdPartyLibs/openvr/lib/win32"}
end
if os.is("Linux") then initX11() end
if os.is("MacOSX") then
links{"Cocoa.framework"}
end
end

View File

@ -158,10 +158,13 @@ struct InternalDataRenderer : public GLInstanceRendererInternalData
GLRenderToTexture* m_shadowMap; GLRenderToTexture* m_shadowMap;
GLuint m_shadowTexture; GLuint m_shadowTexture;
GLuint m_renderFrameBuffer;
InternalDataRenderer() : InternalDataRenderer() :
m_shadowMap(0), m_shadowMap(0),
m_shadowTexture(0) m_shadowTexture(0),
m_renderFrameBuffer(0)
{ {
//clear to zero to make it obvious if the matrix is used uninitialized //clear to zero to make it obvious if the matrix is used uninitialized
for (int i=0;i<16;i++) for (int i=0;i<16;i++)
@ -1663,7 +1666,7 @@ b3Assert(glGetError() ==GL_NO_ERROR);
{ {
glDisable (GL_BLEND); glDisable (GL_BLEND);
} }
glActiveTexture(GL_TEXTURE0);
break; break;
} }
default: default:
@ -1688,6 +1691,7 @@ b3Assert(glGetError() ==GL_NO_ERROR);
{ {
// writeTextureToPng(shadowMapWidth,shadowMapHeight,"shadowmap.png",4); // writeTextureToPng(shadowMapWidth,shadowMapHeight,"shadowmap.png",4);
m_data->m_shadowMap->disable(); m_data->m_shadowMap->disable();
glBindFramebuffer( GL_FRAMEBUFFER, m_data->m_renderFrameBuffer);
glViewport(dims[0],dims[1],dims[2],dims[3]); glViewport(dims[0],dims[1],dims[2],dims[3]);
} }
@ -1733,4 +1737,10 @@ int GLInstancingRenderer::getInstanceCapacity() const
{ {
return m_data->m_maxNumObjectCapacity; return m_data->m_maxNumObjectCapacity;
} }
void GLInstancingRenderer::setRenderFrameBuffer(unsigned int renderFrameBuffer)
{
m_data->m_renderFrameBuffer = (GLuint) renderFrameBuffer;
}
#endif //NO_OPENGL3 #endif //NO_OPENGL3

View File

@ -132,6 +132,7 @@ public:
} }
virtual void clearZBuffer(); virtual void clearZBuffer();
virtual void setRenderFrameBuffer(unsigned int renderFrameBuffer);
}; };
#endif //GL_INSTANCING_RENDERER_H #endif //GL_INSTANCING_RENDERER_H

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,581 @@
///////////////////////////////////////////////////////////////////////////////
// Matrice.cpp
// ===========
// NxN Matrix Math classes
//
// The elements of the matrix are stored as column major order.
// | 0 2 | | 0 3 6 | | 0 4 8 12 |
// | 1 3 | | 1 4 7 | | 1 5 9 13 |
// | 2 5 8 | | 2 6 10 14 |
// | 3 7 11 15 |
//
// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2005-06-24
// UPDATED: 2014-09-21
//
// Copyright (C) 2005 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <algorithm>
#include "Matrices.h"
const float DEG2RAD = 3.141593f / 180;
const float EPSILON = 0.00001f;
///////////////////////////////////////////////////////////////////////////////
// transpose 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::transpose()
{
std::swap(m[1], m[2]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return the determinant of 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix2::getDeterminant()
{
return m[0] * m[3] - m[1] * m[2];
}
///////////////////////////////////////////////////////////////////////////////
// inverse of 2x2 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::invert()
{
float determinant = getDeterminant();
if(fabs(determinant) <= EPSILON)
{
return identity();
}
float tmp = m[0]; // copy the first element
float invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * m[3];
m[1] = -invDeterminant * m[1];
m[2] = -invDeterminant * m[2];
m[3] = invDeterminant * tmp;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// transpose 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::transpose()
{
std::swap(m[1], m[3]);
std::swap(m[2], m[6]);
std::swap(m[5], m[7]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return determinant of 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix3::getDeterminant()
{
return m[0] * (m[4] * m[8] - m[5] * m[7]) -
m[1] * (m[3] * m[8] - m[5] * m[6]) +
m[2] * (m[3] * m[7] - m[4] * m[6]);
}
///////////////////////////////////////////////////////////////////////////////
// inverse 3x3 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::invert()
{
float determinant, invDeterminant;
float tmp[9];
tmp[0] = m[4] * m[8] - m[5] * m[7];
tmp[1] = m[2] * m[7] - m[1] * m[8];
tmp[2] = m[1] * m[5] - m[2] * m[4];
tmp[3] = m[5] * m[6] - m[3] * m[8];
tmp[4] = m[0] * m[8] - m[2] * m[6];
tmp[5] = m[2] * m[3] - m[0] * m[5];
tmp[6] = m[3] * m[7] - m[4] * m[6];
tmp[7] = m[1] * m[6] - m[0] * m[7];
tmp[8] = m[0] * m[4] - m[1] * m[3];
// check determinant if it is 0
determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6];
if(fabs(determinant) <= EPSILON)
{
return identity(); // cannot inverse, make it idenety matrix
}
// divide by the determinant
invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * tmp[0];
m[1] = invDeterminant * tmp[1];
m[2] = invDeterminant * tmp[2];
m[3] = invDeterminant * tmp[3];
m[4] = invDeterminant * tmp[4];
m[5] = invDeterminant * tmp[5];
m[6] = invDeterminant * tmp[6];
m[7] = invDeterminant * tmp[7];
m[8] = invDeterminant * tmp[8];
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// transpose 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::transpose()
{
std::swap(m[1], m[4]);
std::swap(m[2], m[8]);
std::swap(m[3], m[12]);
std::swap(m[6], m[9]);
std::swap(m[7], m[13]);
std::swap(m[11], m[14]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// inverse 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invert()
{
// If the 4th row is [0,0,0,1] then it is affine matrix and
// it has no projective transformation.
if(m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1)
this->invertAffine();
else
{
this->invertGeneral();
/*@@ invertProjective() is not optimized (slower than generic one)
if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON)
this->invertProjective(); // inverse using matrix partition
else
this->invertGeneral(); // generalized inverse
*/
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of 4x4 Euclidean transformation matrix
//
// Euclidean transformation is translation, rotation, and reflection.
// With Euclidean transform, only the position and orientation of the object
// will be changed. Euclidean transform does not change the shape of an object
// (no scaling). Length and angle are reserved.
//
// Use inverseAffine() if the matrix has scale and shear transformation.
//
// M = [ R | T ]
// [ --+-- ] (R denotes 3x3 rotation/reflection matrix)
// [ 0 | 1 ] (T denotes 1x3 translation matrix)
//
// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T
// (R is orthogonal, R^-1 = R^T)
//
// [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix)
// [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation)
// [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertEuclidean()
{
// transpose 3x3 rotation matrix part
// | R^T | 0 |
// | ----+-- |
// | 0 | 1 |
float tmp;
tmp = m[1]; m[1] = m[4]; m[4] = tmp;
tmp = m[2]; m[2] = m[8]; m[8] = tmp;
tmp = m[6]; m[6] = m[9]; m[9] = tmp;
// compute translation part -R^T * T
// | 0 | -R^T x |
// | --+------- |
// | 0 | 0 |
float x = m[12];
float y = m[13];
float z = m[14];
m[12] = -(m[0] * x + m[4] * y + m[8] * z);
m[13] = -(m[1] * x + m[5] * y + m[9] * z);
m[14] = -(m[2] * x + m[6] * y + m[10]* z);
// last row should be unchanged (0,0,0,1)
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a 4x4 affine transformation matrix
//
// Affine transformations are generalizations of Euclidean transformations.
// Affine transformation includes translation, rotation, reflection, scaling,
// and shearing. Length and angle are NOT preserved.
// M = [ R | T ]
// [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix)
// [ 0 | 1 ] (T denotes 1x3 translation matrix)
//
// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T
//
// [ R | T ]-1 [ R^-1 | -R^-1 * T ]
// [ --+-- ] = [ -----+---------- ]
// [ 0 | 1 ] [ 0 + 1 ]
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertAffine()
{
// R^-1
Matrix3 r(m[0],m[1],m[2], m[4],m[5],m[6], m[8],m[9],m[10]);
r.invert();
m[0] = r[0]; m[1] = r[1]; m[2] = r[2];
m[4] = r[3]; m[5] = r[4]; m[6] = r[5];
m[8] = r[6]; m[9] = r[7]; m[10]= r[8];
// -R^-1 * T
float x = m[12];
float y = m[13];
float z = m[14];
m[12] = -(r[0] * x + r[3] * y + r[6] * z);
m[13] = -(r[1] * x + r[4] * y + r[7] * z);
m[14] = -(r[2] * x + r[5] * y + r[8] * z);
// last row should be unchanged (0,0,0,1)
//m[3] = m[7] = m[11] = 0.0f;
//m[15] = 1.0f;
return * this;
}
///////////////////////////////////////////////////////////////////////////////
// inverse matrix using matrix partitioning (blockwise inverse)
// It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where
// det(A) != 0. If not, use the generic inverse method
// inverse formula.
// M = [ A | B ] A, B, C, D are 2x2 matrix blocks
// [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)|
// [ C | D ]
//
// M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C'
// [ ---+--- ] B' = (A^-1 * B) * -D'
// [ C' | D' ] C' = -D' * (C * A^-1)
// D' = (D - ((C * A^-1) * B))^-1
//
// NOTE: I wrap with () if it it used more than once.
// The matrix is invertable even if det(A)=0, so must check det(A) before
// calling this function, and use invertGeneric() instead.
