fix bug in assignment of contact constraints to solver grid (always use dynamic body to determine constraint assignment, otherwise write conflicts can occur)

implement CPU version of narrowphase convex collision, for comparison/debug purposes
start towards cpu/gpu sync, for adding/removing bodies (work in progress)
This commit is contained in:
erwin coumans 2013-05-02 09:49:16 -07:00
parent de17d6044c
commit 6ee9eb9bb5
15 changed files with 966 additions and 59 deletions

View File

@ -172,7 +172,7 @@ void BasicDemo::initPhysics()
{
startTransform.setOrigin(SCALING*btVector3(
btScalar(2.0*i + start_x),
btScalar(20+2.0*k + start_y),
btScalar(6+2.0*k + start_y),
btScalar(2.0*j + start_z)));

View File

@ -164,6 +164,10 @@ void BasicGpuDemo::exitCL()
BasicGpuDemo::BasicGpuDemo()
{
m_clData = new btInternalData;
setCameraDistance(btScalar(SCALING*20.));
this->setAzi(45);
this->setEle(45);
}
BasicGpuDemo::~BasicGpuDemo()
@ -179,7 +183,6 @@ void BasicGpuDemo::initPhysics()
setTexturing(true);
setShadows(true);
setCameraDistance(btScalar(SCALING*50.));
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = 0;
@ -224,12 +227,37 @@ void BasicGpuDemo::initPhysics()
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
if (0)
{
btTransform tr;
tr.setIdentity();
btVector3 faraway(-1e30,-1e30,-1e30);
tr.setOrigin(faraway);
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(tr);
btSphereShape* dummyShape = new btSphereShape(0.f);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,dummyShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
@ -241,9 +269,10 @@ void BasicGpuDemo::initPhysics()
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
//btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,0,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
body->setWorldTransform(groundTransform);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
@ -282,9 +311,9 @@ void BasicGpuDemo::initPhysics()
for(int j = 0;j<ARRAY_SIZE_Z;j++)
{
startTransform.setOrigin(SCALING*btVector3(
btScalar(2.0*i + start_x),
btScalar(20+2.0*k + start_y),
btScalar(2.0*j + start_z)));
btScalar(2.*i + start_x),
btScalar(6+2.0*k + start_y),
btScalar(2.*j + start_z)));
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
@ -300,6 +329,9 @@ void BasicGpuDemo::initPhysics()
}
}
np->writeAllBodiesToGpu();
bp->writeAabbsToGpu();
rbp->writeAllInstancesToGpu();

View File

@ -130,10 +130,10 @@ struct InternalDataRenderer : public GLInstanceRendererInternalData
} else
{
m_cameraDistance -= deltay*0.1;
//b3Vector3 fwd = m_cameraTargetPosition-m_cameraPosition;
//fwd.normalize();
//m_cameraTargetPosition += fwd*deltay*0.1;
//m_cameraDistance -= deltay*0.1;
b3Vector3 fwd = m_cameraTargetPosition-m_cameraPosition;
fwd.normalize();
m_cameraTargetPosition += fwd*deltay*0.1;
}
} else
{

Binary file not shown.

