documentation and optimization

This commit is contained in:
Xuchen Han 2019-09-20 13:54:17 -07:00
parent 20abbc9ee7
commit 657a7468b3
11 changed files with 162 additions and 110 deletions

View File

@ -153,7 +153,7 @@ void DeformableSelfCollision::initPhysics()
btVector3(-s, h, +4*s), btVector3(-s, h, +4*s),
btVector3(+s, h, +4*s), btVector3(+s, h, +4*s),
10,40, 10,40,
0, true, 0.1); 0, true, 0.01);
psb->getCollisionShape()->setMargin(0.2); psb->getCollisionShape()->setMargin(0.2);
@ -161,7 +161,7 @@ void DeformableSelfCollision::initPhysics()
psb->setTotalMass(1); psb->setTotalMass(1);
psb->m_cfg.kKHR = 1; // collision hardness with kinematic objects psb->m_cfg.kKHR = 1; // collision hardness with kinematic objects
psb->m_cfg.kCHR = 1; // collision hardness with rigid body psb->m_cfg.kCHR = 1; // collision hardness with rigid body
psb->m_cfg.kDF = 0.02; psb->m_cfg.kDF = 0.2;
psb->rotate(btQuaternion(0,SIMD_PI / 2, 0)); psb->rotate(btQuaternion(0,SIMD_PI / 2, 0));
psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD; psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD;
psb->m_cfg.collisions |= btSoftBody::fCollision::VF_DD; psb->m_cfg.collisions |= btSoftBody::fCollision::VF_DD;

View File

@ -91,7 +91,7 @@ public:
void Ctor_RbUpStack(int count) void Ctor_RbUpStack(int count)
{ {
float mass = 0.02; float mass = 1;
btCompoundShape* cylinderCompound = new btCompoundShape; btCompoundShape* cylinderCompound = new btCompoundShape;
btCollisionShape* cylinderShape = new btCylinderShapeX(btVector3(2, .5, .5)); btCollisionShape* cylinderShape = new btCylinderShapeX(btVector3(2, .5, .5));
@ -166,7 +166,7 @@ void VolumetricDeformable::initPhysics()
m_solver = sol; m_solver = sol;
m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration, deformableBodySolver); m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_dispatcher, m_broadphase, sol, m_collisionConfiguration, deformableBodySolver);
btVector3 gravity = btVector3(0, -10, 0); btVector3 gravity = btVector3(0, -100, 0);
m_dynamicsWorld->setGravity(gravity); m_dynamicsWorld->setGravity(gravity);
getDeformableDynamicsWorld()->getWorldInfo().m_gravity = gravity; getDeformableDynamicsWorld()->getWorldInfo().m_gravity = gravity;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld); m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
@ -196,7 +196,6 @@ void VolumetricDeformable::initPhysics()
//add the ground to the dynamics world //add the ground to the dynamics world
m_dynamicsWorld->addRigidBody(body); m_dynamicsWorld->addRigidBody(body);
} }
getDeformableDynamicsWorld()->setLineSearch(false);
createStaticBox(btVector3(1, 5, 5), btVector3(-5,0,0)); createStaticBox(btVector3(1, 5, 5), btVector3(-5,0,0));
createStaticBox(btVector3(1, 5, 5), btVector3(5,0,0)); createStaticBox(btVector3(1, 5, 5), btVector3(5,0,0));
@ -220,19 +219,17 @@ void VolumetricDeformable::initPhysics()
psb->m_cfg.kDF = 0.5; psb->m_cfg.kDF = 0.5;
psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD; psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD;
btDeformableMassSpringForce* mass_spring = new btDeformableMassSpringForce(0,0.03);
getDeformableDynamicsWorld()->addForce(psb, mass_spring);
m_forces.push_back(mass_spring);
btDeformableGravityForce* gravity_force = new btDeformableGravityForce(gravity); btDeformableGravityForce* gravity_force = new btDeformableGravityForce(gravity);
getDeformableDynamicsWorld()->addForce(psb, gravity_force); getDeformableDynamicsWorld()->addForce(psb, gravity_force);
m_forces.push_back(gravity_force); m_forces.push_back(gravity_force);
btDeformableNeoHookeanForce* neohookean = new btDeformableNeoHookeanForce(.5,2.5); btDeformableNeoHookeanForce* neohookean = new btDeformableNeoHookeanForce(30,100,0.02);
getDeformableDynamicsWorld()->addForce(psb, neohookean); getDeformableDynamicsWorld()->addForce(psb, neohookean);
m_forces.push_back(neohookean); m_forces.push_back(neohookean);
} }
getDeformableDynamicsWorld()->setImplicit(true);
getDeformableDynamicsWorld()->setLineSearch(false);
// add a few rigid bodies // add a few rigid bodies
Ctor_RbUpStack(4); Ctor_RbUpStack(4);