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertProjective()
{
// partition
Matrix2 a(m[0], m[1], m[4], m[5]);
Matrix2 b(m[8], m[9], m[12], m[13]);
Matrix2 c(m[2], m[3], m[6], m[7]);
Matrix2 d(m[10], m[11], m[14], m[15]);
// pre-compute repeated parts
a.invert(); // A^-1
Matrix2 ab = a * b; // A^-1 * B
Matrix2 ca = c * a; // C * A^-1
Matrix2 cab = ca * b; // C * A^-1 * B
Matrix2 dcab = d - cab; // D - C * A^-1 * B
// check determinant if |D - C * A^-1 * B| = 0
//NOTE: this function assumes det(A) is already checked. if |A|=0 then,
// cannot use this function.
float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2];
if(fabs(determinant) <= EPSILON)
{
return identity();
}
// compute D' and -D'
Matrix2 d1 = dcab; // (D - C * A^-1 * B)
d1.invert(); // (D - C * A^-1 * B)^-1
Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1
// compute C'
Matrix2 c1 = d2 * ca; // -D' * (C * A^-1)
// compute B'
Matrix2 b1 = ab * d2; // (A^-1 * B) * -D'
// compute A'
Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C'
// assemble inverse matrix
m[0] = a1[0]; m[4] = a1[2]; /*|*/ m[8] = b1[0]; m[12]= b1[2];
m[1] = a1[1]; m[5] = a1[3]; /*|*/ m[9] = b1[1]; m[13]= b1[3];
/*-----------------------------+-----------------------------*/
m[2] = c1[0]; m[6] = c1[2]; /*|*/ m[10]= d1[0]; m[14]= d1[2];
m[3] = c1[1]; m[7] = c1[3]; /*|*/ m[11]= d1[1]; m[15]= d1[3];
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a general 4x4 matrix using Cramer's Rule
// If cannot find inverse, return indentity matrix
// M^-1 = adj(M) / det(M)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertGeneral()
{
// get cofactors of minor matrices
float cofactor0 = getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]);
float cofactor1 = getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]);
float cofactor2 = getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]);
float cofactor3 = getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);
// get determinant
float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3;
if(fabs(determinant) <= EPSILON)
{
return identity();
}
// get rest of cofactors for adj(M)
float cofactor4 = getCofactor(m[1],m[2],m[3], m[9],m[10],m[11], m[13],m[14],m[15]);
float cofactor5 = getCofactor(m[0],m[2],m[3], m[8],m[10],m[11], m[12],m[14],m[15]);
float cofactor6 = getCofactor(m[0],m[1],m[3], m[8],m[9], m[11], m[12],m[13],m[15]);
float cofactor7 = getCofactor(m[0],m[1],m[2], m[8],m[9], m[10], m[12],m[13],m[14]);
float cofactor8 = getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[13],m[14],m[15]);
float cofactor9 = getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[12],m[14],m[15]);
float cofactor10= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[12],m[13],m[15]);
float cofactor11= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[12],m[13],m[14]);
float cofactor12= getCofactor(m[1],m[2],m[3], m[5],m[6], m[7], m[9], m[10],m[11]);
float cofactor13= getCofactor(m[0],m[2],m[3], m[4],m[6], m[7], m[8], m[10],m[11]);
float cofactor14= getCofactor(m[0],m[1],m[3], m[4],m[5], m[7], m[8], m[9], m[11]);
float cofactor15= getCofactor(m[0],m[1],m[2], m[4],m[5], m[6], m[8], m[9], m[10]);
// build inverse matrix = adj(M) / det(M)
// adjugate of M is the transpose of the cofactor matrix of M
float invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * cofactor0;
m[1] = -invDeterminant * cofactor4;
m[2] = invDeterminant * cofactor8;
m[3] = -invDeterminant * cofactor12;
m[4] = -invDeterminant * cofactor1;
m[5] = invDeterminant * cofactor5;
m[6] = -invDeterminant * cofactor9;
m[7] = invDeterminant * cofactor13;
m[8] = invDeterminant * cofactor2;
m[9] = -invDeterminant * cofactor6;
m[10]= invDeterminant * cofactor10;
m[11]= -invDeterminant * cofactor14;
m[12]= -invDeterminant * cofactor3;
m[13]= invDeterminant * cofactor7;
m[14]= -invDeterminant * cofactor11;
m[15]= invDeterminant * cofactor15;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return determinant of 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getDeterminant()
{
return m[0] * getCofactor(m[5],m[6],m[7], m[9],m[10],m[11], m[13],m[14],m[15]) -
m[1] * getCofactor(m[4],m[6],m[7], m[8],m[10],m[11], m[12],m[14],m[15]) +
m[2] * getCofactor(m[4],m[5],m[7], m[8],m[9], m[11], m[12],m[13],m[15]) -
m[3] * getCofactor(m[4],m[5],m[6], m[8],m[9], m[10], m[12],m[13],m[14]);
}
///////////////////////////////////////////////////////////////////////////////
// compute cofactor of 3x3 minor matrix without sign
// input params are 9 elements of the minor matrix
// NOTE: The caller must know its sign.
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getCofactor(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
return m0 * (m4 * m8 - m5 * m7) -
m1 * (m3 * m8 - m5 * m6) +
m2 * (m3 * m7 - m4 * m6);
}
///////////////////////////////////////////////////////////////////////////////
// translate this matrix by (x, y, z)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::translate(const Vector3& v)
{
return translate(v.x, v.y, v.z);
}
Matrix4& Matrix4::translate(float x, float y, float z)
{
m[0] += m[3] * x; m[4] += m[7] * x; m[8] += m[11]* x; m[12]+= m[15]* x;
m[1] += m[3] * y; m[5] += m[7] * y; m[9] += m[11]* y; m[13]+= m[15]* y;
m[2] += m[3] * z; m[6] += m[7] * z; m[10]+= m[11]* z; m[14]+= m[15]* z;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// uniform scale
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::scale(float s)
{
return scale(s, s, s);
}
Matrix4& Matrix4::scale(float x, float y, float z)
{
m[0] *= x; m[4] *= x; m[8] *= x; m[12] *= x;
m[1] *= y; m[5] *= y; m[9] *= y; m[13] *= y;
m[2] *= z; m[6] *= z; m[10]*= z; m[14] *= z;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// build a rotation matrix with given angle(degree) and rotation axis, then
// multiply it with this object
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::rotate(float angle, const Vector3& axis)
{
return rotate(angle, axis.x, axis.y, axis.z);
}
Matrix4& Matrix4::rotate(float angle, float x, float y, float z)
{
float c = cosf(angle * DEG2RAD); // cosine
float s = sinf(angle * DEG2RAD); // sine
float c1 = 1.0f - c; // 1 - c
float m0 = m[0], m4 = m[4], m8 = m[8], m12= m[12],
m1 = m[1], m5 = m[5], m9 = m[9], m13= m[13],
m2 = m[2], m6 = m[6], m10= m[10], m14= m[14];
// build rotation matrix
float r0 = x * x * c1 + c;
float r1 = x * y * c1 + z * s;
float r2 = x * z * c1 - y * s;
float r4 = x * y * c1 - z * s;
float r5 = y * y * c1 + c;
float r6 = y * z * c1 + x * s;
float r8 = x * z * c1 + y * s;
float r9 = y * z * c1 - x * s;
float r10= z * z * c1 + c;
// multiply rotation matrix
m[0] = r0 * m0 + r4 * m1 + r8 * m2;
m[1] = r1 * m0 + r5 * m1 + r9 * m2;
m[2] = r2 * m0 + r6 * m1 + r10* m2;
m[4] = r0 * m4 + r4 * m5 + r8 * m6;
m[5] = r1 * m4 + r5 * m5 + r9 * m6;
m[6] = r2 * m4 + r6 * m5 + r10* m6;
m[8] = r0 * m8 + r4 * m9 + r8 * m10;
m[9] = r1 * m8 + r5 * m9 + r9 * m10;
m[10]= r2 * m8 + r6 * m9 + r10* m10;
m[12]= r0 * m12+ r4 * m13+ r8 * m14;
m[13]= r1 * m12+ r5 * m13+ r9 * m14;
m[14]= r2 * m12+ r6 * m13+ r10* m14;
return *this;
}
Matrix4& Matrix4::rotateX(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m1 = m[1], m2 = m[2],
m5 = m[5], m6 = m[6],
m9 = m[9], m10= m[10],
m13= m[13], m14= m[14];
m[1] = m1 * c + m2 *-s;
m[2] = m1 * s + m2 * c;
m[5] = m5 * c + m6 *-s;
m[6] = m5 * s + m6 * c;
m[9] = m9 * c + m10*-s;
m[10]= m9 * s + m10* c;
m[13]= m13* c + m14*-s;
m[14]= m13* s + m14* c;
return *this;
}
Matrix4& Matrix4::rotateY(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m0 = m[0], m2 = m[2],
m4 = m[4], m6 = m[6],
m8 = m[8], m10= m[10],
m12= m[12], m14= m[14];
m[0] = m0 * c + m2 * s;
m[2] = m0 *-s + m2 * c;
m[4] = m4 * c + m6 * s;
m[6] = m4 *-s + m6 * c;
m[8] = m8 * c + m10* s;
m[10]= m8 *-s + m10* c;
m[12]= m12* c + m14* s;
m[14]= m12*-s + m14* c;
return *this;
}
Matrix4& Matrix4::rotateZ(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m0 = m[0], m1 = m[1],
m4 = m[4], m5 = m[5],
m8 = m[8], m9 = m[9],
m12= m[12], m13= m[13];
m[0] = m0 * c + m1 *-s;
m[1] = m0 * s + m1 * c;
m[4] = m4 * c + m5 *-s;
m[5] = m4 * s + m5 * c;
m[8] = m8 * c + m9 *-s;
m[9] = m8 * s + m9 * c;
m[12]= m12* c + m13*-s;
m[13]= m12* s + m13* c;
return *this;
}

View File

@ -0,0 +1,909 @@
///////////////////////////////////////////////////////////////////////////////
// Matrice.h
// =========
// NxN Matrix Math classes
//
// The elements of the matrix are stored as column major order.