View File

@ -10,8 +10,11 @@
#include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
#include "LinearMath/btQuickprof.h"
#include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h"
#include "Bullet3OpenCL/RigidBody/b3GpuNarrowPhase.h"
#include "Bullet3OpenCL/RigidBody/b3GpuRigidBodyPipeline.h"
#ifdef _WIN32
@ -23,7 +26,7 @@
b3GpuDynamicsWorld::b3GpuDynamicsWorld(class b3GpuSapBroadphase* bp,class b3GpuNarrowPhase* np, class b3GpuRigidBodyPipeline* rigidBodyPipeline)
:btDynamicsWorld(0,0,0),
m_gravity(0,-10,0),
m_once(true),
m_cpuGpuSync(true),
m_bp(bp),
m_np(np),
m_rigidBodyPipeline(rigidBodyPipeline)
@ -50,9 +53,12 @@ int b3GpuDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btSc
//convert all shapes now, and if any change, reset all (todo)
if (m_once)
if (m_cpuGpuSync)
{
m_once = false;
m_cpuGpuSync = false;
m_np->writeAllBodiesToGpu();
m_bp->writeAabbsToGpu();
m_rigidBodyPipeline->writeAllInstancesToGpu();
}
@ -271,7 +277,7 @@ int b3GpuDynamicsWorld::findOrRegisterCollisionShape(const btCollisionShape* col
void b3GpuDynamicsWorld::addRigidBody(btRigidBody* body)
{
m_cpuGpuSync = true;
body->setMotionState(0);
@ -293,7 +299,12 @@ void b3GpuDynamicsWorld::addRigidBody(btRigidBody* body)
void b3GpuDynamicsWorld::removeCollisionObject(btCollisionObject* colObj)
{
m_cpuGpuSync = true;
btDynamicsWorld::removeCollisionObject(colObj);
}
void b3GpuDynamicsWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
{
}

View File

@ -26,7 +26,7 @@ class b3GpuDynamicsWorld : public btDynamicsWorld
btVector3 m_gravity;
bool m_once;
bool m_cpuGpuSync;
int findOrRegisterCollisionShape(const btCollisionShape* colShape);
@ -52,7 +52,7 @@ public:
void removeCollisionObject(btCollisionObject* colObj);
void rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const;
btAlignedObjectArray<class btCollisionObject*>& getCollisionObjectArray();

View File

@ -74,7 +74,7 @@ public:
b3Quaternion(const b3Scalar& _x, const b3Scalar& _y, const b3Scalar& _z, const b3Scalar& _w)
: b3QuadWord(_x, _y, _z, _w)
{
b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f)));
//b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f)));
}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around