View File

@ -69,7 +69,7 @@ public:
if (dot(p,temp) < SIMD_EPSILON) if (dot(p,temp) < SIMD_EPSILON)
{ {
if (verbose) if (verbose)
std::cout << "Encountered negative direction in CG!"<<std::endl; std::cout << "Encountered negative direction in CG!" << std::endl;
if (k == 1) if (k == 1)
{ {
x = b; x = b;

View File

@ -22,7 +22,7 @@
btDeformableBodySolver::btDeformableBodySolver() btDeformableBodySolver::btDeformableBodySolver()
: m_numNodes(0) : m_numNodes(0)
, m_cg(20) , m_cg(20)
, m_maxNewtonIterations(10) , m_maxNewtonIterations(5)
, m_newtonTolerance(1e-4) , m_newtonTolerance(1e-4)
, m_lineSearch(true) , m_lineSearch(true)
{ {
@ -412,6 +412,7 @@ void btDeformableBodySolver::predictDeformableMotion(btSoftBody* psb, btScalar d
psb->m_fdbvt.optimizeIncremental(1); psb->m_fdbvt.optimizeIncremental(1);
} }
void btDeformableBodySolver::updateSoftBodies() void btDeformableBodySolver::updateSoftBodies()
{ {
for (int i = 0; i < m_softBodies.size(); i++) for (int i = 0; i < m_softBodies.size(); i++)
@ -419,7 +420,7 @@ void btDeformableBodySolver::updateSoftBodies()
btSoftBody *psb = (btSoftBody *)m_softBodies[i]; btSoftBody *psb = (btSoftBody *)m_softBodies[i];
if (psb->isActive()) if (psb->isActive())
{ {
psb->updateNormals(); // normal is updated here psb->updateNormals();
} }
} }
} }

