Merge pull request #216 from erwincoumans/master

fix more warnings in BulletCollision, and fix CMakeLists for Linux
This commit is contained in:
erwincoumans 2014-08-21 16:03:14 -07:00
commit 60ab931dbd
27 changed files with 1277 additions and 1246 deletions

View File

@ -5,8 +5,7 @@ INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/btgui
${BULLET_PHYSICS_SOURCE_DIR}/btgui/lua-5.2.3/src
)
SET(App_AllBullet2Demos_SRCS
main.cpp
BulletDemoInterface.h
@ -93,7 +92,13 @@ ELSE(WIN32)
MESSAGE(${COCOA})
link_libraries(${COCOA})
ELSE(APPLE)
LINK_LIBRARIES( pthread GLEW)
ADD_DEFINITIONS("-DGLEW_INIT_OPENGL11_FUNCTIONS=1")
ADD_DEFINITIONS("-DGLEW_STATIC")
ADD_DEFINITIONS("-DGLEW_DYNAMIC_LOAD_ALL_GLX_FUNCTIONS=1")
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/btgui/OpenGLWindow/GlewWindows
)
LINK_LIBRARIES( pthread dl)
ENDIF(APPLE)
ENDIF(WIN32)

View File

@ -106,5 +106,5 @@ if os.is("Linux") then
initX11()
end
if os.is("MacOSX") then
links{"Cocoa.framework"}
links{"Cocoa.framework"}
end

View File

@ -50,7 +50,16 @@ ELSE(WIN32)
MESSAGE(${COCOA})
link_libraries(${COCOA})
ELSE(APPLE)
LINK_LIBRARIES( GLEW X11 pthread dl)
SET(App_Bullet3_OpenCL_Demos_SRCS ${App_Bullet3_OpenCL_Demos_SRCS} ${App_Bullet3_OpenCL_Demos_Common_SRCS} ../../btgui/OpenGLWindow/GlewWindows/glew.c)
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/btgui/OpenGLWindow/GlewWindows
)
ADD_DEFINITIONS("-DGLEW_INIT_OPENGL11_FUNCTIONS=1")
ADD_DEFINITIONS("-DGLEW_STATIC")
ADD_DEFINITIONS("-DGLEW_DYNAMIC_LOAD_ALL_GLX_FUNCTIONS=1")
LINK_LIBRARIES( X11 pthread dl)
ENDIF(APPLE)
ENDIF(WIN32)

View File

@ -27,7 +27,15 @@ ELSE(WIN32)
MESSAGE(${COCOA})
link_libraries(${COCOA})
ELSE(APPLE)
LINK_LIBRARIES( GLEW X11 pthread dl Xext)
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/btgui/OpenGLWindow/GlewWindows
)
ADD_DEFINITIONS("-DGLEW_INIT_OPENGL11_FUNCTIONS=1")
ADD_DEFINITIONS("-DGLEW_STATIC")
ADD_DEFINITIONS("-DGLEW_DYNAMIC_LOAD_ALL_GLX_FUNCTIONS=1")
LINK_LIBRARIES( X11 pthread dl Xext)
ENDIF(APPLE)
ENDIF(WIN32)

View File

@ -32,7 +32,14 @@ ENDIF(APPLE)
#no Linux detection?
IF(NOT WIN32 AND NOT APPLE)
SET(OpenGLWindow_SRCS ${OpenGLWindowLinux_CPP} ${OpenGLWindowCommon_CPP} )
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/btgui/OpenGLWindow/GlewWindows
)
ADD_DEFINITIONS(-DGLEW_STATIC)
ADD_DEFINITIONS("-DGLEW_INIT_OPENGL11_FUNCTIONS=1")
ADD_DEFINITIONS("-DGLEW_DYNAMIC_LOAD_ALL_GLX_FUNCTIONS=1")
SET(OpenGLWindow_SRCS ${OpenGLWindowLinux_CPP} ${BULLET_PHYSICS_SOURCE_DIR}/btgui/OpenGLWindow/GlewWindows/glew.c ${OpenGLWindowCommon_CPP} )
ENDIF()

View File

@ -38,8 +38,9 @@ static DBVT_INLINE btDbvtVolume merge( const btDbvtVolume& a,
const btDbvtVolume& b)
{
#if (DBVT_MERGE_IMPL==DBVT_IMPL_SSE)
ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtAabbMm)]);
btDbvtVolume& res=*(btDbvtVolume*)locals;
ATTRIBUTE_ALIGNED16( char locals[sizeof(btDbvtAabbMm)]);
btDbvtVolume* ptr = (btDbvtVolume*) locals;
btDbvtVolume& res=*ptr;
#else
btDbvtVolume res;
#endif
@ -250,7 +251,8 @@ static btDbvtVolume bounds( const tNodeArray& leaves)
{
#if DBVT_MERGE_IMPL==DBVT_IMPL_SSE
ATTRIBUTE_ALIGNED16(char locals[sizeof(btDbvtVolume)]);
btDbvtVolume& volume=*(btDbvtVolume*)locals;
btDbvtVolume* ptr = (btDbvtVolume*) locals;
btDbvtVolume& volume=*ptr;
volume=leaves[0]->volume;
#else
btDbvtVolume volume=leaves[0]->volume;

View File

@ -31,11 +31,10 @@ btCollisionObject::btCollisionObject()
m_activationState1(1),
m_deactivationTime(btScalar(0.)),
m_friction(btScalar(0.5)),
m_rollingFriction(0.0f),
m_restitution(btScalar(0.)),
m_rollingFriction(0.0f),
m_internalType(CO_COLLISION_OBJECT),
m_userObjectPointer(0),
m_userIndex(-1),
m_hitFraction(btScalar(1.)),
m_ccdSweptSphereRadius(btScalar(0.)),
m_ccdMotionThreshold(btScalar(0.)),

View File

@ -1,43 +1,43 @@
#ifndef BT_COLLISION_OBJECT_WRAPPER_H
#define BT_COLLISION_OBJECT_WRAPPER_H
///btCollisionObjectWrapperis an internal data structure.
///Most users can ignore this and use btCollisionObject and btCollisionShape instead
class btCollisionShape;
class btCollisionObject;
class btTransform;
#include "LinearMath/btScalar.h" // for SIMD_FORCE_INLINE definition
#define BT_DECLARE_STACK_ONLY_OBJECT \
private: \
void* operator new(size_t size); \
void operator delete(void*);
struct btCollisionObjectWrapper;
struct btCollisionObjectWrapper
{
BT_DECLARE_STACK_ONLY_OBJECT
private:
btCollisionObjectWrapper(const btCollisionObjectWrapper&); // not implemented. Not allowed.
btCollisionObjectWrapper* operator=(const btCollisionObjectWrapper&);
public:
const btCollisionObjectWrapper* m_parent;
const btCollisionShape* m_shape;
const btCollisionObject* m_collisionObject;
const btTransform& m_worldTransform;
int m_partId;
int m_index;
btCollisionObjectWrapper(const btCollisionObjectWrapper* parent, const btCollisionShape* shape, const btCollisionObject* collisionObject, const btTransform& worldTransform, int partId, int index)
: m_parent(parent), m_shape(shape), m_collisionObject(collisionObject), m_worldTransform(worldTransform),
m_partId(partId), m_index(index)
{}
SIMD_FORCE_INLINE const btTransform& getWorldTransform() const { return m_worldTransform; }
SIMD_FORCE_INLINE const btCollisionObject* getCollisionObject() const { return m_collisionObject; }
SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const { return m_shape; }
};
#endif //BT_COLLISION_OBJECT_WRAPPER_H
#ifndef BT_COLLISION_OBJECT_WRAPPER_H
#define BT_COLLISION_OBJECT_WRAPPER_H
///btCollisionObjectWrapperis an internal data structure.
///Most users can ignore this and use btCollisionObject and btCollisionShape instead
class btCollisionShape;
class btCollisionObject;
class btTransform;
#include "LinearMath/btScalar.h" // for SIMD_FORCE_INLINE definition
#define BT_DECLARE_STACK_ONLY_OBJECT \
private: \
void* operator new(size_t size); \
void operator delete(void*);
struct btCollisionObjectWrapper;
struct btCollisionObjectWrapper
{
BT_DECLARE_STACK_ONLY_OBJECT
private:
btCollisionObjectWrapper(const btCollisionObjectWrapper&); // not implemented. Not allowed.
btCollisionObjectWrapper* operator=(const btCollisionObjectWrapper&);
public:
const btCollisionObjectWrapper* m_parent;
const btCollisionShape* m_shape;
const btCollisionObject* m_collisionObject;
const btTransform& m_worldTransform;
int m_partId;
int m_index;
btCollisionObjectWrapper(const btCollisionObjectWrapper* parent, const btCollisionShape* shape, const btCollisionObject* collisionObject, const btTransform& worldTransform, int partId, int index)
: m_parent(parent), m_shape(shape), m_collisionObject(collisionObject), m_worldTransform(worldTransform),
m_partId(partId), m_index(index)
{}
SIMD_FORCE_INLINE const btTransform& getWorldTransform() const { return m_worldTransform; }
SIMD_FORCE_INLINE const btCollisionObject* getCollisionObject() const { return m_collisionObject; }
SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const { return m_shape; }
};
#endif //BT_COLLISION_OBJECT_WRAPPER_H