View File

@ -20,6 +20,8 @@ subject to the following restrictions:
//#define B3_DEBUG_SAT_FACE
int b3g_actualSATPairTests=0;
#include "b3ConvexHullContact.h"
#include <string.h>//memcpy
#include "b3ConvexPolyhedronCL.h"
@ -240,13 +242,12 @@ float signedDistanceFromPointToPlane(const float4& point, const float4& planeEqn
#define cross3(a,b) (a.cross(b))
b3Vector3 transform(b3Vector3* v, const b3Vector3* pos, const b3Vector3* orn)
b3Vector3 transform(const b3Vector3* v, const b3Vector3* pos, const b3Quaternion* orn)
{
b3Transform tr;
tr.setIdentity();
tr.setOrigin(*pos);
b3Quaternion* o = (b3Quaternion*) orn;
tr.setRotation(*o);
tr.setRotation(*orn);
b3Vector3 res = tr(*v);
return res;
}
@ -837,6 +838,840 @@ void computeContactSphereConvex(int pairIndex,
}
#define MAX_VERTS 1024
inline void project(const b3ConvexPolyhedronCL& hull, const float4& pos, const b3Quaternion& orn, const float4& dir, const b3AlignedObjectArray<b3Vector3>& vertices, b3Scalar& min, b3Scalar& max)
{
min = FLT_MAX;
max = -FLT_MAX;
int numVerts = hull.m_numVertices;
const float4 localDir = b3QuatRotate(orn.inverse(),dir);
b3Scalar offset = dot3F4(pos,dir);
for(int i=0;i<numVerts;i++)
{
//b3Vector3 pt = trans * vertices[m_vertexOffset+i];
//b3Scalar dp = pt.dot(dir);
b3Vector3 vertex = vertices[hull.m_vertexOffset+i];
b3Scalar dp = dot3F4((float4&)vertices[hull.m_vertexOffset+i],localDir);
//b3Assert(dp==dpL);
if(dp < min) min = dp;
if(dp > max) max = dp;
}
if(min>max)
{
b3Scalar tmp = min;
min = max;
max = tmp;
}
min += offset;
max += offset;
}
static bool TestSepAxis(const b3ConvexPolyhedronCL& hullA, const b3ConvexPolyhedronCL& hullB,
const float4& posA,const b3Quaternion& ornA,
const float4& posB,const b3Quaternion& ornB,
const float4& sep_axis, const b3AlignedObjectArray<b3Vector3>& verticesA,const b3AlignedObjectArray<b3Vector3>& verticesB,b3Scalar& depth)
{
b3Scalar Min0,Max0;
b3Scalar Min1,Max1;
project(hullA,posA,ornA,sep_axis,verticesA, Min0, Max0);
project(hullB,posB,ornB, sep_axis,verticesB, Min1, Max1);
if(Max0<Min1 || Max1<Min0)
return false;
b3Scalar d0 = Max0 - Min1;
assert(d0>=0.0f);
b3Scalar d1 = Max1 - Min0;
assert(d1>=0.0f);
depth = d0<d1 ? d0:d1;
return true;
}
inline bool IsAlmostZero(const b3Vector3& v)
{
if(fabsf(v.x)>1e-6 || fabsf(v.y)>1e-6 || fabsf(v.z)>1e-6) return false;
return true;
}
static bool findSeparatingAxis( const b3ConvexPolyhedronCL& hullA, const b3ConvexPolyhedronCL& hullB,
const float4& posA1,
const b3Quaternion& ornA,
const float4& posB1,
const b3Quaternion& ornB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA,
const b3AlignedObjectArray<b3GpuFace>& facesA,
const b3AlignedObjectArray<int>& indicesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
const b3AlignedObjectArray<b3GpuFace>& facesB,
const b3AlignedObjectArray<int>& indicesB,
b3Vector3& sep)
{
B3_PROFILE("findSeparatingAxis");
b3g_actualSATPairTests++;
float4 posA = posA1;
posA.w = 0.f;
float4 posB = posB1;
posB.w = 0.f;
//#ifdef TEST_INTERNAL_OBJECTS
float4 c0local = (float4&)hullA.m_localCenter;
float4 c0 = transform(&c0local, &posA, &ornA);
float4 c1local = (float4&)hullB.m_localCenter;
float4 c1 = transform(&c1local,&posB,&ornB);
const float4 deltaC2 = c0 - c1;
//#endif
b3Scalar dmin = FLT_MAX;
int curPlaneTests=0;
int numFacesA = hullA.m_numFaces;
// Test normals from hullA
for(int i=0;i<numFacesA;i++)
{
const float4& normal = (float4&)facesA[hullA.m_faceOffset+i].m_plane;
float4 faceANormalWS = b3QuatRotate(ornA,normal);
if (dot3F4(deltaC2,faceANormalWS)<0)
faceANormalWS*=-1.f;
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB, DeltaC2, faceANormalWS, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,faceANormalWS, verticesA, verticesB,d))