View File

@ -29,26 +29,24 @@ class btDeformableMultiBodyDynamicsWorld;
class btDeformableBodySolver : public btSoftBodySolver class btDeformableBodySolver : public btSoftBodySolver
{ {
// using TVStack = btAlignedObjectArray<btVector3>;
typedef btAlignedObjectArray<btVector3> TVStack; typedef btAlignedObjectArray<btVector3> TVStack;
protected: protected:
int m_numNodes; int m_numNodes; // total number of deformable body nodes
TVStack m_dv; TVStack m_dv; // v_{n+1} - v_n
TVStack m_backup_dv; TVStack m_backup_dv; // backed up dv
TVStack m_ddv; TVStack m_ddv; // incremental dv
TVStack m_residual; TVStack m_residual; // rhs of the linear solve
btAlignedObjectArray<btSoftBody *> m_softBodies; btAlignedObjectArray<btSoftBody *> m_softBodies; // all deformable bodies
TVStack m_backupVelocity; // backed up v, equals v_n for implicit, equals v_{n+1}^* for explicit
btAlignedObjectArray<btVector3> m_backupVelocity; btScalar m_dt; // dt
btScalar m_dt; btConjugateGradient<btDeformableBackwardEulerObjective> m_cg; // CG solver
btScalar m_contact_iterations; bool m_implicit; // use implicit scheme if true, explicit scheme if false
btConjugateGradient<btDeformableBackwardEulerObjective> m_cg; int m_maxNewtonIterations; // max number of newton iterations
bool m_implicit; btScalar m_newtonTolerance; // stop newton iterations if f(x) < m_newtonTolerance
int m_maxNewtonIterations; bool m_lineSearch; // If true, use newton's method with line search under implicit scheme
btScalar m_newtonTolerance;
bool m_lineSearch;
public: public:
// handles data related to objective function
btDeformableBackwardEulerObjective* m_objective; btDeformableBackwardEulerObjective* m_objective;
btDeformableBodySolver(); btDeformableBodySolver();
@ -60,49 +58,62 @@ public:
return DEFORMABLE_SOLVER; return DEFORMABLE_SOLVER;
} }
// update soft body normals
virtual void updateSoftBodies(); virtual void updateSoftBodies();
virtual void copyBackToSoftBodies(bool bMove = true) {}
// solve the momentum equation
virtual void solveDeformableConstraints(btScalar solverdt); virtual void solveDeformableConstraints(btScalar solverdt);
// solve the contact between deformable and rigid as well as among deformables
btScalar solveContactConstraints(); btScalar solveContactConstraints();
virtual void solveConstraints(btScalar dt){} // resize/clear data structures
void reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt); void reinitialize(const btAlignedObjectArray<btSoftBody *>& softBodies, btScalar dt);
// set up contact constraints
void setConstraints(); void setConstraints();
// add in elastic forces and gravity to obtain v_{n+1}^* and calls predictDeformableMotion
virtual void predictMotion(btScalar solverdt);
// move to temporary position x_{n+1}^* = x_n + dt * v_{n+1}^*
// x_{n+1}^* is stored in m_q
void predictDeformableMotion(btSoftBody* psb, btScalar dt); void predictDeformableMotion(btSoftBody* psb, btScalar dt);
// save the current velocity to m_backupVelocity
void backupVelocity(); void backupVelocity();
// set m_dv and m_backupVelocity to desired value to prepare for momentum solve
void setupDeformableSolve(bool implicit); void setupDeformableSolve(bool implicit);
// set the current velocity to that backed up in m_backupVelocity
void revertVelocity(); void revertVelocity();
// set velocity to m_dv + m_backupVelocity
void updateVelocity(); void updateVelocity();
// update the node count
bool updateNodes(); bool updateNodes();
void computeStep(TVStack& dv, const TVStack& residual); // calculate the change in dv resulting from the momentum solve
void computeStep(TVStack& ddv, const TVStack& residual);
// calculate the change in dv resulting from the momentum solve when line search is turned on
btScalar computeDescentStep(TVStack& ddv, const TVStack& residual); btScalar computeDescentStep(TVStack& ddv, const TVStack& residual);
virtual void predictMotion(btScalar solverdt);
virtual void copySoftBodyToVertexBuffer(const btSoftBody *const softBody, btVertexBufferDescriptor *vertexBuffer) {} virtual void copySoftBodyToVertexBuffer(const btSoftBody *const softBody, btVertexBufferDescriptor *vertexBuffer) {}
// process collision between deformable and rigid
virtual void processCollision(btSoftBody * softBody, const btCollisionObjectWrapper * collisionObjectWrap) virtual void processCollision(btSoftBody * softBody, const btCollisionObjectWrapper * collisionObjectWrap)
{ {
softBody->defaultCollisionHandler(collisionObjectWrap); softBody->defaultCollisionHandler(collisionObjectWrap);
} }
// process collision between deformable and deformable
virtual void processCollision(btSoftBody * softBody, btSoftBody * otherSoftBody) { virtual void processCollision(btSoftBody * softBody, btSoftBody * otherSoftBody) {
softBody->defaultCollisionHandler(otherSoftBody); softBody->defaultCollisionHandler(otherSoftBody);
} }
virtual void optimize(btAlignedObjectArray<btSoftBody *> &softBodies, bool forceUpdate = false){}
virtual bool checkInitialized(){return true;}
// If true, implicit time stepping scheme is used. // If true, implicit time stepping scheme is used.
// Otherwise, explicit time stepping scheme is used // Otherwise, explicit time stepping scheme is used
void setImplicit(bool implicit); void setImplicit(bool implicit);
@ -136,6 +147,12 @@ public:
// 1/2 * dv^T * M * dv // 1/2 * dv^T * M * dv
// used in line search // used in line search
btScalar kineticEnergy(); btScalar kineticEnergy();
// unused functions
virtual void optimize(btAlignedObjectArray<btSoftBody *> &softBodies, bool forceUpdate = false){}
virtual void solveConstraints(btScalar dt){}
virtual bool checkInitialized(){return true;}
virtual void copyBackToSoftBodies(bool bMove = true) {}
}; };
#endif /* btDeformableBodySolver_h */ #endif /* btDeformableBodySolver_h */