View File

@ -292,7 +292,7 @@ void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans,con
btGjkConvexCast gjkConvexCaster(castShape,convexShape,&simplexSolver);
//btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
bool condition = true;
btConvexCast* convexCasterPtr = 0;
//use kF_UseSubSimplexConvexCastRaytest by default
if (resultCallback.m_flags & btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest)
@ -1245,7 +1245,10 @@ public:
void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
{
// Draw a small simplex at the center of the object
getDebugDrawer()->drawTransform(worldTransform,1);
if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawFrames)
{
getDebugDrawer()->drawTransform(worldTransform,1);
}
if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{

View File

@ -123,7 +123,7 @@ public:
//backup
btTransform orgTrans = m_compoundColObjWrap->getWorldTransform();
btTransform orgInterpolationTrans = m_compoundColObjWrap->getWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(index);
btTransform newChildWorldTrans = orgTrans*childTrans ;
@ -294,7 +294,7 @@ void btCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrap
btManifoldArray manifoldArray;
const btCollisionShape* childShape = 0;
btTransform orgTrans;
btTransform orgInterpolationTrans;
btTransform newChildWorldTrans;
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
@ -304,8 +304,8 @@ void btCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrap
{
childShape = compoundShape->getChildShape(i);
//if not longer overlapping, remove the algorithm
orgTrans = colObjWrap->getWorldTransform();
orgInterpolationTrans = colObjWrap->getWorldTransform();
orgTrans = colObjWrap->getWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(i);
newChildWorldTrans = orgTrans*childTrans ;