// | 0 2 | | 0 3 6 | | 0 4 8 12 |
// | 1 3 | | 1 4 7 | | 1 5 9 13 |
// | 2 5 8 | | 2 6 10 14 |
// | 3 7 11 15 |
//
// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2005-06-24
// UPDATED: 2013-09-30
//
// Copyright (C) 2005 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#ifndef MATH_MATRICES_H
#define MATH_MATRICES_H
#include <iostream>
#include <iomanip>
#include "Vectors.h"
///////////////////////////////////////////////////////////////////////////
// 2x2 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix2
{
public:
// constructors
Matrix2(); // init with identity
Matrix2(const float src[4]);
Matrix2(float m0, float m1, float m2, float m3);
void set(const float src[4]);
void set(float m0, float m1, float m2, float m3);
void setRow(int index, const float row[2]);
void setRow(int index, const Vector2& v);
void setColumn(int index, const float col[2]);
void setColumn(int index, const Vector2& v);
const float* get() const;
float getDeterminant();
Matrix2& identity();
Matrix2& transpose(); // transpose itself and return reference
Matrix2& invert();
// operators
Matrix2 operator+(const Matrix2& rhs) const; // add rhs
Matrix2 operator-(const Matrix2& rhs) const; // subtract rhs
Matrix2& operator+=(const Matrix2& rhs); // add rhs and update this object
Matrix2& operator-=(const Matrix2& rhs); // subtract rhs and update this object
Vector2 operator*(const Vector2& rhs) const; // multiplication: v' = M * v
Matrix2 operator*(const Matrix2& rhs) const; // multiplication: M3 = M1 * M2
Matrix2& operator*=(const Matrix2& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix2& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix2& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix2 operator-(const Matrix2& m); // unary operator (-)
friend Matrix2 operator*(float scalar, const Matrix2& m); // pre-multiplication
friend Vector2 operator*(const Vector2& vec, const Matrix2& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix2& m);
protected:
private:
float m[4];
};
///////////////////////////////////////////////////////////////////////////
// 3x3 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix3
{
public:
// constructors
Matrix3(); // init with identity
Matrix3(const float src[9]);
Matrix3(float m0, float m1, float m2, // 1st column
float m3, float m4, float m5, // 2nd column
float m6, float m7, float m8); // 3rd column
void set(const float src[9]);
void set(float m0, float m1, float m2, // 1st column
float m3, float m4, float m5, // 2nd column
float m6, float m7, float m8); // 3rd column
void setRow(int index, const float row[3]);
void setRow(int index, const Vector3& v);
void setColumn(int index, const float col[3]);
void setColumn(int index, const Vector3& v);
const float* get() const;
float getDeterminant();
Matrix3& identity();
Matrix3& transpose(); // transpose itself and return reference
Matrix3& invert();
// operators
Matrix3 operator+(const Matrix3& rhs) const; // add rhs
Matrix3 operator-(const Matrix3& rhs) const; // subtract rhs
Matrix3& operator+=(const Matrix3& rhs); // add rhs and update this object
Matrix3& operator-=(const Matrix3& rhs); // subtract rhs and update this object
Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v
Matrix3 operator*(const Matrix3& rhs) const; // multiplication: M3 = M1 * M2
Matrix3& operator*=(const Matrix3& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix3& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix3& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix3 operator-(const Matrix3& m); // unary operator (-)
friend Matrix3 operator*(float scalar, const Matrix3& m); // pre-multiplication
friend Vector3 operator*(const Vector3& vec, const Matrix3& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix3& m);
protected:
private:
float m[9];
};
///////////////////////////////////////////////////////////////////////////
// 4x4 matrix
///////////////////////////////////////////////////////////////////////////
class Matrix4
{
public:
// constructors
Matrix4(); // init with identity
Matrix4(const float src[16]);
Matrix4(float m00, float m01, float m02, float m03, // 1st column
float m04, float m05, float m06, float m07, // 2nd column
float m08, float m09, float m10, float m11, // 3rd column
float m12, float m13, float m14, float m15);// 4th column
void set(const float src[16]);
void set(float m00, float m01, float m02, float m03, // 1st column
float m04, float m05, float m06, float m07, // 2nd column
float m08, float m09, float m10, float m11, // 3rd column
float m12, float m13, float m14, float m15);// 4th column
void setRow(int index, const float row[4]);
void setRow(int index, const Vector4& v);
void setRow(int index, const Vector3& v);
void setColumn(int index, const float col[4]);
void setColumn(int index, const Vector4& v);
void setColumn(int index, const Vector3& v);
const float* get() const;
const float* getTranspose(); // return transposed matrix
float getDeterminant();
Matrix4& identity();
Matrix4& transpose(); // transpose itself and return reference
Matrix4& invert(); // check best inverse method before inverse
Matrix4& invertEuclidean(); // inverse of Euclidean transform matrix
Matrix4& invertAffine(); // inverse of affine transform matrix
Matrix4& invertProjective(); // inverse of projective matrix using partitioning
Matrix4& invertGeneral(); // inverse of generic matrix
// transform matrix
Matrix4& translate(float x, float y, float z); // translation by (x,y,z)
Matrix4& translate(const Vector3& v); //
Matrix4& rotate(float angle, const Vector3& axis); // rotate angle(degree) along the given axix
Matrix4& rotate(float angle, float x, float y, float z);
Matrix4& rotateX(float angle); // rotate on X-axis with degree
Matrix4& rotateY(float angle); // rotate on Y-axis with degree
Matrix4& rotateZ(float angle); // rotate on Z-axis with degree
Matrix4& scale(float scale); // uniform scale
Matrix4& scale(float sx, float sy, float sz); // scale by (sx, sy, sz) on each axis
// operators
Matrix4 operator+(const Matrix4& rhs) const; // add rhs
Matrix4 operator-(const Matrix4& rhs) const; // subtract rhs
Matrix4& operator+=(const Matrix4& rhs); // add rhs and update this object
Matrix4& operator-=(const Matrix4& rhs); // subtract rhs and update this object
Vector4 operator*(const Vector4& rhs) const; // multiplication: v' = M * v
Vector3 operator*(const Vector3& rhs) const; // multiplication: v' = M * v
Matrix4 operator*(const Matrix4& rhs) const; // multiplication: M3 = M1 * M2
Matrix4& operator*=(const Matrix4& rhs); // multiplication: M1' = M1 * M2
bool operator==(const Matrix4& rhs) const; // exact compare, no epsilon
bool operator!=(const Matrix4& rhs) const; // exact compare, no epsilon
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Matrix4 operator-(const Matrix4& m); // unary operator (-)
friend Matrix4 operator*(float scalar, const Matrix4& m); // pre-multiplication
friend Vector3 operator*(const Vector3& vec, const Matrix4& m); // pre-multiplication
friend Vector4 operator*(const Vector4& vec, const Matrix4& m); // pre-multiplication
friend std::ostream& operator<<(std::ostream& os, const Matrix4& m);
protected:
private:
float getCofactor(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8);
float m[16];
float tm[16]; // transpose m
};
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix2
///////////////////////////////////////////////////////////////////////////
inline Matrix2::Matrix2()
{
// initially identity matrix
identity();
}
inline Matrix2::Matrix2(const float src[4])
{
set(src);
}
inline Matrix2::Matrix2(float m0, float m1, float m2, float m3)
{
set(m0, m1, m2, m3);
}
inline void Matrix2::set(const float src[4])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3];
}
inline void Matrix2::set(float m0, float m1, float m2, float m3)
{
m[0]= m0; m[1] = m1; m[2] = m2; m[3]= m3;
}
inline void Matrix2::setRow(int index, const float row[2])
{
m[index] = row[0]; m[index + 2] = row[1];
}
inline void Matrix2::setRow(int index, const Vector2& v)
{
m[index] = v.x; m[index + 2] = v.y;
}
inline void Matrix2::setColumn(int index, const float col[2])
{
m[index*2] = col[0]; m[index*2 + 1] = col[1];
}
inline void Matrix2::setColumn(int index, const Vector2& v)
{
m[index*2] = v.x; m[index*2 + 1] = v.y;
}
inline const float* Matrix2::get() const
{
return m;
}
inline Matrix2& Matrix2::identity()
{
m[0] = m[3] = 1.0f;
m[1] = m[2] = 0.0f;
return *this;
}
inline Matrix2 Matrix2::operator+(const Matrix2& rhs) const
{
return Matrix2(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3]);
}
inline Matrix2 Matrix2::operator-(const Matrix2& rhs) const
{
return Matrix2(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3]);
}
inline Matrix2& Matrix2::operator+=(const Matrix2& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3];
return *this;
}
inline Matrix2& Matrix2::operator-=(const Matrix2& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3];
return *this;