return false;
if(d<dmin)
{
dmin = d;
sep = (b3Vector3&)faceANormalWS;
}
}
int numFacesB = hullB.m_numFaces;
// Test normals from hullB
for(int i=0;i<numFacesB;i++)
{
float4 normal = (float4&)facesB[hullB.m_faceOffset+i].m_plane;
float4 WorldNormal = b3QuatRotate(ornB, normal);
if (dot3F4(deltaC2,WorldNormal)<0)
{
WorldNormal*=-1.f;
}
curPlaneTests++;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, WorldNormal, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar d;
if(!TestSepAxis(hullA, hullB,posA,ornA,posB,ornB,WorldNormal,verticesA,verticesB,d))
return false;
if(d<dmin)
{
dmin = d;
sep = (b3Vector3&)WorldNormal;
}
}
b3Vector3 edgeAstart,edgeAend,edgeBstart,edgeBend;
int curEdgeEdge = 0;
// Test edges
for(int e0=0;e0<hullA.m_numUniqueEdges;e0++)
{
const float4& edge0 = (float4&) uniqueEdgesA[hullA.m_uniqueEdgesOffset+e0];
float4 edge0World = b3QuatRotate(ornA,(float4&)edge0);
for(int e1=0;e1<hullB.m_numUniqueEdges;e1++)
{
const b3Vector3 edge1 = uniqueEdgesB[hullB.m_uniqueEdgesOffset+e1];
float4 edge1World = b3QuatRotate(ornB,(float4&)edge1);
float4 crossje = cross3(edge0World,edge1World);
curEdgeEdge++;
if(!IsAlmostZero((b3Vector3&)crossje))
{
crossje = normalize3(crossje);
if (dot3F4(deltaC2,crossje)<0)
crossje*=-1.f;
#ifdef TEST_INTERNAL_OBJECTS
gExpectedNbTests++;
if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, Cross, hullA, hullB, dmin))
continue;
gActualNbTests++;
#endif
b3Scalar dist;
if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,crossje, verticesA,verticesB,dist))
return false;
if(dist<dmin)
{
dmin = dist;
sep = (b3Vector3&)crossje;
}
}
}
}
if((dot3F4(-deltaC2,(float4&)sep))>0.0f)
sep = -sep;
return true;
}
__inline float4 lerp3(const float4& a,const float4& b, float t)
{
return make_float4( a.x + (b.x - a.x) * t,
a.y + (b.y - a.y) * t,
a.z + (b.z - a.z) * t,
0.f);
}
// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut
int clipFace(const float4* pVtxIn, int numVertsIn, float4& planeNormalWS,float planeEqWS, float4* ppVtxOut)
{
int ve;
float ds, de;
int numVertsOut = 0;
if (numVertsIn < 2)
return 0;
float4 firstVertex=pVtxIn[numVertsIn-1];
float4 endVertex = pVtxIn[0];
ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;
for (ve = 0; ve < numVertsIn; ve++)
{
endVertex=pVtxIn[ve];
de = dot3F4(planeNormalWS,endVertex)+planeEqWS;
if (ds<0)
{
if (de<0)
{
// Start < 0, end < 0, so output endVertex
ppVtxOut[numVertsOut++] = endVertex;
}
else
{
// Start < 0, end >= 0, so output intersection
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
}
}
else
{
if (de<0)
{
// Start >= 0, end < 0 so output intersection and end
ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
ppVtxOut[numVertsOut++] = endVertex;
}
}
firstVertex = endVertex;
ds = de;
}
return numVertsOut;
}
int clipFaceAgainstHull(const float4& separatingNormal, const b3ConvexPolyhedronCL* hullA,
const float4& posA, const b3Quaternion& ornA, float4* worldVertsB1, int numWorldVertsB1,
float4* worldVertsB2, int capacityWorldVertsB2,
const float minDist, float maxDist,
const float4* verticesA, const b3GpuFace* facesA, const int* indicesA,
//const float4* verticesB, const b3GpuFace* facesB, const int* indicesB,
float4* contactsOut,
int contactCapacity)
{
int numContactsOut = 0;
float4* pVtxIn = worldVertsB1;
float4* pVtxOut = worldVertsB2;
int numVertsIn = numWorldVertsB1;
int numVertsOut = 0;
int closestFaceA=-1;
{
float dmin = FLT_MAX;
for(int face=0;face<hullA->m_numFaces;face++)
{
const float4 Normal = make_float4(
facesA[hullA->m_faceOffset+face].m_plane.x,
facesA[hullA->m_faceOffset+face].m_plane.y,
facesA[hullA->m_faceOffset+face].m_plane.z,0.f);
const float4 faceANormalWS = b3QuatRotate(ornA,Normal);