View File

@ -1,427 +1,426 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCompoundCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
btShapePairCallback gCompoundCompoundChildShapePairCallback = 0;
btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
:btCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,isSwapped)
{
void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache),16);
m_childCollisionAlgorithmCache= new(ptr) btHashedSimplePairCache();
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
{
removeChildAlgorithms();
m_childCollisionAlgorithmCache->~btHashedSimplePairCache();
btAlignedFree(m_childCollisionAlgorithmCache);
}
void btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
{
int i;
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
((btCollisionAlgorithm*)pairs[i].m_userPointer)->getAllContactManifolds(manifoldArray);
}
}
}
void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
{
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int numChildren = pairs.size();
int i;
for (i=0;i<numChildren;i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
}
}
m_childCollisionAlgorithmCache->removeAllPairs();
}
struct btCompoundCompoundLeafCallback : btDbvt::ICollide
{
int m_numOverlapPairs;
const btCollisionObjectWrapper* m_compound0ColObjWrap;
const btCollisionObjectWrapper* m_compound1ColObjWrap;
btDispatcher* m_dispatcher;
const btDispatcherInfo& m_dispatchInfo;
btManifoldResult* m_resultOut;
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btPersistentManifold* m_sharedManifold;
btCompoundCompoundLeafCallback (const btCollisionObjectWrapper* compound1ObjWrap,
const btCollisionObjectWrapper* compound0ObjWrap,
btDispatcher* dispatcher,
const btDispatcherInfo& dispatchInfo,
btManifoldResult* resultOut,
btHashedSimplePairCache* childAlgorithmsCache,
btPersistentManifold* sharedManifold)
:m_compound0ColObjWrap(compound1ObjWrap),m_compound1ColObjWrap(compound0ObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
m_childCollisionAlgorithmCache(childAlgorithmsCache),
m_sharedManifold(sharedManifold),
m_numOverlapPairs(0)
{
}
void Process(const btDbvtNode* leaf0,const btDbvtNode* leaf1)
{
m_numOverlapPairs++;
int childIndex0 = leaf0->dataAsInt;
int childIndex1 = leaf1->dataAsInt;
btAssert(childIndex0>=0);
btAssert(childIndex1>=0);
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(m_compound0ColObjWrap->getCollisionShape());
btAssert(childIndex0<compoundShape0->getNumChildShapes());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(m_compound1ColObjWrap->getCollisionShape());
btAssert(childIndex1<compoundShape1->getNumChildShapes());
const btCollisionShape* childShape0 = compoundShape0->getChildShape(childIndex0);
const btCollisionShape* childShape1 = compoundShape1->getChildShape(childIndex1);
//backup
btTransform orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
const btTransform& childTrans0 = compoundShape0->getChildTransform(childIndex0);
btTransform newChildWorldTrans0 = orgTrans0*childTrans0 ;
btTransform orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
const btTransform& childTrans1 = compoundShape1->getChildTransform(childIndex1);
btTransform newChildWorldTrans1 = orgTrans1*childTrans1 ;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
if (gCompoundCompoundChildShapePairCallback)
{
if (!gCompoundCompoundChildShapePairCallback(childShape0,childShape1))
return;
}
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap,childShape0, m_compound0ColObjWrap->getCollisionObject(),newChildWorldTrans0,-1,childIndex0);
btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap,childShape1,m_compound1ColObjWrap->getCollisionObject(),newChildWorldTrans1,-1,childIndex1);
btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0,childIndex1);
btCollisionAlgorithm* colAlgo = 0;
if (pair)
{
colAlgo = (btCollisionAlgorithm*)pair->m_userPointer;
} else
{
colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0,&compoundWrap1,m_sharedManifold);
pair = m_childCollisionAlgorithmCache->addOverlappingPair(childIndex0,childIndex1);
btAssert(pair);
pair->m_userPointer = colAlgo;
}
btAssert(colAlgo);
const btCollisionObjectWrapper* tmpWrap0 = 0;
const btCollisionObjectWrapper* tmpWrap1 = 0;
tmpWrap0 = m_resultOut->getBody0Wrap();
tmpWrap1 = m_resultOut->getBody1Wrap();
m_resultOut->setBody0Wrap(&compoundWrap0);
m_resultOut->setBody1Wrap(&compoundWrap1);
m_resultOut->setShapeIdentifiersA(-1,childIndex0);
m_resultOut->setShapeIdentifiersB(-1,childIndex1);
colAlgo->processCollision(&compoundWrap0,&compoundWrap1,m_dispatchInfo,m_resultOut);
m_resultOut->setBody0Wrap(tmpWrap0);
m_resultOut->setBody1Wrap(tmpWrap1);
}
}
};
static DBVT_INLINE bool MyIntersect( const btDbvtAabbMm& a,
const btDbvtAabbMm& b, const btTransform& xform)
{
btVector3 newmin,newmax;
btTransformAabb(b.Mins(),b.Maxs(),0.f,xform,newmin,newmax);
btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin,newmax);
return Intersect(a,newb);
}
static inline void MycollideTT( const btDbvtNode* root0,
const btDbvtNode* root1,
const btTransform& xform,
btCompoundCompoundLeafCallback* callback)
{
if(root0&&root1)
{
int depth=1;
int treshold=btDbvt::DOUBLE_STACKSIZE-4;
btAlignedObjectArray<btDbvt::sStkNN> stkStack;
stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
stkStack[0]=btDbvt::sStkNN(root0,root1);
do {
btDbvt::sStkNN p=stkStack[--depth];
if(MyIntersect(p.a->volume,p.b->volume,xform))
{
if(depth>treshold)
{
stkStack.resize(stkStack.size()*2);
treshold=stkStack.size()-4;
}
if(p.a->isinternal())
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[1]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[1]);
}
else
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b);
}
}
else
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[1]);
}
else
{
callback->Process(p.a,p.b);
}
}
}
} while(depth);
}
}
void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
const btCollisionObjectWrapper* col1ObjWrap= body1Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
const btDbvt* tree0 = compoundShape0->getDynamicAabbTree();
const btDbvt* tree1 = compoundShape1->getDynamicAabbTree();
if (!tree0 || !tree1)
{
return btCompoundCollisionAlgorithm::processCollision(body0Wrap,body1Wrap,dispatchInfo,resultOut);
}
///btCompoundShape might have changed:
////make sure the internal child collision algorithm caches are still valid
if ((compoundShape0->getUpdateRevision() != m_compoundShapeRevision0) || (compoundShape1->getUpdateRevision() != m_compoundShapeRevision1))
{
///clear all
removeChildAlgorithms();
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
///we need to refresh all contact manifolds
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
{
int i;
btManifoldArray manifoldArray;
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
algo->getAllContactManifolds(manifoldArray);
for (int m=0;m<manifoldArray.size();m++)
{
if (manifoldArray[m]->getNumContacts())
{
resultOut->setPersistentManifold(manifoldArray[m]);
resultOut->refreshContactPoints();
resultOut->setPersistentManifold(0);
}
}
manifoldArray.resize(0);
}
}
}
btCompoundCompoundLeafCallback callback(col0ObjWrap,col1ObjWrap,this->m_dispatcher,dispatchInfo,resultOut,this->m_childCollisionAlgorithmCache,m_sharedManifold);
const btTransform xform=col0ObjWrap->getWorldTransform().inverse()*col1ObjWrap->getWorldTransform();
MycollideTT(tree0->m_root,tree1->m_root,xform,&callback);
//printf("#compound-compound child/leaf overlap =%d \r",callback.m_numOverlapPairs);
//remove non-overlapping child pairs
{
btAssert(m_removePairs.size()==0);
//iterate over all children, perform an AABB check inside ProcessChildShape
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int i;
btManifoldArray manifoldArray;
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;
{
btTransform orgTrans0;
const btCollisionShape* childShape0 = 0;
btTransform newChildWorldTrans0;
btTransform orgInterpolationTrans0;
childShape0 = compoundShape0->getChildShape(pairs[i].m_indexA);
orgTrans0 = col0ObjWrap->getWorldTransform();
orgInterpolationTrans0 = col0ObjWrap->getWorldTransform();
const btTransform& childTrans0 = compoundShape0->getChildTransform(pairs[i].m_indexA);
newChildWorldTrans0 = orgTrans0*childTrans0 ;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
}
{
btTransform orgInterpolationTrans1;
const btCollisionShape* childShape1 = 0;
btTransform orgTrans1;
btTransform newChildWorldTrans1;
childShape1 = compoundShape1->getChildShape(pairs[i].m_indexB);
orgTrans1 = col1ObjWrap->getWorldTransform();
orgInterpolationTrans1 = col1ObjWrap->getWorldTransform();
const btTransform& childTrans1 = compoundShape1->getChildTransform(pairs[i].m_indexB);
newChildWorldTrans1 = orgTrans1*childTrans1 ;
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
}
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
m_removePairs.push_back(btSimplePair(pairs[i].m_indexA,pairs[i].m_indexB));
}
}
}
for (int i=0;i<m_removePairs.size();i++)
{
m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA,m_removePairs[i].m_indexB);
}
m_removePairs.clear();
}
}
btScalar btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btAssert(0);
return 0.f;
}
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btCompoundCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
#include "BulletCollision/CollisionDispatch/btManifoldResult.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
btShapePairCallback gCompoundCompoundChildShapePairCallback = 0;
btCompoundCompoundCollisionAlgorithm::btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped)
:btCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,isSwapped)
{
void* ptr = btAlignedAlloc(sizeof(btHashedSimplePairCache),16);
m_childCollisionAlgorithmCache= new(ptr) btHashedSimplePairCache();
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
const btCollisionObjectWrapper* col1ObjWrap = body1Wrap;
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
btCompoundCompoundCollisionAlgorithm::~btCompoundCompoundCollisionAlgorithm()
{
removeChildAlgorithms();
m_childCollisionAlgorithmCache->~btHashedSimplePairCache();
btAlignedFree(m_childCollisionAlgorithmCache);
}
void btCompoundCompoundCollisionAlgorithm::getAllContactManifolds(btManifoldArray& manifoldArray)
{
int i;
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
((btCollisionAlgorithm*)pairs[i].m_userPointer)->getAllContactManifolds(manifoldArray);
}
}
}
void btCompoundCompoundCollisionAlgorithm::removeChildAlgorithms()
{
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int numChildren = pairs.size();
int i;
for (i=0;i<numChildren;i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
}
}
m_childCollisionAlgorithmCache->removeAllPairs();
}
struct btCompoundCompoundLeafCallback : btDbvt::ICollide
{
int m_numOverlapPairs;
const btCollisionObjectWrapper* m_compound0ColObjWrap;
const btCollisionObjectWrapper* m_compound1ColObjWrap;
btDispatcher* m_dispatcher;
const btDispatcherInfo& m_dispatchInfo;
btManifoldResult* m_resultOut;
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btPersistentManifold* m_sharedManifold;
btCompoundCompoundLeafCallback (const btCollisionObjectWrapper* compound1ObjWrap,
const btCollisionObjectWrapper* compound0ObjWrap,
btDispatcher* dispatcher,
const btDispatcherInfo& dispatchInfo,
btManifoldResult* resultOut,
btHashedSimplePairCache* childAlgorithmsCache,
btPersistentManifold* sharedManifold)
:m_numOverlapPairs(0),m_compound0ColObjWrap(compound1ObjWrap),m_compound1ColObjWrap(compound0ObjWrap),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
m_childCollisionAlgorithmCache(childAlgorithmsCache),
m_sharedManifold(sharedManifold)
{
}
void Process(const btDbvtNode* leaf0,const btDbvtNode* leaf1)
{
m_numOverlapPairs++;
int childIndex0 = leaf0->dataAsInt;
int childIndex1 = leaf1->dataAsInt;
btAssert(childIndex0>=0);
btAssert(childIndex1>=0);
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(m_compound0ColObjWrap->getCollisionShape());
btAssert(childIndex0<compoundShape0->getNumChildShapes());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(m_compound1ColObjWrap->getCollisionShape());
btAssert(childIndex1<compoundShape1->getNumChildShapes());
const btCollisionShape* childShape0 = compoundShape0->getChildShape(childIndex0);
const btCollisionShape* childShape1 = compoundShape1->getChildShape(childIndex1);
//backup
btTransform orgTrans0 = m_compound0ColObjWrap->getWorldTransform();
const btTransform& childTrans0 = compoundShape0->getChildTransform(childIndex0);
btTransform newChildWorldTrans0 = orgTrans0*childTrans0 ;
btTransform orgTrans1 = m_compound1ColObjWrap->getWorldTransform();
const btTransform& childTrans1 = compoundShape1->getChildTransform(childIndex1);
btTransform newChildWorldTrans1 = orgTrans1*childTrans1 ;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
if (gCompoundCompoundChildShapePairCallback)
{
if (!gCompoundCompoundChildShapePairCallback(childShape0,childShape1))
return;
}
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
btCollisionObjectWrapper compoundWrap0(this->m_compound0ColObjWrap,childShape0, m_compound0ColObjWrap->getCollisionObject(),newChildWorldTrans0,-1,childIndex0);
btCollisionObjectWrapper compoundWrap1(this->m_compound1ColObjWrap,childShape1,m_compound1ColObjWrap->getCollisionObject(),newChildWorldTrans1,-1,childIndex1);
btSimplePair* pair = m_childCollisionAlgorithmCache->findPair(childIndex0,childIndex1);
btCollisionAlgorithm* colAlgo = 0;
if (pair)
{
colAlgo = (btCollisionAlgorithm*)pair->m_userPointer;
} else
{
colAlgo = m_dispatcher->findAlgorithm(&compoundWrap0,&compoundWrap1,m_sharedManifold);
pair = m_childCollisionAlgorithmCache->addOverlappingPair(childIndex0,childIndex1);
btAssert(pair);
pair->m_userPointer = colAlgo;
}
btAssert(colAlgo);
const btCollisionObjectWrapper* tmpWrap0 = 0;
const btCollisionObjectWrapper* tmpWrap1 = 0;
tmpWrap0 = m_resultOut->getBody0Wrap();
tmpWrap1 = m_resultOut->getBody1Wrap();
m_resultOut->setBody0Wrap(&compoundWrap0);
m_resultOut->setBody1Wrap(&compoundWrap1);
m_resultOut->setShapeIdentifiersA(-1,childIndex0);
m_resultOut->setShapeIdentifiersB(-1,childIndex1);
colAlgo->processCollision(&compoundWrap0,&compoundWrap1,m_dispatchInfo,m_resultOut);
m_resultOut->setBody0Wrap(tmpWrap0);
m_resultOut->setBody1Wrap(tmpWrap1);
}
}
};
static DBVT_INLINE bool MyIntersect( const btDbvtAabbMm& a,
const btDbvtAabbMm& b, const btTransform& xform)
{
btVector3 newmin,newmax;
btTransformAabb(b.Mins(),b.Maxs(),0.f,xform,newmin,newmax);
btDbvtAabbMm newb = btDbvtAabbMm::FromMM(newmin,newmax);
return Intersect(a,newb);
}
static inline void MycollideTT( const btDbvtNode* root0,
const btDbvtNode* root1,
const btTransform& xform,
btCompoundCompoundLeafCallback* callback)
{
if(root0&&root1)
{
int depth=1;
int treshold=btDbvt::DOUBLE_STACKSIZE-4;
btAlignedObjectArray<btDbvt::sStkNN> stkStack;
stkStack.resize(btDbvt::DOUBLE_STACKSIZE);
stkStack[0]=btDbvt::sStkNN(root0,root1);
do {
btDbvt::sStkNN p=stkStack[--depth];
if(MyIntersect(p.a->volume,p.b->volume,xform))
{
if(depth>treshold)
{
stkStack.resize(stkStack.size()*2);
treshold=stkStack.size()-4;
}
if(p.a->isinternal())
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b->childs[1]);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b->childs[1]);
}
else
{
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[0],p.b);
stkStack[depth++]=btDbvt::sStkNN(p.a->childs[1],p.b);
}
}
else
{
if(p.b->isinternal())
{
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[0]);
stkStack[depth++]=btDbvt::sStkNN(p.a,p.b->childs[1]);
}
else
{
callback->Process(p.a,p.b);
}
}
}
} while(depth);
}
}
void btCompoundCompoundCollisionAlgorithm::processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
const btCollisionObjectWrapper* col0ObjWrap = body0Wrap;
const btCollisionObjectWrapper* col1ObjWrap= body1Wrap;
btAssert (col0ObjWrap->getCollisionShape()->isCompound());
btAssert (col1ObjWrap->getCollisionShape()->isCompound());
const btCompoundShape* compoundShape0 = static_cast<const btCompoundShape*>(col0ObjWrap->getCollisionShape());
const btCompoundShape* compoundShape1 = static_cast<const btCompoundShape*>(col1ObjWrap->getCollisionShape());
const btDbvt* tree0 = compoundShape0->getDynamicAabbTree();
const btDbvt* tree1 = compoundShape1->getDynamicAabbTree();
if (!tree0 || !tree1)
{
return btCompoundCollisionAlgorithm::processCollision(body0Wrap,body1Wrap,dispatchInfo,resultOut);
}
///btCompoundShape might have changed:
////make sure the internal child collision algorithm caches are still valid
if ((compoundShape0->getUpdateRevision() != m_compoundShapeRevision0) || (compoundShape1->getUpdateRevision() != m_compoundShapeRevision1))
{
///clear all
removeChildAlgorithms();
m_compoundShapeRevision0 = compoundShape0->getUpdateRevision();
m_compoundShapeRevision1 = compoundShape1->getUpdateRevision();
}
///we need to refresh all contact manifolds
///note that we should actually recursively traverse all children, btCompoundShape can nested more then 1 level deep
///so we should add a 'refreshManifolds' in the btCollisionAlgorithm
{
int i;
btManifoldArray manifoldArray;
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*) pairs[i].m_userPointer;
algo->getAllContactManifolds(manifoldArray);
for (int m=0;m<manifoldArray.size();m++)
{
if (manifoldArray[m]->getNumContacts())
{
resultOut->setPersistentManifold(manifoldArray[m]);
resultOut->refreshContactPoints();
resultOut->setPersistentManifold(0);
}
}
manifoldArray.resize(0);
}
}
}
btCompoundCompoundLeafCallback callback(col0ObjWrap,col1ObjWrap,this->m_dispatcher,dispatchInfo,resultOut,this->m_childCollisionAlgorithmCache,m_sharedManifold);
const btTransform xform=col0ObjWrap->getWorldTransform().inverse()*col1ObjWrap->getWorldTransform();
MycollideTT(tree0->m_root,tree1->m_root,xform,&callback);
//printf("#compound-compound child/leaf overlap =%d \r",callback.m_numOverlapPairs);
//remove non-overlapping child pairs
{
btAssert(m_removePairs.size()==0);
//iterate over all children, perform an AABB check inside ProcessChildShape
btSimplePairArray& pairs = m_childCollisionAlgorithmCache->getOverlappingPairArray();
int i;
btManifoldArray manifoldArray;
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
for (i=0;i<pairs.size();i++)
{
if (pairs[i].m_userPointer)
{
btCollisionAlgorithm* algo = (btCollisionAlgorithm*)pairs[i].m_userPointer;
{
btTransform orgTrans0;
const btCollisionShape* childShape0 = 0;
btTransform newChildWorldTrans0;
btTransform orgInterpolationTrans0;
childShape0 = compoundShape0->getChildShape(pairs[i].m_indexA);
orgTrans0 = col0ObjWrap->getWorldTransform();
orgInterpolationTrans0 = col0ObjWrap->getWorldTransform();
const btTransform& childTrans0 = compoundShape0->getChildTransform(pairs[i].m_indexA);
newChildWorldTrans0 = orgTrans0*childTrans0 ;
childShape0->getAabb(newChildWorldTrans0,aabbMin0,aabbMax0);
}
{
btTransform orgInterpolationTrans1;
const btCollisionShape* childShape1 = 0;
btTransform orgTrans1;
btTransform newChildWorldTrans1;
childShape1 = compoundShape1->getChildShape(pairs[i].m_indexB);
orgTrans1 = col1ObjWrap->getWorldTransform();
orgInterpolationTrans1 = col1ObjWrap->getWorldTransform();
const btTransform& childTrans1 = compoundShape1->getChildTransform(pairs[i].m_indexB);
newChildWorldTrans1 = orgTrans1*childTrans1 ;
childShape1->getAabb(newChildWorldTrans1,aabbMin1,aabbMax1);
}
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
algo->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(algo);
m_removePairs.push_back(btSimplePair(pairs[i].m_indexA,pairs[i].m_indexB));
}
}
}
for (int i=0;i<m_removePairs.size();i++)
{
m_childCollisionAlgorithmCache->removeOverlappingPair(m_removePairs[i].m_indexA,m_removePairs[i].m_indexB);
}
m_removePairs.clear();
}
}
btScalar btCompoundCompoundCollisionAlgorithm::calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btAssert(0);
return 0.f;
}