}
inline Vector2 Matrix2::operator*(const Vector2& rhs) const
{
return Vector2(m[0]*rhs.x + m[2]*rhs.y, m[1]*rhs.x + m[3]*rhs.y);
}
inline Matrix2 Matrix2::operator*(const Matrix2& rhs) const
{
return Matrix2(m[0]*rhs[0] + m[2]*rhs[1], m[1]*rhs[0] + m[3]*rhs[1],
m[0]*rhs[2] + m[2]*rhs[3], m[1]*rhs[2] + m[3]*rhs[3]);
}
inline Matrix2& Matrix2::operator*=(const Matrix2& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix2::operator==(const Matrix2& rhs) const
{
return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) && (m[3] == rhs[3]);
}
inline bool Matrix2::operator!=(const Matrix2& rhs) const
{
return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) || (m[3] != rhs[3]);
}
inline float Matrix2::operator[](int index) const
{
return m[index];
}
inline float& Matrix2::operator[](int index)
{
return m[index];
}
inline Matrix2 operator-(const Matrix2& rhs)
{
return Matrix2(-rhs[0], -rhs[1], -rhs[2], -rhs[3]);
}
inline Matrix2 operator*(float s, const Matrix2& rhs)
{
return Matrix2(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3]);
}
inline Vector2 operator*(const Vector2& v, const Matrix2& rhs)
{
return Vector2(v.x*rhs[0] + v.y*rhs[1], v.x*rhs[2] + v.y*rhs[3]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix2& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[2] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[3] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX2 INLINE //////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix3
///////////////////////////////////////////////////////////////////////////
inline Matrix3::Matrix3()
{
// initially identity matrix
identity();
}
inline Matrix3::Matrix3(const float src[9])
{
set(src);
}
inline Matrix3::Matrix3(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
set(m0, m1, m2, m3, m4, m5, m6, m7, m8);
}
inline void Matrix3::set(const float src[9])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2];
m[3] = src[3]; m[4] = src[4]; m[5] = src[5];
m[6] = src[6]; m[7] = src[7]; m[8] = src[8];
}
inline void Matrix3::set(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
m[0] = m0; m[1] = m1; m[2] = m2;
m[3] = m3; m[4] = m4; m[5] = m5;
m[6] = m6; m[7] = m7; m[8] = m8;
}
inline void Matrix3::setRow(int index, const float row[3])
{
m[index] = row[0]; m[index + 3] = row[1]; m[index + 6] = row[2];
}
inline void Matrix3::setRow(int index, const Vector3& v)
{
m[index] = v.x; m[index + 3] = v.y; m[index + 6] = v.z;
}
inline void Matrix3::setColumn(int index, const float col[3])
{
m[index*3] = col[0]; m[index*3 + 1] = col[1]; m[index*3 + 2] = col[2];
}
inline void Matrix3::setColumn(int index, const Vector3& v)
{
m[index*3] = v.x; m[index*3 + 1] = v.y; m[index*3 + 2] = v.z;
}
inline const float* Matrix3::get() const
{
return m;
}
inline Matrix3& Matrix3::identity()
{
m[0] = m[4] = m[8] = 1.0f;
m[1] = m[2] = m[3] = m[5] = m[6] = m[7] = 0.0f;
return *this;
}
inline Matrix3 Matrix3::operator+(const Matrix3& rhs) const
{
return Matrix3(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2],
m[3]+rhs[3], m[4]+rhs[4], m[5]+rhs[5],
m[6]+rhs[6], m[7]+rhs[7], m[8]+rhs[8]);
}
inline Matrix3 Matrix3::operator-(const Matrix3& rhs) const
{
return Matrix3(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2],
m[3]-rhs[3], m[4]-rhs[4], m[5]-rhs[5],
m[6]-rhs[6], m[7]-rhs[7], m[8]-rhs[8]);
}
inline Matrix3& Matrix3::operator+=(const Matrix3& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2];
m[3] += rhs[3]; m[4] += rhs[4]; m[5] += rhs[5];
m[6] += rhs[6]; m[7] += rhs[7]; m[8] += rhs[8];
return *this;
}
inline Matrix3& Matrix3::operator-=(const Matrix3& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2];
m[3] -= rhs[3]; m[4] -= rhs[4]; m[5] -= rhs[5];
m[6] -= rhs[6]; m[7] -= rhs[7]; m[8] -= rhs[8];
return *this;
}
inline Vector3 Matrix3::operator*(const Vector3& rhs) const
{
return Vector3(m[0]*rhs.x + m[3]*rhs.y + m[6]*rhs.z,
m[1]*rhs.x + m[4]*rhs.y + m[7]*rhs.z,
m[2]*rhs.x + m[5]*rhs.y + m[8]*rhs.z);
}
inline Matrix3 Matrix3::operator*(const Matrix3& rhs) const
{
return Matrix3(m[0]*rhs[0] + m[3]*rhs[1] + m[6]*rhs[2], m[1]*rhs[0] + m[4]*rhs[1] + m[7]*rhs[2], m[2]*rhs[0] + m[5]*rhs[1] + m[8]*rhs[2],
m[0]*rhs[3] + m[3]*rhs[4] + m[6]*rhs[5], m[1]*rhs[3] + m[4]*rhs[4] + m[7]*rhs[5], m[2]*rhs[3] + m[5]*rhs[4] + m[8]*rhs[5],
m[0]*rhs[6] + m[3]*rhs[7] + m[6]*rhs[8], m[1]*rhs[6] + m[4]*rhs[7] + m[7]*rhs[8], m[2]*rhs[6] + m[5]*rhs[7] + m[8]*rhs[8]);
}
inline Matrix3& Matrix3::operator*=(const Matrix3& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix3::operator==(const Matrix3& rhs) const
{
return (m[0] == rhs[0]) && (m[1] == rhs[1]) && (m[2] == rhs[2]) &&
(m[3] == rhs[3]) && (m[4] == rhs[4]) && (m[5] == rhs[5]) &&
(m[6] == rhs[6]) && (m[7] == rhs[7]) && (m[8] == rhs[8]);
}
inline bool Matrix3::operator!=(const Matrix3& rhs) const
{
return (m[0] != rhs[0]) || (m[1] != rhs[1]) || (m[2] != rhs[2]) ||
(m[3] != rhs[3]) || (m[4] != rhs[4]) || (m[5] != rhs[5]) ||
(m[6] != rhs[6]) || (m[7] != rhs[7]) || (m[8] != rhs[8]);
}
inline float Matrix3::operator[](int index) const
{
return m[index];
}
inline float& Matrix3::operator[](int index)
{
return m[index];
}
inline Matrix3 operator-(const Matrix3& rhs)
{
return Matrix3(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8]);
}
inline Matrix3 operator*(float s, const Matrix3& rhs)
{
return Matrix3(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8]);
}
inline Vector3 operator*(const Vector3& v, const Matrix3& m)
{
return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[3] + v.y*m[4] + v.z*m[5], v.x*m[6] + v.y*m[7] + v.z*m[8]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix3& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[3] << " " << std::setw(10) << m[6] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[7] << "]\n"
<< "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[8] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX3 INLINE //////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// inline functions for Matrix4
///////////////////////////////////////////////////////////////////////////
inline Matrix4::Matrix4()
{
// initially identity matrix
identity();
}
inline Matrix4::Matrix4(const float src[16])
{
set(src);
}
inline Matrix4::Matrix4(float m00, float m01, float m02, float m03,
float m04, float m05, float m06, float m07,
float m08, float m09, float m10, float m11,
float m12, float m13, float m14, float m15)
{
set(m00, m01, m02, m03, m04, m05, m06, m07, m08, m09, m10, m11, m12, m13, m14, m15);
}
inline void Matrix4::set(const float src[16])
{
m[0] = src[0]; m[1] = src[1]; m[2] = src[2]; m[3] = src[3];
m[4] = src[4]; m[5] = src[5]; m[6] = src[6]; m[7] = src[7];
m[8] = src[8]; m[9] = src[9]; m[10]= src[10]; m[11]= src[11];
m[12]= src[12]; m[13]= src[13]; m[14]= src[14]; m[15]= src[15];
}
inline void Matrix4::set(float m00, float m01, float m02, float m03,
float m04, float m05, float m06, float m07,
float m08, float m09, float m10, float m11,
float m12, float m13, float m14, float m15)
{
m[0] = m00; m[1] = m01; m[2] = m02; m[3] = m03;
m[4] = m04; m[5] = m05; m[6] = m06; m[7] = m07;
m[8] = m08; m[9] = m09; m[10]= m10; m[11]= m11;
m[12]= m12; m[13]= m13; m[14]= m14; m[15]= m15;
}
inline void Matrix4::setRow(int index, const float row[4])
{
m[index] = row[0]; m[index + 4] = row[1]; m[index + 8] = row[2]; m[index + 12] = row[3];
}
inline void Matrix4::setRow(int index, const Vector4& v)
{
m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z; m[index + 12] = v.w;
}
inline void Matrix4::setRow(int index, const Vector3& v)
{
m[index] = v.x; m[index + 4] = v.y; m[index + 8] = v.z;
}
inline void Matrix4::setColumn(int index, const float col[4])
{
m[index*4] = col[0]; m[index*4 + 1] = col[1]; m[index*4 + 2] = col[2]; m[index*4 + 3] = col[3];
}
inline void Matrix4::setColumn(int index, const Vector4& v)
{
m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z; m[index*4 + 3] = v.w;
}
inline void Matrix4::setColumn(int index, const Vector3& v)
{
m[index*4] = v.x; m[index*4 + 1] = v.y; m[index*4 + 2] = v.z;
}
inline const float* Matrix4::get() const
{
return m;
}
inline const float* Matrix4::getTranspose()
{
tm[0] = m[0]; tm[1] = m[4]; tm[2] = m[8]; tm[3] = m[12];
tm[4] = m[1]; tm[5] = m[5]; tm[6] = m[9]; tm[7] = m[13];
tm[8] = m[2]; tm[9] = m[6]; tm[10]= m[10]; tm[11]= m[14];
tm[12]= m[3]; tm[13]= m[7]; tm[14]= m[11]; tm[15]= m[15];
return tm;
}
inline Matrix4& Matrix4::identity()
{
m[0] = m[5] = m[10] = m[15] = 1.0f;
m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0.0f;
return *this;
}
inline Matrix4 Matrix4::operator+(const Matrix4& rhs) const
{
return Matrix4(m[0]+rhs[0], m[1]+rhs[1], m[2]+rhs[2], m[3]+rhs[3],
m[4]+rhs[4], m[5]+rhs[5], m[6]+rhs[6], m[7]+rhs[7],
m[8]+rhs[8], m[9]+rhs[9], m[10]+rhs[10], m[11]+rhs[11],
m[12]+rhs[12], m[13]+rhs[13], m[14]+rhs[14], m[15]+rhs[15]);
}
inline Matrix4 Matrix4::operator-(const Matrix4& rhs) const
{
return Matrix4(m[0]-rhs[0], m[1]-rhs[1], m[2]-rhs[2], m[3]-rhs[3],
