mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 05:40:05 +00:00
add back sonnet dependency. If sonnet is not installed, fall back to simpleAgent that does not need sonnet.
This commit is contained in:
parent
2f3844e5db
commit
671c4bf10e
21
examples/pybullet/gym/agents/actor_net.py
Normal file
21
examples/pybullet/gym/agents/actor_net.py
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
"""An actor network."""
|
||||||
|
import tensorflow as tf
|
||||||
|
import sonnet as snt
|
||||||
|
|
||||||
|
class ActorNetwork(snt.AbstractModule):
|
||||||
|
"""An actor network as a sonnet Module."""
|
||||||
|
|
||||||
|
def __init__(self, layer_sizes, action_size, name='target_actor'):
|
||||||
|
super(ActorNetwork, self).__init__(name=name)
|
||||||
|
self._layer_sizes = layer_sizes
|
||||||
|
self._action_size = action_size
|
||||||
|
|
||||||
|
def _build(self, inputs):
|
||||||
|
state = inputs
|
||||||
|
for output_size in self._layer_sizes:
|
||||||
|
state = snt.Linear(output_size)(state)
|
||||||
|
state = tf.nn.relu(state)
|
||||||
|
|
||||||
|
action = tf.tanh(
|
||||||
|
snt.Linear(self._action_size, name='action')(state))
|
||||||
|
return action
|
@ -10,11 +10,12 @@ import numpy as np
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import pdb
|
import pdb
|
||||||
|
|
||||||
class SimplerAgent():
|
class SimpleAgent():
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
session,
|
session,
|
||||||
ckpt_path,
|
ckpt_path,
|
||||||
|
actor_layer_size,
|
||||||
observation_dim=31
|
observation_dim=31
|
||||||
):
|
):
|
||||||
self._ckpt_path = ckpt_path
|
self._ckpt_path = ckpt_path
|
46
examples/pybullet/gym/agents/simpleAgentWithSonnet.py
Normal file
46
examples/pybullet/gym/agents/simpleAgentWithSonnet.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
"""Loads a DDPG agent without too much external dependencies
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import os
|
||||||
|
import collections
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
import sonnet as snt
|
||||||
|
from agents import actor_net
|
||||||
|
|
||||||
|
class SimpleAgent():
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
session,
|
||||||
|
ckpt_path,
|
||||||
|
actor_layer_size,
|
||||||
|
observation_size=(31,),
|
||||||
|
action_size=8,
|
||||||
|
):
|
||||||
|
self._ckpt_path = ckpt_path
|
||||||
|
self._actor_layer_size = actor_layer_size
|
||||||
|
self._observation_size = observation_size
|
||||||
|
self._action_size = action_size
|
||||||
|
self._session = session
|
||||||
|
self._build()
|
||||||
|
|
||||||
|
def _build(self):
|
||||||
|
self._agent_net = actor_net.ActorNetwork(self._actor_layer_size, self._action_size)
|
||||||
|
self._obs = tf.placeholder(tf.float32, (31,))
|
||||||
|
with tf.name_scope('Act'):
|
||||||
|
batch_obs = snt.nest.pack_iterable_as(self._obs,
|
||||||
|
snt.nest.map(lambda x: tf.expand_dims(x, 0),
|
||||||
|
snt.nest.flatten_iterable(self._obs)))
|
||||||
|
self._action = self._agent_net(batch_obs)
|
||||||
|
saver = tf.train.Saver()
|
||||||
|
saver.restore(
|
||||||
|
sess=self._session,
|
||||||
|
save_path=self._ckpt_path)
|
||||||
|
|
||||||
|
def __call__(self, observation):
|
||||||
|
out_action = self._session.run(self._action, feed_dict={self._obs: observation})
|
||||||
|
return out_action[0]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -10,8 +10,15 @@ import numpy as np
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
|
|
||||||
from envs.bullet.minitaurGymEnv import MinitaurGymEnv
|
from envs.bullet.minitaurGymEnv import MinitaurGymEnv
|
||||||
from agents import simplerAgent
|
|
||||||
|
|
||||||
|
try:
|
||||||
|
import sonnet
|
||||||
|
from agents import simpleAgentWithSonnet as agent_lib
|
||||||
|
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data_converted.ckpt-0'
|
||||||
|
except ImportError:
|
||||||
|
from agents import simpleAgent as agent_lib
|
||||||
|
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data.ckpt'
|
||||||
|
|
||||||
def testSinePolicy():
|
def testSinePolicy():
|
||||||
"""Tests sine policy
|
"""Tests sine policy
|
||||||
"""
|
"""
|
||||||
@ -53,14 +60,14 @@ def testDDPGPolicy():
|
|||||||
environment = MinitaurGymEnv(render=True)
|
environment = MinitaurGymEnv(render=True)
|
||||||
sum_reward = 0
|
sum_reward = 0
|
||||||
steps = 1000
|
steps = 1000
|
||||||
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data_converted.ckpt-0'
|
|
||||||
observation_shape = (31,)
|
observation_shape = (31,)
|
||||||
action_size = 8
|
action_size = 8
|
||||||
actor_layer_sizes = (100, 181)
|
actor_layer_size = (100, 181)
|
||||||
n_steps = 0
|
n_steps = 0
|
||||||
tf.reset_default_graph()
|
tf.reset_default_graph()
|
||||||
with tf.Session() as session:
|
with tf.Session() as session:
|
||||||
agent = simplerAgent.SimplerAgent(session, ckpt_path)
|
agent = agent_lib.SimpleAgent(session=session, ckpt_path=ckpt_path, actor_layer_size=actor_layer_size)
|
||||||
state = environment.reset()
|
state = environment.reset()
|
||||||
action = agent(state)
|
action = agent(state)
|
||||||
for _ in range(steps):
|
for _ in range(steps):
|
||||||
|
Loading…
Reference in New Issue
Block a user