View File

@ -1,89 +1,89 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H
#define BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H
#include "btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btDispatcher;
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "BulletCollision/CollisionDispatch/btHashedSimplePairCache.h"
class btDispatcher;
class btCollisionObject;
class btCollisionShape;
typedef bool (*btShapePairCallback)(const btCollisionShape* pShape0, const btCollisionShape* pShape1);
extern btShapePairCallback gCompoundCompoundChildShapePairCallback;
/// btCompoundCompoundCollisionAlgorithm supports collision between two btCompoundCollisionShape shapes
class btCompoundCompoundCollisionAlgorithm : public btCompoundCollisionAlgorithm
{
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btSimplePairArray m_removePairs;
int m_compoundShapeRevision0;//to keep track of changes, so that childAlgorithm array can be updated
int m_compoundShapeRevision1;
void removeChildAlgorithms();
// void preallocateChildAlgorithms(const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap);
public:
btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped);
virtual ~btCompoundCompoundCollisionAlgorithm();
virtual void processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray);
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCompoundCollisionAlgorithm));
return new(mem) btCompoundCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,false);
}
};
struct SwappedCreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCompoundCollisionAlgorithm));
return new(mem) btCompoundCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,true);
}
};
};
#endif //BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H
#define BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H
#include "btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btActivatingCollisionAlgorithm.h"
#include "BulletCollision/BroadphaseCollision/btDispatcher.h"
#include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
class btDispatcher;
#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h"
#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "BulletCollision/CollisionDispatch/btHashedSimplePairCache.h"
class btDispatcher;
class btCollisionObject;
class btCollisionShape;
typedef bool (*btShapePairCallback)(const btCollisionShape* pShape0, const btCollisionShape* pShape1);
extern btShapePairCallback gCompoundCompoundChildShapePairCallback;
/// btCompoundCompoundCollisionAlgorithm supports collision between two btCompoundCollisionShape shapes
class btCompoundCompoundCollisionAlgorithm : public btCompoundCollisionAlgorithm
{
class btHashedSimplePairCache* m_childCollisionAlgorithmCache;
btSimplePairArray m_removePairs;
int m_compoundShapeRevision0;//to keep track of changes, so that childAlgorithm array can be updated
int m_compoundShapeRevision1;
void removeChildAlgorithms();
// void preallocateChildAlgorithms(const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap);
public:
btCompoundCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,bool isSwapped);
virtual ~btCompoundCompoundCollisionAlgorithm();
virtual void processCollision (const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
btScalar calculateTimeOfImpact(btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut);
virtual void getAllContactManifolds(btManifoldArray& manifoldArray);
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCompoundCollisionAlgorithm));
return new(mem) btCompoundCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,false);
}
};
struct SwappedCreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, const btCollisionObjectWrapper* body0Wrap,const btCollisionObjectWrapper* body1Wrap)
{
void* mem = ci.m_dispatcher1->allocateCollisionAlgorithm(sizeof(btCompoundCompoundCollisionAlgorithm));
return new(mem) btCompoundCompoundCollisionAlgorithm(ci,body0Wrap,body1Wrap,true);
}
};
};
#endif //BT_COMPOUND_COMPOUND_COLLISION_ALGORITHM_H