float d = dot3F4(faceANormalWS,separatingNormal);
if (d < dmin)
{
dmin = d;
closestFaceA = face;
}
}
}
if (closestFaceA<0)
return numContactsOut;
b3GpuFace polyA = facesA[hullA->m_faceOffset+closestFaceA];
// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
int numContacts = numWorldVertsB1;
int numVerticesA = polyA.m_numIndices;
for(int e0=0;e0<numVerticesA;e0++)
{
const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];
const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];
const float4 edge0 = a - b;
const float4 WorldEdge0 = b3QuatRotate(ornA,edge0);
float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float4 worldPlaneAnormal1 = b3QuatRotate(ornA,planeNormalA);
float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);
float4 worldA1 = transform(&a,&posA,&ornA);
float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);
float4 planeNormalWS = planeNormalWS1;
float planeEqWS=planeEqWS1;
//clip face
//clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);
//btSwap(pVtxIn,pVtxOut);
float4* tmp = pVtxOut;
pVtxOut = pVtxIn;
pVtxIn = tmp;
numVertsIn = numVertsOut;
numVertsOut = 0;
}
// only keep points that are behind the witness face
{
float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
float localPlaneEq = polyA.m_plane.w;
float4 planeNormalWS = b3QuatRotate(ornA,localPlaneNormal);
float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);
for (int i=0;i<numVertsIn;i++)
{
float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
if (depth <=minDist)
{
depth = minDist;
}
if (depth <=maxDist)
{
float4 pointInWorld = pVtxIn[i];
//resultOut.addContactPoint(separatingNormal,point,depth);
contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
//printf("depth=%f\n",depth);
}
}
}
return numContactsOut;
}
static int clipHullAgainstHull(const float4& separatingNormal,
const b3ConvexPolyhedronCL& hullA, const b3ConvexPolyhedronCL& hullB,
const float4& posA, const b3Quaternion& ornA,const float4& posB, const b3Quaternion& ornB,
float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,
const float minDist, float maxDist,
const float4* verticesA, const b3GpuFace* facesA, const int* indicesA,
const float4* verticesB, const b3GpuFace* facesB, const int* indicesB,
float4* contactsOut,
int contactCapacity)
{
int numContactsOut = 0;
int numWorldVertsB1= 0;
B3_PROFILE("clipHullAgainstHull");
float curMaxDist=maxDist;
int closestFaceB=-1;
float dmax = -FLT_MAX;
{
//B3_PROFILE("closestFaceB");
if (hullB.m_numFaces!=1)
{
//printf("wtf\n");
}
static bool once = true;
//printf("separatingNormal=%f,%f,%f\n",separatingNormal.x,separatingNormal.y,separatingNormal.z);
for(int face=0;face<hullB.m_numFaces;face++)
{
#ifdef BT_DEBUG_SAT_FACE
if (once)
printf("face %d\n",face);
const b3GpuFace* faceB = &facesB[hullB.m_faceOffset+face];
if (once)
{
for (int i=0;i<faceB->m_numIndices;i++)
{
float4 vert = verticesB[hullB.m_vertexOffset+indicesB[faceB->m_indexOffset+i]];
printf("vert[%d] = %f,%f,%f\n",i,vert.x,vert.y,vert.z);
}
}
#endif //BT_DEBUG_SAT_FACE
//if (facesB[hullB.m_faceOffset+face].m_numIndices>2)
{
const float4 Normal = make_float4(facesB[hullB.m_faceOffset+face].m_plane.x,
facesB[hullB.m_faceOffset+face].m_plane.y, facesB[hullB.m_faceOffset+face].m_plane.z,0.f);
const float4 WorldNormal = b3QuatRotate(ornB, Normal);
#ifdef BT_DEBUG_SAT_FACE
if (once)
printf("faceNormal = %f,%f,%f\n",Normal.x,Normal.y,Normal.z);
#endif
float d = dot3F4(WorldNormal,separatingNormal);
if (d > dmax)
{
dmax = d;
closestFaceB = face;
}
}
}
once = false;
}
b3Assert(closestFaceB>=0);
{
//B3_PROFILE("worldVertsB1");
const b3GpuFace& polyB = facesB[hullB.m_faceOffset+closestFaceB];
const int numVertices = polyB.m_numIndices;
for(int e0=0;e0<numVertices;e0++)
