mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 05:40:05 +00:00
add back sonnet dependency. If sonnet is not installed, fall back to simpleAgent that does not need sonnet.
This commit is contained in:
parent
2f3844e5db
commit
671c4bf10e
21
examples/pybullet/gym/agents/actor_net.py
Normal file
21
examples/pybullet/gym/agents/actor_net.py
Normal file
@ -0,0 +1,21 @@
|
||||
"""An actor network."""
|
||||
import tensorflow as tf
|
||||
import sonnet as snt
|
||||
|
||||
class ActorNetwork(snt.AbstractModule):
|
||||
"""An actor network as a sonnet Module."""
|
||||
|
||||
def __init__(self, layer_sizes, action_size, name='target_actor'):
|
||||
super(ActorNetwork, self).__init__(name=name)
|
||||
self._layer_sizes = layer_sizes
|
||||
self._action_size = action_size
|
||||
|
||||
def _build(self, inputs):
|
||||
state = inputs
|
||||
for output_size in self._layer_sizes:
|
||||
state = snt.Linear(output_size)(state)
|
||||
state = tf.nn.relu(state)
|
||||
|
||||
action = tf.tanh(
|
||||
snt.Linear(self._action_size, name='action')(state))
|
||||
return action
|
@ -10,11 +10,12 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
import pdb
|
||||
|
||||
class SimplerAgent():
|
||||
class SimpleAgent():
|
||||
def __init__(
|
||||
self,
|
||||
session,
|
||||
ckpt_path,
|
||||
actor_layer_size,
|
||||
observation_dim=31
|
||||
):
|
||||
self._ckpt_path = ckpt_path
|
46
examples/pybullet/gym/agents/simpleAgentWithSonnet.py
Normal file
46
examples/pybullet/gym/agents/simpleAgentWithSonnet.py
Normal file
@ -0,0 +1,46 @@
|
||||
"""Loads a DDPG agent without too much external dependencies
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import collections
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
import sonnet as snt
|
||||
from agents import actor_net
|
||||
|
||||
class SimpleAgent():
|
||||
def __init__(
|
||||
self,
|
||||
session,
|
||||
ckpt_path,
|
||||
actor_layer_size,
|
||||
observation_size=(31,),
|
||||
action_size=8,
|
||||
):
|
||||
self._ckpt_path = ckpt_path
|
||||
self._actor_layer_size = actor_layer_size
|
||||
self._observation_size = observation_size
|
||||
self._action_size = action_size
|
||||
self._session = session
|
||||
self._build()
|
||||
|
||||
def _build(self):
|
||||
self._agent_net = actor_net.ActorNetwork(self._actor_layer_size, self._action_size)
|
||||
self._obs = tf.placeholder(tf.float32, (31,))
|
||||
with tf.name_scope('Act'):
|
||||
batch_obs = snt.nest.pack_iterable_as(self._obs,
|
||||
snt.nest.map(lambda x: tf.expand_dims(x, 0),
|
||||
snt.nest.flatten_iterable(self._obs)))
|
||||
self._action = self._agent_net(batch_obs)
|
||||
saver = tf.train.Saver()
|
||||
saver.restore(
|
||||
sess=self._session,
|
||||
save_path=self._ckpt_path)
|
||||
|
||||
def __call__(self, observation):
|
||||
out_action = self._session.run(self._action, feed_dict={self._obs: observation})
|
||||
return out_action[0]
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -10,7 +10,14 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from envs.bullet.minitaurGymEnv import MinitaurGymEnv
|
||||
from agents import simplerAgent
|
||||
|
||||
try:
|
||||
import sonnet
|
||||
from agents import simpleAgentWithSonnet as agent_lib
|
||||
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data_converted.ckpt-0'
|
||||
except ImportError:
|
||||
from agents import simpleAgent as agent_lib
|
||||
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data.ckpt'
|
||||
|
||||
def testSinePolicy():
|
||||
"""Tests sine policy
|
||||
@ -53,14 +60,14 @@ def testDDPGPolicy():
|
||||
environment = MinitaurGymEnv(render=True)
|
||||
sum_reward = 0
|
||||
steps = 1000
|
||||
ckpt_path = 'data/agent/tf_graph_data/tf_graph_data_converted.ckpt-0'
|
||||
|
||||
observation_shape = (31,)
|
||||
action_size = 8
|
||||
actor_layer_sizes = (100, 181)
|
||||
actor_layer_size = (100, 181)
|
||||
n_steps = 0
|
||||
tf.reset_default_graph()
|
||||
with tf.Session() as session:
|
||||
agent = simplerAgent.SimplerAgent(session, ckpt_path)
|
||||
agent = agent_lib.SimpleAgent(session=session, ckpt_path=ckpt_path, actor_layer_size=actor_layer_size)
|
||||
state = environment.reset()
|
||||
action = agent(state)
|
||||
for _ in range(steps):
|
||||
|
Loading…
Reference in New Issue
Block a user