View File

@ -88,20 +88,19 @@ partId, int triangleIndex)
//just for debugging purposes
//printf("triangle %d",m_triangleCount++);
const btCollisionObject* ob = const_cast<btCollisionObject*>(m_triBodyWrap->getCollisionObject());
btCollisionAlgorithmConstructionInfo ci;
ci.m_dispatcher1 = m_dispatcher;
//const btCollisionObject* ob = static_cast<btCollisionObject*>(m_triBodyWrap->getCollisionObject());
#if 0
///debug drawing of the overlapping triangles
if (m_dispatchInfoPtr && m_dispatchInfoPtr->m_debugDraw && (m_dispatchInfoPtr->m_debugDraw->getDebugMode() &btIDebugDraw::DBG_DrawWireframe ))
{
const btCollisionObject* ob = const_cast<btCollisionObject*>(m_triBodyWrap->getCollisionObject());
btVector3 color(1,1,0);
btTransform& tr = ob->getWorldTransform();
m_dispatchInfoPtr->m_debugDraw->drawLine(tr(triangle[0]),tr(triangle[1]),color);

View File

@ -105,8 +105,7 @@ btDefaultCollisionConfiguration::btDefaultCollisionConfiguration(const btDefault
int maxSize = sizeof(btConvexConvexAlgorithm);
int maxSize2 = sizeof(btConvexConcaveCollisionAlgorithm);
int maxSize3 = sizeof(btCompoundCollisionAlgorithm);
int sl = sizeof(btConvexSeparatingDistanceUtil);
sl = sizeof(btGjkPairDetector);
int collisionAlgorithmMaxElementSize = btMax(maxSize,constructionInfo.m_customCollisionAlgorithmMaxElementSize);
collisionAlgorithmMaxElementSize = btMax(collisionAlgorithmMaxElementSize,maxSize2);
collisionAlgorithmMaxElementSize = btMax(collisionAlgorithmMaxElementSize,maxSize3);

View File

@ -1,278 +1,278 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btHashedSimplePairCache.h"
#include <stdio.h>
int gOverlappingSimplePairs = 0;
int gRemoveSimplePairs =0;
int gAddedSimplePairs =0;
int gFindSimplePairs =0;
btHashedSimplePairCache::btHashedSimplePairCache():
m_blockedForChanges(false)
{
int initialAllocatedSize= 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
growTables();
}
btHashedSimplePairCache::~btHashedSimplePairCache()
{
}
void btHashedSimplePairCache::removeAllPairs()
{
m_overlappingPairArray.clear();
m_hashTable.clear();
m_next.clear();
int initialAllocatedSize= 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
growTables();
}
btSimplePair* btHashedSimplePairCache::findPair(int indexA, int indexB)
{
gFindSimplePairs++;
/*if (indexA > indexB)
btSwap(indexA, indexB);*/
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA), static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
if (hash >= m_hashTable.size())
{
return NULL;
}
int index = m_hashTable[hash];
while (index != BT_SIMPLE_NULL_PAIR && equalsPair(m_overlappingPairArray[index], indexA, indexB) == false)
{
index = m_next[index];
}
if (index == BT_SIMPLE_NULL_PAIR)
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
//#include <stdio.h>
void btHashedSimplePairCache::growTables()
{
int newCapacity = m_overlappingPairArray.capacity();
if (m_hashTable.size() < newCapacity)
{
//grow hashtable and next table
int curHashtableSize = m_hashTable.size();
m_hashTable.resize(newCapacity);
m_next.resize(newCapacity);
int i;
for (i= 0; i < newCapacity; ++i)
{
m_hashTable[i] = BT_SIMPLE_NULL_PAIR;
}
for (i = 0; i < newCapacity; ++i)
{
m_next[i] = BT_SIMPLE_NULL_PAIR;
}
for(i=0;i<curHashtableSize;i++)
{
const btSimplePair& pair = m_overlappingPairArray[i];
int indexA = pair.m_indexA;
int indexB = pair.m_indexB;
int hashValue = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
m_next[i] = m_hashTable[hashValue];
m_hashTable[hashValue] = i;
}
}
}
btSimplePair* btHashedSimplePairCache::internalAddPair(int indexA, int indexB)
{
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
btSimplePair* pair = internalFindPair(indexA, indexB, hash);
if (pair != NULL)
{
return pair;
}
int count = m_overlappingPairArray.size();
int oldCapacity = m_overlappingPairArray.capacity();
void* mem = &m_overlappingPairArray.expandNonInitializing();
int newCapacity = m_overlappingPairArray.capacity();
if (oldCapacity < newCapacity)
{
growTables();
//hash with new capacity
hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
}
pair = new (mem) btSimplePair(indexA,indexB);
pair->m_userPointer = 0;
m_next[count] = m_hashTable[hash];
m_hashTable[hash] = count;
return pair;
}
void* btHashedSimplePairCache::removeOverlappingPair(int indexA, int indexB)
{
gRemoveSimplePairs++;
/*if (indexA > indexB)
btSwap(indexA, indexB);*/
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
btSimplePair* pair = internalFindPair(indexA, indexB, hash);
if (pair == NULL)
{
return 0;
}
void* userData = pair->m_userPointer;
int pairIndex = int(pair - &m_overlappingPairArray[0]);
btAssert(pairIndex < m_overlappingPairArray.size());
// Remove the pair from the hash table.
int index = m_hashTable[hash];
btAssert(index != BT_SIMPLE_NULL_PAIR);
int previous = BT_SIMPLE_NULL_PAIR;
while (index != pairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_SIMPLE_NULL_PAIR)
{
btAssert(m_next[previous] == pairIndex);
m_next[previous] = m_next[pairIndex];
}
else
{
m_hashTable[hash] = m_next[pairIndex];
}
// We now move the last pair into spot of the
// pair being removed. We need to fix the hash
// table indices to support the move.
int lastPairIndex = m_overlappingPairArray.size() - 1;
// If the removed pair is the last pair, we are done.
if (lastPairIndex == pairIndex)
{
m_overlappingPairArray.pop_back();
return userData;
}
// Remove the last pair from the hash table.
const btSimplePair* last = &m_overlappingPairArray[lastPairIndex];
/* missing swap here too, Nat. */
int lastHash = static_cast<int>(getHash(static_cast<unsigned int>(last->m_indexA), static_cast<unsigned int>(last->m_indexB)) & (m_overlappingPairArray.capacity()-1));
index = m_hashTable[lastHash];
btAssert(index != BT_SIMPLE_NULL_PAIR);
previous = BT_SIMPLE_NULL_PAIR;
while (index != lastPairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_SIMPLE_NULL_PAIR)
{
btAssert(m_next[previous] == lastPairIndex);
m_next[previous] = m_next[lastPairIndex];
}
else
{
m_hashTable[lastHash] = m_next[lastPairIndex];
}
// Copy the last pair into the remove pair's spot.
m_overlappingPairArray[pairIndex] = m_overlappingPairArray[lastPairIndex];
// Insert the last pair into the hash table
m_next[pairIndex] = m_hashTable[lastHash];
m_hashTable[lastHash] = pairIndex;
m_overlappingPairArray.pop_back();
return userData;
}
//#include <stdio.h>
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "btHashedSimplePairCache.h"
#include <stdio.h>
int gOverlappingSimplePairs = 0;
int gRemoveSimplePairs =0;
int gAddedSimplePairs =0;
int gFindSimplePairs =0;
btHashedSimplePairCache::btHashedSimplePairCache():
m_blockedForChanges(false)
{
int initialAllocatedSize= 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
growTables();
}
btHashedSimplePairCache::~btHashedSimplePairCache()
{
}
void btHashedSimplePairCache::removeAllPairs()
{
m_overlappingPairArray.clear();
m_hashTable.clear();
m_next.clear();
int initialAllocatedSize= 2;
m_overlappingPairArray.reserve(initialAllocatedSize);
growTables();
}
btSimplePair* btHashedSimplePairCache::findPair(int indexA, int indexB)
{
gFindSimplePairs++;
/*if (indexA > indexB)
btSwap(indexA, indexB);*/
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA), static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
if (hash >= m_hashTable.size())
{
return NULL;
}
int index = m_hashTable[hash];
while (index != BT_SIMPLE_NULL_PAIR && equalsPair(m_overlappingPairArray[index], indexA, indexB) == false)
{
index = m_next[index];
}
if (index == BT_SIMPLE_NULL_PAIR)
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
//#include <stdio.h>
void btHashedSimplePairCache::growTables()
{
int newCapacity = m_overlappingPairArray.capacity();
if (m_hashTable.size() < newCapacity)
{
//grow hashtable and next table
int curHashtableSize = m_hashTable.size();
m_hashTable.resize(newCapacity);
m_next.resize(newCapacity);
int i;
for (i= 0; i < newCapacity; ++i)
{
m_hashTable[i] = BT_SIMPLE_NULL_PAIR;
}
for (i = 0; i < newCapacity; ++i)
{
m_next[i] = BT_SIMPLE_NULL_PAIR;
}
for(i=0;i<curHashtableSize;i++)
{
const btSimplePair& pair = m_overlappingPairArray[i];
int indexA = pair.m_indexA;
int indexB = pair.m_indexB;
int hashValue = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
m_next[i] = m_hashTable[hashValue];
m_hashTable[hashValue] = i;
}
}
}
btSimplePair* btHashedSimplePairCache::internalAddPair(int indexA, int indexB)
{
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1)); // New hash value with new mask
btSimplePair* pair = internalFindPair(indexA, indexB, hash);
if (pair != NULL)
{
return pair;
}
int count = m_overlappingPairArray.size();
int oldCapacity = m_overlappingPairArray.capacity();
void* mem = &m_overlappingPairArray.expandNonInitializing();
int newCapacity = m_overlappingPairArray.capacity();
if (oldCapacity < newCapacity)
{
growTables();
//hash with new capacity
hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
}
pair = new (mem) btSimplePair(indexA,indexB);
pair->m_userPointer = 0;
m_next[count] = m_hashTable[hash];
m_hashTable[hash] = count;
return pair;
}
void* btHashedSimplePairCache::removeOverlappingPair(int indexA, int indexB)
{
gRemoveSimplePairs++;
/*if (indexA > indexB)
btSwap(indexA, indexB);*/
int hash = static_cast<int>(getHash(static_cast<unsigned int>(indexA),static_cast<unsigned int>(indexB)) & (m_overlappingPairArray.capacity()-1));
btSimplePair* pair = internalFindPair(indexA, indexB, hash);
if (pair == NULL)
{
return 0;
}
void* userData = pair->m_userPointer;
int pairIndex = int(pair - &m_overlappingPairArray[0]);
btAssert(pairIndex < m_overlappingPairArray.size());
// Remove the pair from the hash table.
int index = m_hashTable[hash];
btAssert(index != BT_SIMPLE_NULL_PAIR);
int previous = BT_SIMPLE_NULL_PAIR;
while (index != pairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_SIMPLE_NULL_PAIR)
{
btAssert(m_next[previous] == pairIndex);
m_next[previous] = m_next[pairIndex];
}
else
{
m_hashTable[hash] = m_next[pairIndex];
}
// We now move the last pair into spot of the
// pair being removed. We need to fix the hash
// table indices to support the move.
int lastPairIndex = m_overlappingPairArray.size() - 1;
// If the removed pair is the last pair, we are done.
if (lastPairIndex == pairIndex)
{
m_overlappingPairArray.pop_back();
return userData;
}
// Remove the last pair from the hash table.
const btSimplePair* last = &m_overlappingPairArray[lastPairIndex];
/* missing swap here too, Nat. */
int lastHash = static_cast<int>(getHash(static_cast<unsigned int>(last->m_indexA), static_cast<unsigned int>(last->m_indexB)) & (m_overlappingPairArray.capacity()-1));
index = m_hashTable[lastHash];
btAssert(index != BT_SIMPLE_NULL_PAIR);
previous = BT_SIMPLE_NULL_PAIR;
while (index != lastPairIndex)
{
previous = index;
index = m_next[index];
}
if (previous != BT_SIMPLE_NULL_PAIR)
{
btAssert(m_next[previous] == lastPairIndex);
m_next[previous] = m_next[lastPairIndex];
}
else
{
m_hashTable[lastHash] = m_next[lastPairIndex];
}
// Copy the last pair into the remove pair's spot.
m_overlappingPairArray[pairIndex] = m_overlappingPairArray[lastPairIndex];
// Insert the last pair into the hash table
m_next[pairIndex] = m_hashTable[lastHash];
m_hashTable[lastHash] = pairIndex;
m_overlappingPairArray.pop_back();
return userData;
}
//#include <stdio.h>