View File

@ -26,8 +26,6 @@ class btDeformableContactProjection
{ {
public: public:
typedef btAlignedObjectArray<btVector3> TVStack; typedef btAlignedObjectArray<btVector3> TVStack;
typedef btAlignedObjectArray<btAlignedObjectArray<btVector3> > TVArrayStack;
typedef btAlignedObjectArray<btAlignedObjectArray<btScalar> > TArrayStack;
btAlignedObjectArray<btSoftBody *>& m_softBodies; btAlignedObjectArray<btSoftBody *>& m_softBodies;
// map from node index to static constraint // map from node index to static constraint
@ -54,10 +52,10 @@ public:
{ {
} }
// apply the constraints to the rhs // apply the constraints to the rhs of the linear solve
virtual void project(TVStack& x); virtual void project(TVStack& x);
// add to friction // add friction force to the rhs of the linear solve
virtual void applyDynamicFriction(TVStack& f); virtual void applyDynamicFriction(TVStack& f);
// update the constraints // update the constraints

View File

@ -67,6 +67,7 @@ public:
{ {
} }
// get number of nodes that have the force
virtual int getNumNodes() virtual int getNumNodes()
{ {
int numNodes = 0; int numNodes = 0;
@ -94,10 +95,7 @@ public:
btVector3 c1 = dx[id1] - dx[id0]; btVector3 c1 = dx[id1] - dx[id0];
btVector3 c2 = dx[id2] - dx[id0]; btVector3 c2 = dx[id2] - dx[id0];
btVector3 c3 = dx[id3] - dx[id0]; btVector3 c3 = dx[id3] - dx[id0];
btMatrix3x3 dF(c1.getX(), c2.getX(), c3.getX(), return btMatrix3x3(c1,c2,c3).transpose();
c1.getY(), c2.getY(), c3.getY(),
c1.getZ(), c2.getZ(), c3.getZ());
return dF;
} }
// Calculate the incremental deformable generated from the current velocity // Calculate the incremental deformable generated from the current velocity
@ -106,12 +104,10 @@ public:
btVector3 c1 = n1->m_v - n0->m_v; btVector3 c1 = n1->m_v - n0->m_v;
btVector3 c2 = n2->m_v - n0->m_v; btVector3 c2 = n2->m_v - n0->m_v;
btVector3 c3 = n3->m_v - n0->m_v; btVector3 c3 = n3->m_v - n0->m_v;
btMatrix3x3 dF(c1.getX(), c2.getX(), c3.getX(), return btMatrix3x3(c1,c2,c3).transpose();
c1.getY(), c2.getY(), c3.getY(),
c1.getZ(), c2.getZ(), c3.getZ());
return dF;
} }
// test for addScaledElasticForce function
virtual void testDerivative() virtual void testDerivative()
{ {
for (int i = 0; i<m_softBodies.size();++i) for (int i = 0; i<m_softBodies.size();++i)
@ -222,6 +218,7 @@ public:
} }
} }
// test for addScaledElasticForce function
virtual void testHessian() virtual void testHessian()
{ {
for (int i = 0; i<m_softBodies.size();++i) for (int i = 0; i<m_softBodies.size();++i)