m[4]-rhs[4], m[5]-rhs[5], m[6]-rhs[6], m[7]-rhs[7],
m[8]-rhs[8], m[9]-rhs[9], m[10]-rhs[10], m[11]-rhs[11],
m[12]-rhs[12], m[13]-rhs[13], m[14]-rhs[14], m[15]-rhs[15]);
}
inline Matrix4& Matrix4::operator+=(const Matrix4& rhs)
{
m[0] += rhs[0]; m[1] += rhs[1]; m[2] += rhs[2]; m[3] += rhs[3];
m[4] += rhs[4]; m[5] += rhs[5]; m[6] += rhs[6]; m[7] += rhs[7];
m[8] += rhs[8]; m[9] += rhs[9]; m[10]+= rhs[10]; m[11]+= rhs[11];
m[12]+= rhs[12]; m[13]+= rhs[13]; m[14]+= rhs[14]; m[15]+= rhs[15];
return *this;
}
inline Matrix4& Matrix4::operator-=(const Matrix4& rhs)
{
m[0] -= rhs[0]; m[1] -= rhs[1]; m[2] -= rhs[2]; m[3] -= rhs[3];
m[4] -= rhs[4]; m[5] -= rhs[5]; m[6] -= rhs[6]; m[7] -= rhs[7];
m[8] -= rhs[8]; m[9] -= rhs[9]; m[10]-= rhs[10]; m[11]-= rhs[11];
m[12]-= rhs[12]; m[13]-= rhs[13]; m[14]-= rhs[14]; m[15]-= rhs[15];
return *this;
}
inline Vector4 Matrix4::operator*(const Vector4& rhs) const
{
return Vector4(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z + m[12]*rhs.w,
m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z + m[13]*rhs.w,
m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z + m[14]*rhs.w,
m[3]*rhs.x + m[7]*rhs.y + m[11]*rhs.z + m[15]*rhs.w);
}
inline Vector3 Matrix4::operator*(const Vector3& rhs) const
{
return Vector3(m[0]*rhs.x + m[4]*rhs.y + m[8]*rhs.z,
m[1]*rhs.x + m[5]*rhs.y + m[9]*rhs.z,
m[2]*rhs.x + m[6]*rhs.y + m[10]*rhs.z);
}
inline Matrix4 Matrix4::operator*(const Matrix4& n) const
{
return Matrix4(m[0]*n[0] + m[4]*n[1] + m[8]*n[2] + m[12]*n[3], m[1]*n[0] + m[5]*n[1] + m[9]*n[2] + m[13]*n[3], m[2]*n[0] + m[6]*n[1] + m[10]*n[2] + m[14]*n[3], m[3]*n[0] + m[7]*n[1] + m[11]*n[2] + m[15]*n[3],
m[0]*n[4] + m[4]*n[5] + m[8]*n[6] + m[12]*n[7], m[1]*n[4] + m[5]*n[5] + m[9]*n[6] + m[13]*n[7], m[2]*n[4] + m[6]*n[5] + m[10]*n[6] + m[14]*n[7], m[3]*n[4] + m[7]*n[5] + m[11]*n[6] + m[15]*n[7],
m[0]*n[8] + m[4]*n[9] + m[8]*n[10] + m[12]*n[11], m[1]*n[8] + m[5]*n[9] + m[9]*n[10] + m[13]*n[11], m[2]*n[8] + m[6]*n[9] + m[10]*n[10] + m[14]*n[11], m[3]*n[8] + m[7]*n[9] + m[11]*n[10] + m[15]*n[11],
m[0]*n[12] + m[4]*n[13] + m[8]*n[14] + m[12]*n[15], m[1]*n[12] + m[5]*n[13] + m[9]*n[14] + m[13]*n[15], m[2]*n[12] + m[6]*n[13] + m[10]*n[14] + m[14]*n[15], m[3]*n[12] + m[7]*n[13] + m[11]*n[14] + m[15]*n[15]);
}
inline Matrix4& Matrix4::operator*=(const Matrix4& rhs)
{
*this = *this * rhs;
return *this;
}
inline bool Matrix4::operator==(const Matrix4& n) const
{
return (m[0] == n[0]) && (m[1] == n[1]) && (m[2] == n[2]) && (m[3] == n[3]) &&
(m[4] == n[4]) && (m[5] == n[5]) && (m[6] == n[6]) && (m[7] == n[7]) &&
(m[8] == n[8]) && (m[9] == n[9]) && (m[10]== n[10]) && (m[11]== n[11]) &&
(m[12]== n[12]) && (m[13]== n[13]) && (m[14]== n[14]) && (m[15]== n[15]);
}
inline bool Matrix4::operator!=(const Matrix4& n) const
{
return (m[0] != n[0]) || (m[1] != n[1]) || (m[2] != n[2]) || (m[3] != n[3]) ||
(m[4] != n[4]) || (m[5] != n[5]) || (m[6] != n[6]) || (m[7] != n[7]) ||
(m[8] != n[8]) || (m[9] != n[9]) || (m[10]!= n[10]) || (m[11]!= n[11]) ||
(m[12]!= n[12]) || (m[13]!= n[13]) || (m[14]!= n[14]) || (m[15]!= n[15]);
}
inline float Matrix4::operator[](int index) const
{
return m[index];
}
inline float& Matrix4::operator[](int index)
{
return m[index];
}
inline Matrix4 operator-(const Matrix4& rhs)
{
return Matrix4(-rhs[0], -rhs[1], -rhs[2], -rhs[3], -rhs[4], -rhs[5], -rhs[6], -rhs[7], -rhs[8], -rhs[9], -rhs[10], -rhs[11], -rhs[12], -rhs[13], -rhs[14], -rhs[15]);
}
inline Matrix4 operator*(float s, const Matrix4& rhs)
{
return Matrix4(s*rhs[0], s*rhs[1], s*rhs[2], s*rhs[3], s*rhs[4], s*rhs[5], s*rhs[6], s*rhs[7], s*rhs[8], s*rhs[9], s*rhs[10], s*rhs[11], s*rhs[12], s*rhs[13], s*rhs[14], s*rhs[15]);
}
inline Vector4 operator*(const Vector4& v, const Matrix4& m)
{
return Vector4(v.x*m[0] + v.y*m[1] + v.z*m[2] + v.w*m[3], v.x*m[4] + v.y*m[5] + v.z*m[6] + v.w*m[7], v.x*m[8] + v.y*m[9] + v.z*m[10] + v.w*m[11], v.x*m[12] + v.y*m[13] + v.z*m[14] + v.w*m[15]);
}
inline Vector3 operator*(const Vector3& v, const Matrix4& m)
{
return Vector3(v.x*m[0] + v.y*m[1] + v.z*m[2], v.x*m[4] + v.y*m[5] + v.z*m[6], v.x*m[8] + v.y*m[9] + v.z*m[10]);
}
inline std::ostream& operator<<(std::ostream& os, const Matrix4& m)
{
os << std::fixed << std::setprecision(5);
os << "[" << std::setw(10) << m[0] << " " << std::setw(10) << m[4] << " " << std::setw(10) << m[8] << " " << std::setw(10) << m[12] << "]\n"
<< "[" << std::setw(10) << m[1] << " " << std::setw(10) << m[5] << " " << std::setw(10) << m[9] << " " << std::setw(10) << m[13] << "]\n"
<< "[" << std::setw(10) << m[2] << " " << std::setw(10) << m[6] << " " << std::setw(10) << m[10] << " " << std::setw(10) << m[14] << "]\n"
<< "[" << std::setw(10) << m[3] << " " << std::setw(10) << m[7] << " " << std::setw(10) << m[11] << " " << std::setw(10) << m[15] << "]\n";
os << std::resetiosflags(std::ios_base::fixed | std::ios_base::floatfield);
return os;
}
// END OF MATRIX4 INLINE //////////////////////////////////////////////////////
#endif

View File

@ -0,0 +1,530 @@
///////////////////////////////////////////////////////////////////////////////
// Vectors.h
// =========
// 2D/3D/4D vectors
//
// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2007-02-14
// UPDATED: 2013-01-20
//
// Copyright (C) 2007-2013 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#ifndef VECTORS_H_DEF
#define VECTORS_H_DEF
#include <cmath>
#include <iostream>
///////////////////////////////////////////////////////////////////////////////
// 2D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector2
{
float x;
float y;
// ctors
Vector2() : x(0), y(0) {};
Vector2(float x, float y) : x(x), y(y) {};
// utils functions
void set(float x, float y);
float length() const; //
float distance(const Vector2& vec) const; // distance between two vectors
Vector2& normalize(); //
float dot(const Vector2& vec) const; // dot product
bool equal(const Vector2& vec, float e) const; // compare with epsilon
// operators
Vector2 operator-() const; // unary operator (negate)
Vector2 operator+(const Vector2& rhs) const; // add rhs
Vector2 operator-(const Vector2& rhs) const; // subtract rhs
Vector2& operator+=(const Vector2& rhs); // add rhs and update this object
Vector2& operator-=(const Vector2& rhs); // subtract rhs and update this object
Vector2 operator*(const float scale) const; // scale
Vector2 operator*(const Vector2& rhs) const; // multiply each element
Vector2& operator*=(const float scale); // scale and update this object
Vector2& operator*=(const Vector2& rhs); // multiply each element and update this object
Vector2 operator/(const float scale) const; // inverse scale
Vector2& operator/=(const float scale); // scale and update this object
bool operator==(const Vector2& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector2& rhs) const; // exact compare, no epsilon
bool operator<(const Vector2& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector2 operator*(const float a, const Vector2 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector2& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 3D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector3
{
float x;
float y;
float z;
// ctors
Vector3() : x(0), y(0), z(0) {};
Vector3(float x, float y, float z) : x(x), y(y), z(z) {};
// utils functions
void set(float x, float y, float z);
float length() const; //
float distance(const Vector3& vec) const; // distance between two vectors
Vector3& normalize(); //
float dot(const Vector3& vec) const; // dot product
Vector3 cross(const Vector3& vec) const; // cross product
bool equal(const Vector3& vec, float e) const; // compare with epsilon
// operators
Vector3 operator-() const; // unary operator (negate)
Vector3 operator+(const Vector3& rhs) const; // add rhs
Vector3 operator-(const Vector3& rhs) const; // subtract rhs
Vector3& operator+=(const Vector3& rhs); // add rhs and update this object
Vector3& operator-=(const Vector3& rhs); // subtract rhs and update this object
Vector3 operator*(const float scale) const; // scale
Vector3 operator*(const Vector3& rhs) const; // multiplay each element
Vector3& operator*=(const float scale); // scale and update this object
Vector3& operator*=(const Vector3& rhs); // product each element and update this object
Vector3 operator/(const float scale) const; // inverse scale
Vector3& operator/=(const float scale); // scale and update this object
bool operator==(const Vector3& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector3& rhs) const; // exact compare, no epsilon
bool operator<(const Vector3& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector3 operator*(const float a, const Vector3 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector3& vec);
};
///////////////////////////////////////////////////////////////////////////////
// 4D vector
///////////////////////////////////////////////////////////////////////////////
struct Vector4
{
float x;
float y;
float z;
float w;
// ctors