View File

@ -1,174 +1,174 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_HASHED_SIMPLE_PAIR_CACHE_H
#define BT_HASHED_SIMPLE_PAIR_CACHE_H
#include "LinearMath/btAlignedObjectArray.h"
const int BT_SIMPLE_NULL_PAIR=0xffffffff;
struct btSimplePair
{
btSimplePair(int indexA,int indexB)
:m_indexA(indexA),
m_indexB(indexB),
m_userPointer(0)
{
}
int m_indexA;
int m_indexB;
union
{
void* m_userPointer;
int m_userValue;
};
};
typedef btAlignedObjectArray<btSimplePair> btSimplePairArray;
extern int gOverlappingSimplePairs;
extern int gRemoveSimplePairs;
extern int gAddedSimplePairs;
extern int gFindSimplePairs;
class btHashedSimplePairCache
{
btSimplePairArray m_overlappingPairArray;
bool m_blockedForChanges;
protected:
btAlignedObjectArray<int> m_hashTable;
btAlignedObjectArray<int> m_next;
public:
btHashedSimplePairCache();
virtual ~btHashedSimplePairCache();
void removeAllPairs();
virtual void* removeOverlappingPair(int indexA,int indexB);
// Add a pair and return the new pair. If the pair already exists,
// no new pair is created and the old one is returned.
virtual btSimplePair* addOverlappingPair(int indexA,int indexB)
{
gAddedSimplePairs++;
return internalAddPair(indexA,indexB);
}
virtual btSimplePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
}
const btSimplePair* getOverlappingPairArrayPtr() const
{
return &m_overlappingPairArray[0];
}
btSimplePairArray& getOverlappingPairArray()
{
return m_overlappingPairArray;
}
const btSimplePairArray& getOverlappingPairArray() const
{
return m_overlappingPairArray;
}
btSimplePair* findPair(int indexA,int indexB);
int GetCount() const { return m_overlappingPairArray.size(); }
int getNumOverlappingPairs() const
{
return m_overlappingPairArray.size();
}
private:
btSimplePair* internalAddPair(int indexA, int indexB);
void growTables();
SIMD_FORCE_INLINE bool equalsPair(const btSimplePair& pair, int indexA, int indexB)
{
return pair.m_indexA == indexA && pair.m_indexB == indexB;
}
SIMD_FORCE_INLINE unsigned int getHash(unsigned int indexA, unsigned int indexB)
{
int key = static_cast<int>(((unsigned int)indexA) | (((unsigned int)indexB) <<16));
// Thomas Wang's hash
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return static_cast<unsigned int>(key);
}
SIMD_FORCE_INLINE btSimplePair* internalFindPair(int proxyIdA , int proxyIdB, int hash)
{
int index = m_hashTable[hash];
while( index != BT_SIMPLE_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyIdA, proxyIdB) == false)
{
index = m_next[index];
}
if ( index == BT_SIMPLE_NULL_PAIR )
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
};
#endif //BT_HASHED_SIMPLE_PAIR_CACHE_H
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_HASHED_SIMPLE_PAIR_CACHE_H
#define BT_HASHED_SIMPLE_PAIR_CACHE_H
#include "LinearMath/btAlignedObjectArray.h"
const int BT_SIMPLE_NULL_PAIR=0xffffffff;
struct btSimplePair
{
btSimplePair(int indexA,int indexB)
:m_indexA(indexA),
m_indexB(indexB),
m_userPointer(0)
{
}
int m_indexA;
int m_indexB;
union
{
void* m_userPointer;
int m_userValue;
};
};
typedef btAlignedObjectArray<btSimplePair> btSimplePairArray;
extern int gOverlappingSimplePairs;
extern int gRemoveSimplePairs;
extern int gAddedSimplePairs;
extern int gFindSimplePairs;
class btHashedSimplePairCache
{
btSimplePairArray m_overlappingPairArray;
bool m_blockedForChanges;
protected:
btAlignedObjectArray<int> m_hashTable;
btAlignedObjectArray<int> m_next;
public:
btHashedSimplePairCache();
virtual ~btHashedSimplePairCache();
void removeAllPairs();
virtual void* removeOverlappingPair(int indexA,int indexB);
// Add a pair and return the new pair. If the pair already exists,
// no new pair is created and the old one is returned.
virtual btSimplePair* addOverlappingPair(int indexA,int indexB)
{
gAddedSimplePairs++;
return internalAddPair(indexA,indexB);
}
virtual btSimplePair* getOverlappingPairArrayPtr()
{
return &m_overlappingPairArray[0];
}
const btSimplePair* getOverlappingPairArrayPtr() const
{
return &m_overlappingPairArray[0];
}
btSimplePairArray& getOverlappingPairArray()
{
return m_overlappingPairArray;
}
const btSimplePairArray& getOverlappingPairArray() const
{
return m_overlappingPairArray;
}
btSimplePair* findPair(int indexA,int indexB);
int GetCount() const { return m_overlappingPairArray.size(); }
int getNumOverlappingPairs() const
{
return m_overlappingPairArray.size();
}
private:
btSimplePair* internalAddPair(int indexA, int indexB);
void growTables();
SIMD_FORCE_INLINE bool equalsPair(const btSimplePair& pair, int indexA, int indexB)
{
return pair.m_indexA == indexA && pair.m_indexB == indexB;
}
SIMD_FORCE_INLINE unsigned int getHash(unsigned int indexA, unsigned int indexB)
{
int key = static_cast<int>(((unsigned int)indexA) | (((unsigned int)indexB) <<16));
// Thomas Wang's hash
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return static_cast<unsigned int>(key);
}
SIMD_FORCE_INLINE btSimplePair* internalFindPair(int proxyIdA , int proxyIdB, int hash)
{
int index = m_hashTable[hash];
while( index != BT_SIMPLE_NULL_PAIR && equalsPair(m_overlappingPairArray[index], proxyIdA, proxyIdB) == false)
{
index = m_next[index];
}
if ( index == BT_SIMPLE_NULL_PAIR )
{
return NULL;
}
btAssert(index < m_overlappingPairArray.size());
return &m_overlappingPairArray[index];
}
};
#endif //BT_HASHED_SIMPLE_PAIR_CACHE_H