View File

@ -20,6 +20,8 @@
class btDeformableMassSpringForce : public btDeformableLagrangianForce class btDeformableMassSpringForce : public btDeformableLagrangianForce
{ {
// If true, the damping force will be in the direction of the spring
// If false, the damping force will be in the direction of the velocity
bool m_momentum_conserving; bool m_momentum_conserving;
btScalar m_elasticStiffness, m_dampingStiffness; btScalar m_elasticStiffness, m_dampingStiffness;
public: public:

View File

@ -59,3 +59,67 @@ btScalar btDeformableMultiBodyConstraintSolver::solveGroupCacheFriendlyIteration
} }
return 0.f; return 0.f;
} }
void btDeformableMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher)
{
m_tmpMultiBodyConstraints = multiBodyConstraints;
m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
// inherited from MultiBodyConstraintSolver
solveGroupCacheFriendlySetup(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// overriden
solveGroupCacheFriendlyIterations(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// inherited from MultiBodyConstraintSolver
solveGroupCacheFriendlyFinish(bodies, numBodies, info);
m_tmpMultiBodyConstraints = 0;
m_tmpNumMultiBodyConstraints = 0;
}
void btDeformableMultiBodyConstraintSolver::writeToSolverBody(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
btSISolverSingleIterationData siData(m_tmpSolverBodyPool,
m_tmpSolverContactConstraintPool,
m_tmpSolverNonContactConstraintPool,
m_tmpSolverContactFrictionConstraintPool,
m_tmpSolverContactRollingFrictionConstraintPool,
m_orderTmpConstraintPool,
m_orderNonContactConstraintPool,
m_orderFrictionConstraintPool,
m_tmpConstraintSizesPool,
m_resolveSingleConstraintRowGeneric,
m_resolveSingleConstraintRowLowerLimit,
m_resolveSplitPenetrationImpulse,
m_kinematicBodyUniqueIdToSolverBodyTable,
m_btSeed2,
m_fixedBodyId,
m_maxOverrideNumSolverIterations);
for (int i = 0; i < numBodies; i++)
{
int bodyId = siData.getOrInitSolverBody(*bodies[i], infoGlobal.m_timeStep);
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body && body->getInvMass())
{
btSolverBody& solverBody = siData.m_tmpSolverBodyPool[bodyId];
solverBody.m_linearVelocity = body->getLinearVelocity() - solverBody.m_deltaLinearVelocity;
solverBody.m_angularVelocity = body->getAngularVelocity() - solverBody.m_deltaAngularVelocity;
}
}
}
void btDeformableMultiBodyConstraintSolver::solverBodyWriteBack(const btContactSolverInfo& infoGlobal)
{
for (int i = 0; i < m_tmpSolverBodyPool.size(); i++)
{
btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
if (body)
{
m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(m_tmpSolverBodyPool[i].m_linearVelocity + m_tmpSolverBodyPool[i].m_deltaLinearVelocity);
m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(m_tmpSolverBodyPool[i].m_angularVelocity+m_tmpSolverBodyPool[i].m_deltaAngularVelocity);
}
}
}