Vector4() : x(0), y(0), z(0), w(0) {};
Vector4(float x, float y, float z, float w) : x(x), y(y), z(z), w(w) {};
// utils functions
void set(float x, float y, float z, float w);
float length() const; //
float distance(const Vector4& vec) const; // distance between two vectors
Vector4& normalize(); //
float dot(const Vector4& vec) const; // dot product
bool equal(const Vector4& vec, float e) const; // compare with epsilon
// operators
Vector4 operator-() const; // unary operator (negate)
Vector4 operator+(const Vector4& rhs) const; // add rhs
Vector4 operator-(const Vector4& rhs) const; // subtract rhs
Vector4& operator+=(const Vector4& rhs); // add rhs and update this object
Vector4& operator-=(const Vector4& rhs); // subtract rhs and update this object
Vector4 operator*(const float scale) const; // scale
Vector4 operator*(const Vector4& rhs) const; // multiply each element
Vector4& operator*=(const float scale); // scale and update this object
Vector4& operator*=(const Vector4& rhs); // multiply each element and update this object
Vector4 operator/(const float scale) const; // inverse scale
Vector4& operator/=(const float scale); // scale and update this object
bool operator==(const Vector4& rhs) const; // exact compare, no epsilon
bool operator!=(const Vector4& rhs) const; // exact compare, no epsilon
bool operator<(const Vector4& rhs) const; // comparison for sort
float operator[](int index) const; // subscript operator v[0], v[1]
float& operator[](int index); // subscript operator v[0], v[1]
friend Vector4 operator*(const float a, const Vector4 vec);
friend std::ostream& operator<<(std::ostream& os, const Vector4& vec);
};
// fast math routines from Doom3 SDK
inline float invSqrt(float x)
{
float xhalf = 0.5f * x;
int i = *(int*)&x; // get bits for floating value
i = 0x5f3759df - (i>>1); // gives initial guess
x = *(float*)&i; // convert bits back to float
x = x * (1.5f - xhalf*x*x); // Newton step
return x;
}
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector2
///////////////////////////////////////////////////////////////////////////////
inline Vector2 Vector2::operator-() const {
return Vector2(-x, -y);
}
inline Vector2 Vector2::operator+(const Vector2& rhs) const {
return Vector2(x+rhs.x, y+rhs.y);
}
inline Vector2 Vector2::operator-(const Vector2& rhs) const {
return Vector2(x-rhs.x, y-rhs.y);
}
inline Vector2& Vector2::operator+=(const Vector2& rhs) {
x += rhs.x; y += rhs.y; return *this;
}
inline Vector2& Vector2::operator-=(const Vector2& rhs) {
x -= rhs.x; y -= rhs.y; return *this;
}
inline Vector2 Vector2::operator*(const float a) const {
return Vector2(x*a, y*a);
}
inline Vector2 Vector2::operator*(const Vector2& rhs) const {
return Vector2(x*rhs.x, y*rhs.y);
}
inline Vector2& Vector2::operator*=(const float a) {
x *= a; y *= a; return *this;
}
inline Vector2& Vector2::operator*=(const Vector2& rhs) {
x *= rhs.x; y *= rhs.y; return *this;
}
inline Vector2 Vector2::operator/(const float a) const {
return Vector2(x/a, y/a);
}
inline Vector2& Vector2::operator/=(const float a) {
x /= a; y /= a; return *this;
}
inline bool Vector2::operator==(const Vector2& rhs) const {
return (x == rhs.x) && (y == rhs.y);
}
inline bool Vector2::operator!=(const Vector2& rhs) const {
return (x != rhs.x) || (y != rhs.y);
}
inline bool Vector2::operator<(const Vector2& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
return false;
}
inline float Vector2::operator[](int index) const {
return (&x)[index];
}
inline float& Vector2::operator[](int index) {
return (&x)[index];
}
inline void Vector2::set(float x, float y) {
this->x = x; this->y = y;
}
inline float Vector2::length() const {
return sqrtf(x*x + y*y);
}
inline float Vector2::distance(const Vector2& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y));
}
inline Vector2& Vector2::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyy = x*x + y*y;
//@@if(xxyy < EPSILON)
//@@ return *this;
//float invLength = invSqrt(xxyy);
float invLength = 1.0f / sqrtf(xxyy);
x *= invLength;
y *= invLength;
return *this;
}
inline float Vector2::dot(const Vector2& rhs) const {
return (x*rhs.x + y*rhs.y);
}
inline bool Vector2::equal(const Vector2& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon;
}
inline Vector2 operator*(const float a, const Vector2 vec) {
return Vector2(a*vec.x, a*vec.y);
}
inline std::ostream& operator<<(std::ostream& os, const Vector2& vec) {
os << "(" << vec.x << ", " << vec.y << ")";
return os;
}
// END OF VECTOR2 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector3
///////////////////////////////////////////////////////////////////////////////
inline Vector3 Vector3::operator-() const {
return Vector3(-x, -y, -z);
}
inline Vector3 Vector3::operator+(const Vector3& rhs) const {
return Vector3(x+rhs.x, y+rhs.y, z+rhs.z);
}
inline Vector3 Vector3::operator-(const Vector3& rhs) const {
return Vector3(x-rhs.x, y-rhs.y, z-rhs.z);
}
inline Vector3& Vector3::operator+=(const Vector3& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; return *this;
}
inline Vector3& Vector3::operator-=(const Vector3& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; return *this;
}
inline Vector3 Vector3::operator*(const float a) const {
return Vector3(x*a, y*a, z*a);
}
inline Vector3 Vector3::operator*(const Vector3& rhs) const {
return Vector3(x*rhs.x, y*rhs.y, z*rhs.z);
}
inline Vector3& Vector3::operator*=(const float a) {
x *= a; y *= a; z *= a; return *this;
}
inline Vector3& Vector3::operator*=(const Vector3& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; return *this;
}
inline Vector3 Vector3::operator/(const float a) const {
return Vector3(x/a, y/a, z/a);
}
inline Vector3& Vector3::operator/=(const float a) {
x /= a; y /= a; z /= a; return *this;
}
inline bool Vector3::operator==(const Vector3& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z);
}
inline bool Vector3::operator!=(const Vector3& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z);
}
inline bool Vector3::operator<(const Vector3& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
return false;
}
inline float Vector3::operator[](int index) const {
return (&x)[index];
}
inline float& Vector3::operator[](int index) {
return (&x)[index];
}
inline void Vector3::set(float x, float y, float z) {
this->x = x; this->y = y; this->z = z;
}
inline float Vector3::length() const {
return sqrtf(x*x + y*y + z*z);
}
inline float Vector3::distance(const Vector3& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z));
}
inline Vector3& Vector3::normalize() {
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is ~zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector3::dot(const Vector3& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z);
}
inline Vector3 Vector3::cross(const Vector3& rhs) const {
return Vector3(y*rhs.z - z*rhs.y, z*rhs.x - x*rhs.z, x*rhs.y - y*rhs.x);
}
inline bool Vector3::equal(const Vector3& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon && fabs(z - rhs.z) < epsilon;
}
inline Vector3 operator*(const float a, const Vector3 vec) {
return Vector3(a*vec.x, a*vec.y, a*vec.z);
}
inline std::ostream& operator<<(std::ostream& os, const Vector3& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ")";
return os;
}
// END OF VECTOR3 /////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// inline functions for Vector4
///////////////////////////////////////////////////////////////////////////////
inline Vector4 Vector4::operator-() const {
return Vector4(-x, -y, -z, -w);
}
inline Vector4 Vector4::operator+(const Vector4& rhs) const {
return Vector4(x+rhs.x, y+rhs.y, z+rhs.z, w+rhs.w);
}
inline Vector4 Vector4::operator-(const Vector4& rhs) const {
return Vector4(x-rhs.x, y-rhs.y, z-rhs.z, w-rhs.w);
}
inline Vector4& Vector4::operator+=(const Vector4& rhs) {
x += rhs.x; y += rhs.y; z += rhs.z; w += rhs.w; return *this;
}
inline Vector4& Vector4::operator-=(const Vector4& rhs) {
x -= rhs.x; y -= rhs.y; z -= rhs.z; w -= rhs.w; return *this;
}
inline Vector4 Vector4::operator*(const float a) const {
return Vector4(x*a, y*a, z*a, w*a);
}
inline Vector4 Vector4::operator*(const Vector4& rhs) const {
return Vector4(x*rhs.x, y*rhs.y, z*rhs.z, w*rhs.w);
}
inline Vector4& Vector4::operator*=(const float a) {
x *= a; y *= a; z *= a; w *= a; return *this;
}
inline Vector4& Vector4::operator*=(const Vector4& rhs) {
x *= rhs.x; y *= rhs.y; z *= rhs.z; w *= rhs.w; return *this;
}
inline Vector4 Vector4::operator/(const float a) const {
return Vector4(x/a, y/a, z/a, w/a);
}
inline Vector4& Vector4::operator/=(const float a) {
x /= a; y /= a; z /= a; w /= a; return *this;
}
inline bool Vector4::operator==(const Vector4& rhs) const {
return (x == rhs.x) && (y == rhs.y) && (z == rhs.z) && (w == rhs.w);
}
inline bool Vector4::operator!=(const Vector4& rhs) const {
return (x != rhs.x) || (y != rhs.y) || (z != rhs.z) || (w != rhs.w);
}
inline bool Vector4::operator<(const Vector4& rhs) const {
if(x < rhs.x) return true;