View File

@ -114,7 +114,6 @@ struct btConnectivityProcessor : public btTriangleCallback
if(numshared >= 3)
return;
}
switch (numshared)
{
case 0:
@ -203,6 +202,7 @@ struct btConnectivityProcessor : public btTriangleCallback
ang4 = 0.f;
} else
{
calculatedEdge.normalize();
btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
calculatedNormalA.normalize();
@ -213,7 +213,7 @@ struct btConnectivityProcessor : public btTriangleCallback
isConvex = (dotA<0.);
correctedAngle = isConvex ? ang4 : -ang4;
btQuaternion orn2 = btQuaternion(btVector3(calculatedEdge.x(), calculatedEdge.y(), calculatedEdge.z()),-correctedAngle);
btQuaternion orn2(calculatedEdge,-correctedAngle);
calculatedNormalB = btMatrix3x3(orn2)*normalA;
@ -301,6 +301,11 @@ struct btConnectivityProcessor : public btTriangleCallback
break;
}
default:
{
// printf("warning: duplicate triangle\n");
}
}
}
};

View File

@ -28,18 +28,14 @@ ATTRIBUTE_ALIGNED16(class) btCollisionShape
{
protected:
int m_shapeType;
void* m_userPointer;
int m_userIndex;
union
{
void* m_userPointer;
int m_userIndex;
};
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
btCollisionShape() : m_shapeType (INVALID_SHAPE_PROXYTYPE), m_userPointer(0)
btCollisionShape() : m_shapeType (INVALID_SHAPE_PROXYTYPE), m_userPointer(0), m_userIndex(-1)
{
}
@ -135,17 +131,17 @@ public:
{
return m_userPointer;
}
void setUserIndex(int index)
{
m_userIndex = index;
}
int getUserIndex() const
int getUserIndex() const
{
return m_userIndex;
}
virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)

View File

@ -303,7 +303,7 @@ void btCompoundShape::createAabbTreeFromChildren()
m_dynamicAabbTree = new(mem) btDbvt();
btAssert(mem==m_dynamicAabbTree);
for ( size_t index = 0; index < m_children.size(); index++ )
for ( int index = 0; index < m_children.size(); index++ )
{
btCompoundShapeChild &child = m_children[index];
@ -312,7 +312,8 @@ void btCompoundShape::createAabbTreeFromChildren()
child.m_childShape->getAabb(child.m_transform,localAabbMin,localAabbMax);
const btDbvtVolume bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
child.m_node = m_dynamicAabbTree->insert(bounds, reinterpret_cast<void*>(index) );
size_t index2 = index;
child.m_node = m_dynamicAabbTree->insert(bounds, reinterpret_cast<void*>(index2) );
}
}
}

View File

@ -274,7 +274,7 @@ void btConvexPolyhedron::initialize()
#endif
}
void btConvexPolyhedron::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const
void btConvexPolyhedron::project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const
{
minProj = FLT_MAX;
maxProj = -FLT_MAX;

View File

@ -56,7 +56,7 @@ ATTRIBUTE_ALIGNED16(class) btConvexPolyhedron
void initialize();
bool testContainment() const;
void project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const;
void project(const btTransform& trans, const btVector3& dir, btScalar& minProj, btScalar& maxProj, btVector3& witnesPtMin,btVector3& witnesPtMax) const;
};

View File

@ -365,13 +365,13 @@ void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback
{
//first triangle
getVertex(x,j,vertices[0]);
getVertex(x, j + 1, vertices[1]);
getVertex(x, j + 1, vertices[1]);
getVertex(x + 1, j + 1, vertices[2]);
callback->processTriangle(vertices,x,j);
//second triangle
// getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman
getVertex(x+1,j+1,vertices[1]);
getVertex(x + 1, j, vertices[2]);
getVertex(x + 1, j, vertices[2]);
callback->processTriangle(vertices, x, j);
} else

View File

@ -1,93 +1,93 @@
#ifndef BT_COMPOUND_FROM_GIMPACT
#define BT_COMPOUND_FROM_GIMPACT
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "btGImpactShape.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
struct MyCallback : public btTriangleRaycastCallback
{
int m_ignorePart;
int m_ignoreTriangleIndex;
MyCallback(const btVector3& from, const btVector3& to, int ignorePart, int ignoreTriangleIndex)
:btTriangleRaycastCallback(from,to),
m_ignorePart(ignorePart),
m_ignoreTriangleIndex(ignoreTriangleIndex)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
{
if (partId!=m_ignorePart || triangleIndex!=m_ignoreTriangleIndex)
{
if (hitFraction < m_hitFraction)
return hitFraction;
}
return m_hitFraction;
}
};
struct MyInternalTriangleIndexCallback :public btInternalTriangleIndexCallback
{
const btGImpactMeshShape* m_gimpactShape;
btCompoundShape* m_colShape;
btScalar m_depth;
MyInternalTriangleIndexCallback (btCompoundShape* colShape, const btGImpactMeshShape* meshShape, btScalar depth)
:m_colShape(colShape),
m_gimpactShape(meshShape),
m_depth(depth)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
btVector3 scale = m_gimpactShape->getLocalScaling();
btVector3 v0=triangle[0]*scale;
btVector3 v1=triangle[1]*scale;
btVector3 v2=triangle[2]*scale;
btVector3 centroid = (v0+v1+v2)/3;
btVector3 normal = (v1-v0).cross(v2-v0);
normal.normalize();
btVector3 rayFrom = centroid;
btVector3 rayTo = centroid-normal*m_depth;
MyCallback cb(rayFrom,rayTo,partId,triangleIndex);
m_gimpactShape->processAllTrianglesRay(&cb,rayFrom, rayTo);
if (cb.m_hitFraction<1)
{
rayTo.setInterpolate3(cb.m_from,cb.m_to,cb.m_hitFraction);
//rayTo = cb.m_from;
//rayTo = rayTo.lerp(cb.m_to,cb.m_hitFraction);
//gDebugDraw.drawLine(tr(centroid),tr(centroid+normal),btVector3(1,0,0));
}
btBU_Simplex1to4* tet = new btBU_Simplex1to4(v0,v1,v2,rayTo);
btTransform ident;
ident.setIdentity();
m_colShape->addChildShape(ident,tet);
}
};
btCompoundShape* btCreateCompoundFromGimpactShape(const btGImpactMeshShape* gimpactMesh, btScalar depth)
{
btCompoundShape* colShape = new btCompoundShape();
btTransform tr;
tr.setIdentity();
MyInternalTriangleIndexCallback cb(colShape,gimpactMesh, depth);
btVector3 aabbMin,aabbMax;
gimpactMesh->getAabb(tr,aabbMin,aabbMax);
gimpactMesh->getMeshInterface()->InternalProcessAllTriangles(&cb,aabbMin,aabbMax);
return colShape;
}
#ifndef BT_COMPOUND_FROM_GIMPACT
#define BT_COMPOUND_FROM_GIMPACT
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "btGImpactShape.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
struct MyCallback : public btTriangleRaycastCallback
{
int m_ignorePart;
int m_ignoreTriangleIndex;
MyCallback(const btVector3& from, const btVector3& to, int ignorePart, int ignoreTriangleIndex)
:btTriangleRaycastCallback(from,to),
m_ignorePart(ignorePart),
m_ignoreTriangleIndex(ignoreTriangleIndex)
{
}
virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
{
if (partId!=m_ignorePart || triangleIndex!=m_ignoreTriangleIndex)
{
if (hitFraction < m_hitFraction)
return hitFraction;
}
return m_hitFraction;
}
};
struct MyInternalTriangleIndexCallback :public btInternalTriangleIndexCallback
{
const btGImpactMeshShape* m_gimpactShape;
btCompoundShape* m_colShape;
btScalar m_depth;
MyInternalTriangleIndexCallback (btCompoundShape* colShape, const btGImpactMeshShape* meshShape, btScalar depth)
:m_colShape(colShape),
m_gimpactShape(meshShape),
m_depth(depth)
{
}
virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
{
btVector3 scale = m_gimpactShape->getLocalScaling();
btVector3 v0=triangle[0]*scale;
btVector3 v1=triangle[1]*scale;
btVector3 v2=triangle[2]*scale;
btVector3 centroid = (v0+v1+v2)/3;
btVector3 normal = (v1-v0).cross(v2-v0);
normal.normalize();
btVector3 rayFrom = centroid;
btVector3 rayTo = centroid-normal*m_depth;
MyCallback cb(rayFrom,rayTo,partId,triangleIndex);
m_gimpactShape->processAllTrianglesRay(&cb,rayFrom, rayTo);
if (cb.m_hitFraction<1)
{
rayTo.setInterpolate3(cb.m_from,cb.m_to,cb.m_hitFraction);
//rayTo = cb.m_from;
//rayTo = rayTo.lerp(cb.m_to,cb.m_hitFraction);
//gDebugDraw.drawLine(tr(centroid),tr(centroid+normal),btVector3(1,0,0));
}
btBU_Simplex1to4* tet = new btBU_Simplex1to4(v0,v1,v2,rayTo);
btTransform ident;
ident.setIdentity();
m_colShape->addChildShape(ident,tet);
}
};
btCompoundShape* btCreateCompoundFromGimpactShape(const btGImpactMeshShape* gimpactMesh, btScalar depth)
{
btCompoundShape* colShape = new btCompoundShape();
btTransform tr;
tr.setIdentity();
MyInternalTriangleIndexCallback cb(colShape,gimpactMesh, depth);
btVector3 aabbMin,aabbMax;
gimpactMesh->getAabb(tr,aabbMin,aabbMax);
gimpactMesh->getMeshInterface()->InternalProcessAllTriangles(&cb,aabbMin,aabbMax);
return colShape;
}
#endif //BT_COMPOUND_FROM_GIMPACT