View File

@ -22,6 +22,13 @@
class btDeformableBodySolver; class btDeformableBodySolver;
// btDeformableMultiBodyConstraintSolver extendsn btMultiBodyConstraintSolver to solve for the contact among rigid/multibody and deformable bodies. Notice that the following constraints
// 1. rigid/multibody against rigid/multibody
// 2. rigid/multibody against deforamble
// 3. deformable against deformable
// 4. deformable self collision
// 5. joint constraints
// are all coupled in this solve.
ATTRIBUTE_ALIGNED16(class) ATTRIBUTE_ALIGNED16(class)
btDeformableMultiBodyConstraintSolver : public btMultiBodyConstraintSolver btDeformableMultiBodyConstraintSolver : public btMultiBodyConstraintSolver
{ {
@ -32,34 +39,10 @@ protected:
virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer); virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
// write the velocity of the the solver body to the underlying rigid body // write the velocity of the the solver body to the underlying rigid body
void solverBodyWriteBack(const btContactSolverInfo& infoGlobal) void solverBodyWriteBack(const btContactSolverInfo& infoGlobal);
{
for (int i = 0; i < m_tmpSolverBodyPool.size(); i++) // write the velocity of the underlying rigid body to the the the solver body
{ void writeToSolverBody(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal);
btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
if (body)
{
m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(m_tmpSolverBodyPool[i].m_linearVelocity + m_tmpSolverBodyPool[i].m_deltaLinearVelocity);
m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(m_tmpSolverBodyPool[i].m_angularVelocity+m_tmpSolverBodyPool[i].m_deltaAngularVelocity);
}
}
}
void writeToSolverBody(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
for (int i = 0; i < numBodies; i++)
{
int bodyId = getOrInitSolverBody(*bodies[i], infoGlobal.m_timeStep);
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body && body->getInvMass())
{
btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
solverBody.m_linearVelocity = body->getLinearVelocity() - solverBody.m_deltaLinearVelocity;
solverBody.m_angularVelocity = body->getAngularVelocity() - solverBody.m_deltaAngularVelocity;
}
}
}
public: public:
BT_DECLARE_ALIGNED_ALLOCATOR(); BT_DECLARE_ALIGNED_ALLOCATOR();
@ -69,23 +52,7 @@ public:
m_deformableSolver = deformableSolver; m_deformableSolver = deformableSolver;
} }
virtual void solveMultiBodyGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher) virtual void solveMultiBodyGroup(btCollisionObject * *bodies, int numBodies, btPersistentManifold** manifold, int numManifolds, btTypedConstraint** constraints, int numConstraints, btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer, btDispatcher* dispatcher);
{
m_tmpMultiBodyConstraints = multiBodyConstraints;
m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
// inherited from MultiBodyConstraintSolver
solveGroupCacheFriendlySetup(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// overriden
solveGroupCacheFriendlyIterations(bodies, numBodies, manifold, numManifolds, constraints, numConstraints, info, debugDrawer);
// inherited from MultiBodyConstraintSolver
solveGroupCacheFriendlyFinish(bodies, numBodies, info);
m_tmpMultiBodyConstraints = 0;
m_tmpNumMultiBodyConstraints = 0;
}
}; };
#endif /* BT_DEFORMABLE_MULTIBODY_CONSTRAINT_SOLVER_H */ #endif /* BT_DEFORMABLE_MULTIBODY_CONSTRAINT_SOLVER_H */