if(x > rhs.x) return false;
if(y < rhs.y) return true;
if(y > rhs.y) return false;
if(z < rhs.z) return true;
if(z > rhs.z) return false;
if(w < rhs.w) return true;
if(w > rhs.w) return false;
return false;
}
inline float Vector4::operator[](int index) const {
return (&x)[index];
}
inline float& Vector4::operator[](int index) {
return (&x)[index];
}
inline void Vector4::set(float x, float y, float z, float w) {
this->x = x; this->y = y; this->z = z; this->w = w;
}
inline float Vector4::length() const {
return sqrtf(x*x + y*y + z*z + w*w);
}
inline float Vector4::distance(const Vector4& vec) const {
return sqrtf((vec.x-x)*(vec.x-x) + (vec.y-y)*(vec.y-y) + (vec.z-z)*(vec.z-z) + (vec.w-w)*(vec.w-w));
}
inline Vector4& Vector4::normalize() {
//NOTE: leave w-component untouched
//@@const float EPSILON = 0.000001f;
float xxyyzz = x*x + y*y + z*z;
//@@if(xxyyzz < EPSILON)
//@@ return *this; // do nothing if it is zero vector
//float invLength = invSqrt(xxyyzz);
float invLength = 1.0f / sqrtf(xxyyzz);
x *= invLength;
y *= invLength;
z *= invLength;
return *this;
}
inline float Vector4::dot(const Vector4& rhs) const {
return (x*rhs.x + y*rhs.y + z*rhs.z + w*rhs.w);
}
inline bool Vector4::equal(const Vector4& rhs, float epsilon) const {
return fabs(x - rhs.x) < epsilon && fabs(y - rhs.y) < epsilon &&
fabs(z - rhs.z) < epsilon && fabs(w - rhs.w) < epsilon;
}
inline Vector4 operator*(const float a, const Vector4 vec) {
return Vector4(a*vec.x, a*vec.y, a*vec.z, a*vec.w);
}
inline std::ostream& operator<<(std::ostream& os, const Vector4& vec) {
os << "(" << vec.x << ", " << vec.y << ", " << vec.z << ", " << vec.w << ")";
return os;
}
// END OF VECTOR4 /////////////////////////////////////////////////////////////
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,560 @@
//========= Copyright Valve Corporation ============//
#include "pathtools.h"
//#include "hmdplatform_private.h"
//#include "vrcommon/strtools.h"
#if defined( _WIN32)
#include <Windows.h>
#include <direct.h>
#include <Shobjidl.h>
#include <KnownFolders.h>
#elif defined OSX
#include <mach-o/dyld.h>
#include <dlfcn.h>
#include "osxfilebridge.h"
#define _S_IFDIR S_IFDIR // really from tier0/platform.h which we dont have yet
#define _MAX_PATH MAX_PATH // yet another form of _PATH define we use
#elif defined(LINUX)
#include <dlfcn.h>
#include <stdio.h>
#endif
#include <sys/stat.h>
#include <algorithm>
/** Returns the path (including filename) to the current executable */
std::string Path_GetExecutablePath()
{
bool bSuccess = false;
char rchPath[ 1024 ];
size_t nBuff = sizeof(rchPath);
#if defined( _WIN32 )
bSuccess = ::GetModuleFileNameA(NULL, rchPath, (DWORD)nBuff) > 0;
#elif defined OSX
uint32_t _nBuff = nBuff;
bSuccess = _NSGetExecutablePath(rchPath, &_nBuff) == 0;
rchPath[nBuff-1] = '\0';
#elif defined LINUX
ssize_t nRead = readlink("/proc/self/exe", rchPath, nBuff-1 );
if ( nRead != -1 )
{
rchPath[ nRead ] = 0;
bSuccess = true;
}
else
{
rchPath[ 0 ] = '\0';
}
#else
AssertMsg( false, "Implement Plat_GetExecutablePath" );
#endif
if( bSuccess )
return rchPath;
else
return "";
}
/** Returns the path of the current working directory */
std::string Path_GetWorkingDirectory()
{
std::string sPath;
char buf[ 1024 ];
#if defined( _WIN32 )
sPath = _getcwd( buf, sizeof( buf ) );
#else
sPath = getcwd( buf, sizeof( buf ) );
#endif
return sPath;
}
/** Sets the path of the current working directory. Returns true if this was successful. */
bool Path_SetWorkingDirectory( const std::string & sPath )
{
bool bSuccess;
#if defined( _WIN32 )
bSuccess = 0 == _chdir( sPath.c_str() );
#else
bSuccess = 0 == chdir( sPath.c_str() );
#endif
return bSuccess;
}
std::string Path_GetModulePath()
{
#if defined( _WIN32 )
char path[32768];
HMODULE hm = NULL;
if (!GetModuleHandleExA(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,
(LPCSTR) &Path_GetModulePath,
&hm))
{
int ret = GetLastError();
fprintf(stderr, "GetModuleHandle returned %d\n", ret);
return "";
}
GetModuleFileNameA(hm, path, sizeof(path));
FreeLibrary( hm );
return path;
#else
Dl_info dl_info;
dladdr((void *)Path_GetModulePath, &dl_info);
return dl_info.dli_fname;
#endif
}
/** Returns the specified path without its filename */
std::string Path_StripFilename( const std::string & sPath, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
std::string::size_type n = sPath.find_last_of( slash );
if( n == std::string::npos )
return sPath;
else
return std::string( sPath.begin(), sPath.begin() + n );
}
/** returns just the filename from the provided full or relative path. */
std::string Path_StripDirectory( const std::string & sPath, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
std::string::size_type n = sPath.find_last_of( slash );
if( n == std::string::npos )
return sPath;
else
return std::string( sPath.begin() + n + 1, sPath.end() );
}
/** returns just the filename with no extension of the provided filename.
* If there is a path the path is left intact. */
std::string Path_StripExtension( const std::string & sPath )
{
for( std::string::const_reverse_iterator i = sPath.rbegin(); i != sPath.rend(); i++ )
{
if( *i == '.' )
{
return std::string( sPath.begin(), i.base() - 1 );
}
// if we find a slash there is no extension
if( *i == '\\' || *i == '/' )
break;
}
// we didn't find an extension
return sPath;
}
bool Path_IsAbsolute( const std::string & sPath )
{
if( sPath.empty() )
return false;
if( sPath.find( ':' ) != std::string::npos )
return true;
if( sPath[0] == '\\' || sPath[0] == '/' )
return true;
return false;
}
/** Makes an absolute path from a relative path and a base path */
std::string Path_MakeAbsolute( const std::string & sRelativePath, const std::string & sBasePath, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
if( Path_IsAbsolute( sRelativePath ) )
return sRelativePath;
else
{
if( !Path_IsAbsolute( sBasePath ) )
return "";
std::string sCompacted = Path_Compact( Path_Join( sBasePath, sRelativePath, slash ), slash );
if( Path_IsAbsolute( sCompacted ) )
return sCompacted;
else
return "";
}
}
/** Fixes the directory separators for the current platform */
std::string Path_FixSlashes( const std::string & sPath, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
std::string sFixed = sPath;
for( std::string::iterator i = sFixed.begin(); i != sFixed.end(); i++ )
{
if( *i == '/' || *i == '\\' )
*i = slash;
}
return sFixed;
}
char Path_GetSlash()
{
#if defined(_WIN32)
return '\\';
#else
return '/';
#endif
}
/** Jams two paths together with the right kind of slash */
std::string Path_Join( const std::string & first, const std::string & second, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
// only insert a slash if we don't already have one
std::string::size_type nLen = first.length();
#if defined(_WIN32)
if( first.back() == '\\' || first.back() == '/' )
nLen--;
#else
char last_char = first[first.length()-1];
if (last_char == '\\' || last_char == '/')
nLen--;
#endif
return first.substr( 0, nLen ) + std::string( 1, slash ) + second;
}
std::string Path_Join( const std::string & first, const std::string & second, const std::string & third, char slash )
{
return Path_Join( Path_Join( first, second, slash ), third, slash );
}
std::string Path_Join( const std::string & first, const std::string & second, const std::string & third, const std::string &fourth, char slash )
{
return Path_Join( Path_Join( Path_Join( first, second, slash ), third, slash ), fourth, slash );
}
std::string Path_Join(
const std::string & first,
const std::string & second,
const std::string & third,
const std::string & fourth,
const std::string & fifth,
char slash )
{
return Path_Join( Path_Join( Path_Join( Path_Join( first, second, slash ), third, slash ), fourth, slash ), fifth, slash );
}
/** Removes redundant <dir>/.. elements in the path. Returns an empty path if the
* specified path has a broken number of directories for its number of ..s */
std::string Path_Compact( const std::string & sRawPath, char slash )
{
if( slash == 0 )
slash = Path_GetSlash();
std::string sPath = Path_FixSlashes( sRawPath, slash );
std::string sSlashString( 1, slash );
// strip out all /./
for( std::string::size_type i = 0; (i + 3) < sPath.length(); )
{
if( sPath[ i ] == slash && sPath[ i+1 ] == '.' && sPath[ i+2 ] == slash )
{
sPath.replace( i, 3, sSlashString );
}
else
{
++i;
}
}
// get rid of trailing /. but leave the path separator
if( sPath.length() > 2 )
{
std::string::size_type len = sPath.length();
if( sPath[ len-1 ] == '.' && sPath[ len-2 ] == slash )
{
// sPath.pop_back();
sPath[len-1] = 0; // for now, at least
}
}
// get rid of leading ./
if( sPath.length() > 2 )
{
if( sPath[ 0 ] == '.' && sPath[ 1 ] == slash )
{
sPath.replace( 0, 2, "" );
}
}
// each time we encounter .. back up until we've found the previous directory name
// then get rid of both
std::string::size_type i = 0;
while( i < sPath.length() )
{
if( i > 0 && sPath.length() - i >= 2
&& sPath[i] == '.'
&& sPath[i+1] == '.'