View File

@ -178,62 +178,62 @@ void InverseTransformPoint3x3(btVector3& out, const btVector3& in, const btTrans
}
#endif //TEST_INTERNAL_OBJECTS
SIMD_FORCE_INLINE void btSegmentsClosestPoints(
btVector3& ptsVector,
btVector3& offsetA,
btVector3& offsetB,
btScalar& tA, btScalar& tB,
const btVector3& translation,
const btVector3& dirA, btScalar hlenA,
const btVector3& dirB, btScalar hlenB )
{
// compute the parameters of the closest points on each line segment
btScalar dirA_dot_dirB = btDot(dirA,dirB);
btScalar dirA_dot_trans = btDot(dirA,translation);
btScalar dirB_dot_trans = btDot(dirB,translation);
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
if ( denom == 0.0f ) {
tA = 0.0f;
} else {
tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
tB = tA * dirA_dot_dirB - dirB_dot_trans;
if ( tB < -hlenB ) {
tB = -hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
} else if ( tB > hlenB ) {
tB = hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
// compute the closest points relative to segment centers.
offsetA = dirA * tA;
offsetB = dirB * tB;
ptsVector = translation - offsetA + offsetB;
}
SIMD_FORCE_INLINE void btSegmentsClosestPoints(
btVector3& ptsVector,
btVector3& offsetA,
btVector3& offsetB,
btScalar& tA, btScalar& tB,
const btVector3& translation,
const btVector3& dirA, btScalar hlenA,
const btVector3& dirB, btScalar hlenB )
{
// compute the parameters of the closest points on each line segment
btScalar dirA_dot_dirB = btDot(dirA,dirB);
btScalar dirA_dot_trans = btDot(dirA,translation);
btScalar dirB_dot_trans = btDot(dirB,translation);
btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
if ( denom == 0.0f ) {
tA = 0.0f;
} else {
tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
tB = tA * dirA_dot_dirB - dirB_dot_trans;
if ( tB < -hlenB ) {
tB = -hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
} else if ( tB > hlenB ) {
tB = hlenB;
tA = tB * dirA_dot_dirB + dirA_dot_trans;
if ( tA < -hlenA )
tA = -hlenA;
else if ( tA > hlenA )
tA = hlenA;
}
// compute the closest points relative to segment centers.
offsetA = dirA * tA;
offsetB = dirB * tB;
ptsVector = translation - offsetA + offsetB;
}
@ -313,7 +313,7 @@ bool btPolyhedralContactClipping::findSeparatingAxis( const btConvexPolyhedron&
int edgeB=-1;
btVector3 worldEdgeA;
btVector3 worldEdgeB;
btVector3 witnessPointA,witnessPointB;
btVector3 witnessPointA(0,0,0),witnessPointB(0,0,0);
int curEdgeEdge = 0;
@ -369,23 +369,23 @@ bool btPolyhedralContactClipping::findSeparatingAxis( const btConvexPolyhedron&
// printf("edge-edge\n");
//add an edge-edge contact
btVector3 ptsVector;
btVector3 offsetA;
btVector3 offsetB;
btScalar tA;
btScalar tB;
btVector3 translation = witnessPointB-witnessPointA;
btVector3 dirA = worldEdgeA;
btVector3 dirB = worldEdgeB;
btScalar hlenB = 1e30f;
btScalar hlenA = 1e30f;
btSegmentsClosestPoints(ptsVector,offsetA,offsetB,tA,tB,
translation,
dirA, hlenA,
btVector3 ptsVector;
btVector3 offsetA;
btVector3 offsetB;
btScalar tA;
btScalar tB;
btVector3 translation = witnessPointB-witnessPointA;
btVector3 dirA = worldEdgeA;
btVector3 dirB = worldEdgeB;
btScalar hlenB = 1e30f;
btScalar hlenA = 1e30f;
btSegmentsClosestPoints(ptsVector,offsetA,offsetB,tA,tB,
translation,
dirA, hlenA,
dirB,hlenB);
btScalar nlSqrt = ptsVector.length2();

View File

@ -21,7 +21,6 @@ subject to the following restrictions:
struct btBroadphaseProxy;
class btConvexShape;
class btTriangleRaycastCallback: public btTriangleCallback
{
public:
@ -33,7 +32,7 @@ public:
//@BP Mod - allow backface filtering and unflipped normals
enum EFlags
{
kF_None = 0,
kF_None = 0,
kF_FilterBackfaces = 1 << 0,
kF_KeepUnflippedNormal = 1 << 1, // Prevents returned face normal getting flipped when a ray hits a back-facing triangle
///SubSimplexConvexCastRaytest is the default, even if kF_None is set.

View File

@ -65,10 +65,10 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
btVector3 n;
n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
bool hasResult = false;
btVector3 c;
btScalar lastLambda = lambda;
btScalar dist2 = v.length2();
@ -109,9 +109,9 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
//m_simplexSolver->reset();
//check next line
w = supVertexA-supVertexB;
lastLambda = lambda;
n = v;
hasResult = true;
}
}
///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
@ -121,7 +121,7 @@ bool btSubsimplexConvexCast::calcTimeOfImpact(
if (m_simplexSolver->closest(v))
{
dist2 = v.length2();
hasResult = true;
//todo: check this normal for validity
//n=v;
//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);

View File

@ -1,21 +1,21 @@
project "BulletCollision"
kind "StaticLib"
targetdir "../../lib"
includedirs {
"..",
}
files {
"*.cpp",
"*.h",
"BroadphaseCollision/*.cpp",
"BroadphaseCollision/*.h",
"CollisionDispatch/*.cpp",
"CollisionDispatch/*.h",
"CollisionShapes/*.cpp",
"CollisionShapes/*.h",
"Gimpact/*.cpp",
"Gimpact/*.h",
"NarrowPhaseCollision/*.cpp",
"NarrowPhaseCollision/*.h",
}
project "BulletCollision"
kind "StaticLib"
targetdir "../../lib"
includedirs {
"..",
}
files {
"*.cpp",
"*.h",
"BroadphaseCollision/*.cpp",
"BroadphaseCollision/*.h",
"CollisionDispatch/*.cpp",
"CollisionDispatch/*.h",
"CollisionShapes/*.cpp",
"CollisionShapes/*.h",
"Gimpact/*.cpp",
"Gimpact/*.h",
"NarrowPhaseCollision/*.cpp",
"NarrowPhaseCollision/*.h",
}