View File

@ -17,7 +17,7 @@ subject to the following restrictions:
#define BT_NEOHOOKEAN_H #define BT_NEOHOOKEAN_H
#include "btDeformableLagrangianForce.h" #include "btDeformableLagrangianForce.h"
#include "LinearMath/btQuickprof.h"
// This energy is as described in https://graphics.pixar.com/library/StableElasticity/paper.pdf // This energy is as described in https://graphics.pixar.com/library/StableElasticity/paper.pdf
class btDeformableNeoHookeanForce : public btDeformableLagrangianForce class btDeformableNeoHookeanForce : public btDeformableLagrangianForce
{ {
@ -155,8 +155,9 @@ public:
btSoftBody::Tetra& tetra = psb->m_tetras[j]; btSoftBody::Tetra& tetra = psb->m_tetras[j];
btMatrix3x3 P; btMatrix3x3 P;
firstPiola(psb->m_tetraScratches[j],P); firstPiola(psb->m_tetraScratches[j],P);
btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col); // btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose(); btMatrix3x3 force_on_node123 = P * tetra.m_Dm_inverse.transpose();
btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col;
btSoftBody::Node* node0 = tetra.m_n[0]; btSoftBody::Node* node0 = tetra.m_n[0];
btSoftBody::Node* node1 = tetra.m_n[1]; btSoftBody::Node* node1 = tetra.m_n[1];
@ -202,8 +203,9 @@ public:
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse; btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse;
btMatrix3x3 dP; btMatrix3x3 dP;
firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP); firstPiolaDampingDifferential(psb->m_tetraScratchesTn[j], dF, dP);
btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col); // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose(); btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
// damping force differential // damping force differential
btScalar scale1 = scale * tetra.m_element_measure; btScalar scale1 = scale * tetra.m_element_measure;
@ -237,8 +239,9 @@ public:
btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse; btMatrix3x3 dF = Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse;
btMatrix3x3 dP; btMatrix3x3 dP;
firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP); firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP);
btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col); // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col);
btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose(); btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose();
btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col;
// elastic force differential // elastic force differential
btScalar scale1 = scale * tetra.m_element_measure; btScalar scale1 = scale * tetra.m_element_measure;
@ -252,27 +255,33 @@ public:
void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P) void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P)
{ {
P = s.m_F * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_cofF * (m_lambda * (s.m_J - 1.) - 0.75 * m_mu); btScalar c1 = (m_mu * ( 1. - 1. / (s.m_trace + 1.)));
btScalar c2 = (m_lambda * (s.m_J - 1.) - 0.75 * m_mu);
P = s.m_F * c1 + s.m_cofF * c2;
} }
// Let P be the first piola stress. // Let P be the first piola stress.
// This function calculates the dP = dP/dF * dF // This function calculates the dP = dP/dF * dF
void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
{ {
dP = dF * m_mu * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace))); btScalar c1 = m_mu * ( 1. - 1. / (s.m_trace + 1.));
btScalar c2 = (2.*m_mu) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace)));
btScalar c3 = (m_lambda * DotProduct(s.m_cofF, dF));
dP = dF * c1 + s.m_F * c2;
addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda*(s.m_J-1.) - 0.75*m_mu, dP); addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda*(s.m_J-1.) - 0.75*m_mu, dP);
dP += s.m_cofF * m_lambda * DotProduct(s.m_cofF, dF); dP += s.m_cofF * c3;
} }
// Let Q be the damping stress. // Let Q be the damping stress.
// This function calculates the dP = dQ/dF * dF // This function calculates the dP = dQ/dF * dF
void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP)
{ {
dP = dF * m_mu_damp * ( 1. - 1. / (s.m_trace + 1.)) + s.m_F * (2*m_mu_damp) * DotProduct(s.m_F, dF) * (1./((1.+s.m_trace)*(1.+s.m_trace))); btScalar c1 = (m_mu_damp * ( 1. - 1. / (s.m_trace + 1.)));
btScalar c2 = ((2.*m_mu_damp) * DotProduct(s.m_F, dF) *(1./((1.+s.m_trace)*(1.+s.m_trace))));
btScalar c3 = (m_lambda_damp * DotProduct(s.m_cofF, dF));
dP = dF * c1 + s.m_F * c2;
addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp*(s.m_J-1.) - 0.75*m_mu_damp, dP); addScaledCofactorMatrixDifferential(s.m_F, dF, m_lambda_damp*(s.m_J-1.) - 0.75*m_mu_damp, dP);
dP += s.m_cofF * m_lambda_damp * DotProduct(s.m_cofF, dF); dP += s.m_cofF * c3;
} }
btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B) btScalar DotProduct(const btMatrix3x3& A, const btMatrix3x3& B)