&& ( i + 2 == sPath.length() || sPath[ i+2 ] == slash )
&& sPath[ i-1 ] == slash )
{
// check if we've hit the start of the string and have a bogus path
if( i == 1 )
return "";
// find the separator before i-1
std::string::size_type iDirStart = i-2;
while( iDirStart > 0 && sPath[ iDirStart - 1 ] != slash )
--iDirStart;
// remove everything from iDirStart to i+2
sPath.replace( iDirStart, (i - iDirStart) + 3, "" );
// start over
i = 0;
}
else
{
++i;
}
}
return sPath;
}
#define MAX_UNICODE_PATH 32768
#define MAX_UNICODE_PATH_IN_UTF8 ( MAX_UNICODE_PATH * 4 )
/** Returns the path to the current DLL or exe */
std::string GetThisModulePath()
{
// gets the path of vrclient.dll itself
#ifdef WIN32
HMODULE hmodule = NULL;
::GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT, reinterpret_cast<LPCTSTR>(GetThisModulePath), &hmodule);
wchar_t *pwchPath = new wchar_t[MAX_UNICODE_PATH];
char *pchPath = new char[ MAX_UNICODE_PATH_IN_UTF8 ];
::GetModuleFileNameW( hmodule, pwchPath, MAX_UNICODE_PATH );
WideCharToMultiByte( CP_UTF8, 0, pwchPath, -1, pchPath, MAX_UNICODE_PATH_IN_UTF8, NULL, NULL );
delete[] pwchPath;
std::string sPath = pchPath;
delete [] pchPath;
return sPath;
#elif defined( OSX ) || defined( LINUX )
// get the addr of a function in vrclient.so and then ask the dlopen system about it
Dl_info info;
dladdr( (void *)GetThisModulePath, &info );
return info.dli_fname;
#endif
}
/** returns true if the specified path exists and is a directory */
bool Path_IsDirectory( const std::string & sPath )
{
std::string sFixedPath = Path_FixSlashes( sPath );
if( sFixedPath.empty() )
return false;
char cLast = sFixedPath[ sFixedPath.length() - 1 ];
if( cLast == '/' || cLast == '\\' )
sFixedPath.erase( sFixedPath.end() - 1, sFixedPath.end() );
// see if the specified path actually exists.
struct stat buf;
if ( stat ( sFixedPath.c_str(), &buf ) == -1)
{
return false;
}
#if defined(LINUX)
return S_ISDIR( buf.st_mode );
#else
return ( buf.st_mode & _S_IFDIR ) != 0;
#endif
}
//-----------------------------------------------------------------------------
// Purpose: returns true if the the path exists
//-----------------------------------------------------------------------------
bool Path_Exists( const std::string & sPath )
{
std::string sFixedPath = Path_FixSlashes( sPath );
if( sFixedPath.empty() )
return false;
struct stat buf;
if ( stat ( sFixedPath.c_str(), &buf ) == -1)
{
return false;
}
return true;
}
//-----------------------------------------------------------------------------
// Purpose: helper to find a directory upstream from a given path
//-----------------------------------------------------------------------------
std::string Path_FindParentDirectoryRecursively( const std::string &strStartDirectory, const std::string &strDirectoryName )
{
std::string strFoundPath = "";
std::string strCurrentPath = Path_FixSlashes( strStartDirectory );
if ( strCurrentPath.length() == 0 )
return "";
bool bExists = Path_Exists( strCurrentPath );
std::string strCurrentDirectoryName = Path_StripDirectory( strCurrentPath );
if ( bExists && stricmp( strCurrentDirectoryName.c_str(), strDirectoryName.c_str() ) == 0 )
return strCurrentPath;
while( bExists && strCurrentPath.length() != 0 )
{
strCurrentPath = Path_StripFilename( strCurrentPath );
strCurrentDirectoryName = Path_StripDirectory( strCurrentPath );
bExists = Path_Exists( strCurrentPath );
if ( bExists && stricmp( strCurrentDirectoryName.c_str(), strDirectoryName.c_str() ) == 0 )
return strCurrentPath;
}
return "";
}
//-----------------------------------------------------------------------------
// Purpose: helper to find a subdirectory upstream from a given path
//-----------------------------------------------------------------------------
std::string Path_FindParentSubDirectoryRecursively( const std::string &strStartDirectory, const std::string &strDirectoryName )
{
std::string strFoundPath = "";
std::string strCurrentPath = Path_FixSlashes( strStartDirectory );
if ( strCurrentPath.length() == 0 )
return "";
bool bExists = Path_Exists( strCurrentPath );
while( bExists && strCurrentPath.length() != 0 )
{
strCurrentPath = Path_StripFilename( strCurrentPath );
bExists = Path_Exists( strCurrentPath );
if( Path_Exists( Path_Join( strCurrentPath, strDirectoryName ) ) )
{
strFoundPath = Path_Join( strCurrentPath, strDirectoryName );
break;
}
}
return strFoundPath;
}
//-----------------------------------------------------------------------------
// Purpose: reading and writing files in the vortex directory
//-----------------------------------------------------------------------------
unsigned char * Path_ReadBinaryFile( const std::string &strFilename, int *pSize )
{
FILE *f;
#if defined( POSIX )
f = fopen( strFilename.c_str(), "rb" );
#else
errno_t err = fopen_s(&f, strFilename.c_str(), "rb");
if ( err != 0 )
{
f = NULL;
}
#endif
unsigned char* buf = NULL;
if ( f != NULL )
{
fseek(f, 0, SEEK_END);
int size = ftell(f);
fseek(f, 0, SEEK_SET);
buf = new unsigned char[size];
if (buf && fread(buf, size, 1, f) == 1)
{
if (pSize)
*pSize = size;
}
else
{
delete[] buf;
buf = 0;
}
fclose(f);
}
return buf;
}
std::string Path_ReadTextFile( const std::string &strFilename )
{
// doing it this way seems backwards, but I don't
// see an easy way to do this with C/C++ style IO
// that isn't worse...
int size;
unsigned char* buf = Path_ReadBinaryFile( strFilename, &size );
if (!buf)
return "";
// convert CRLF -> LF
int outsize = 1;
for (int i=1; i < size; i++)
{
if (buf[i] == '\n' && buf[i-1] == '\r') // CRLF
buf[outsize-1] = '\n'; // ->LF
else
buf[outsize++] = buf[i]; // just copy
}
std::string ret((char *)buf, (char *)(buf + outsize));
delete[] buf;
return ret;
}
bool Path_WriteStringToTextFile( const std::string &strFilename, const char *pchData )
{
FILE *f;
#if defined( POSIX )
f = fopen( strFilename.c_str(), "w" );
#else
errno_t err = fopen_s(&f, strFilename.c_str(), "w");
if ( err != 0 )
{
f = NULL;
}
#endif
bool ok = false;
if ( f != NULL )
{
ok = fputs( pchData, f) >= 0;
fclose(f);
}
return ok;
}

View File

@ -0,0 +1,98 @@
//========= Copyright Valve Corporation ============//
#pragma once
#include <string>
/** Returns the path (including filename) to the current executable */
std::string Path_GetExecutablePath();
/** Returns the path of the current working directory */
std::string Path_GetWorkingDirectory();
/** Sets the path of the current working directory. Returns true if this was successful. */
bool Path_SetWorkingDirectory( const std::string & sPath );
/** returns the path (including filename) of the current shared lib or DLL */
std::string Path_GetModulePath();
/** Returns the specified path without its filename.
* If slash is unspecified the native path separator of the current platform
* will be used. */
std::string Path_StripFilename( const std::string & sPath, char slash = 0 );
/** returns just the filename from the provided full or relative path. */
std::string Path_StripDirectory( const std::string & sPath, char slash = 0 );
/** returns just the filename with no extension of the provided filename.
* If there is a path the path is left intact. */
std::string Path_StripExtension( const std::string & sPath );
/** Returns true if the path is absolute */
bool Path_IsAbsolute( const std::string & sPath );
/** Makes an absolute path from a relative path and a base path */
std::string Path_MakeAbsolute( const std::string & sRelativePath, const std::string & sBasePath, char slash = 0 );
/** Fixes the directory separators for the current platform.
* If slash is unspecified the native path separator of the current platform
* will be used. */
std::string Path_FixSlashes( const std::string & sPath, char slash = 0 );
/** Returns the path separator for the current platform */
char Path_GetSlash();
/** Jams two paths together with the right kind of slash */
std::string Path_Join( const std::string & first, const std::string & second, char slash = 0 );
std::string Path_Join( const std::string & first, const std::string & second, const std::string & third, char slash = 0 );
std::string Path_Join( const std::string & first, const std::string & second, const std::string & third, const std::string &fourth, char slash = 0 );
std::string Path_Join(
const std::string & first,
const std::string & second,
const std::string & third,
const std::string & fourth,
const std::string & fifth,
char slash = 0 );
/** Removes redundant <dir>/.. elements in the path. Returns an empty path if the
* specified path has a broken number of directories for its number of ..s.
* If slash is unspecified the native path separator of the current platform
* will be used. */
std::string Path_Compact( const std::string & sRawPath, char slash = 0 );
/** returns true if the specified path exists and is a directory */
bool Path_IsDirectory( const std::string & sPath );
/** Returns the path to the current DLL or exe */
std::string GetThisModulePath();
/** returns true if the the path exists */
bool Path_Exists( const std::string & sPath );
/** Helper functions to find parent directories or subdirectories of parent directories */
std::string Path_FindParentDirectoryRecursively( const std::string &strStartDirectory, const std::string &strDirectoryName );
std::string Path_FindParentSubDirectoryRecursively( const std::string &strStartDirectory, const std::string &strDirectoryName );
/** Path operations to read or write text/binary files */
unsigned char * Path_ReadBinaryFile( const std::string &strFilename, int *pSize );
std::string Path_ReadTextFile( const std::string &strFilename );
bool Path_WriteStringToTextFile( const std::string &strFilename, const char *pchData );
//-----------------------------------------------------------------------------
#if defined(_WIN32)
#define DYNAMIC_LIB_EXT ".dll"
#ifdef _WIN64
#define PLATSUBDIR "win64"
#else
#define PLATSUBDIR "win32"
#endif
#elif defined(OSX)
#define DYNAMIC_LIB_EXT ".dylib"
#define PLATSUBDIR "osx32"
#elif defined(LINUX)
#define DYNAMIC_LIB_EXT ".so"
#define PLATSUBDIR "linux32"
#else
#warning "Unknown platform for PLATSUBDIR"
#define PLATSUBDIR "unknown_platform"
#endif