{
const float4& b = verticesB[hullB.m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);
}
}
if (closestFaceB>=0)
{
//B3_PROFILE("clipFaceAgainstHull");
numContactsOut = clipFaceAgainstHull((float4&)separatingNormal, &hullA,
posA,ornA,
worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,
verticesA, facesA, indicesA,
contactsOut,contactCapacity);
}
return numContactsOut;
}
#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];
#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}
#define REDUCE_MAX(v, n) {int i=0;\
for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }
#define REDUCE_MIN(v, n) {int i=0;\
for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }
int extractManifold(const float4* p, int nPoints, const float4& nearNormal, b3Int4* contactIdx)
{
if( nPoints == 0 )
return 0;
if (nPoints <=4)
return nPoints;
if (nPoints >64)
nPoints = 64;
float4 center = make_float4(0,0,0,0);
{
for (int i=0;i<nPoints;i++)
center += p[i];
center /= (float)nPoints;
}
// sample 4 directions
float4 aVector = p[0] - center;
float4 u = cross3( nearNormal, aVector );
float4 v = cross3( nearNormal, u );
u = normalize3( u );
v = normalize3( v );
//keep point with deepest penetration
float minW= FLT_MAX;
int minIndex=-1;
float4 maxDots;
maxDots.x = FLT_MIN;
maxDots.y = FLT_MIN;
maxDots.z = FLT_MIN;
maxDots.w = FLT_MIN;
// idx, distance
for(int ie = 0; ie<nPoints; ie++ )
{
if (p[ie].w<minW)
{
minW = p[ie].w;
minIndex=ie;
}
float f;
float4 r = p[ie]-center;
f = dot3F4( u, r );
if (f<maxDots.x)
{
maxDots.x = f;
contactIdx[0].x = ie;
}
f = dot3F4( -u, r );
if (f<maxDots.y)
{
maxDots.y = f;
contactIdx[0].y = ie;
}
f = dot3F4( v, r );
if (f<maxDots.z)
{
maxDots.z = f;
contactIdx[0].z = ie;
}
f = dot3F4( -v, r );
if (f<maxDots.w)
{
maxDots.w = f;
contactIdx[0].w = ie;
}
}
if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)
{
//replace the first contact with minimum (todo: replace contact with least penetration)
contactIdx[0].x = minIndex;
}
return 4;
}
void clipHullHullSingle(
int bodyIndexA, int bodyIndexB,
const float4& posA,
const b3Quaternion& ornA,
const float4& posB,
const b3Quaternion& ornB,
int collidableIndexA, int collidableIndexB,
const b3AlignedObjectArray<b3RigidBodyCL>* bodyBuf,
b3AlignedObjectArray<b3Contact4>* contactOut,
int& nContacts,
const b3AlignedObjectArray<b3ConvexPolyhedronCL>& hostConvexDataA,
const b3AlignedObjectArray<b3ConvexPolyhedronCL>& hostConvexDataB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA,
const b3AlignedObjectArray<b3GpuFace>& facesA,
const b3AlignedObjectArray<int>& indicesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
const b3AlignedObjectArray<b3GpuFace>& facesB,
const b3AlignedObjectArray<int>& indicesB,
const b3AlignedObjectArray<b3Collidable>& hostCollidablesA,
const b3AlignedObjectArray<b3Collidable>& hostCollidablesB,
const b3Vector3& sepNormalWorldSpace )
{
b3ConvexPolyhedronCL hullA, hullB;
b3Collidable colA = hostCollidablesA[collidableIndexA];
hullA = hostConvexDataA[colA.m_shapeIndex];
//printf("numvertsA = %d\n",hullA.m_numVertices);
b3Collidable colB = hostCollidablesB[collidableIndexB];
hullB = hostConvexDataB[colB.m_shapeIndex];
//printf("numvertsB = %d\n",hullB.m_numVertices);
float4 contactsOut[MAX_VERTS];
int contactCapacity = MAX_VERTS;
#ifdef _WIN32
b3Assert(_finite(bodyBuf->at(bodyIndexA).m_pos.x));
b3Assert(_finite(bodyBuf->at(bodyIndexB).m_pos.x));
#endif
{
float4 worldVertsB1[MAX_VERTS];
float4 worldVertsB2[MAX_VERTS];
int capacityWorldVerts = MAX_VERTS;
float4 hostNormal = make_float4(sepNormalWorldSpace.getX(),sepNormalWorldSpace.getY(),sepNormalWorldSpace.getZ(),0.f);
int shapeA = hostCollidablesA[collidableIndexA].m_shapeIndex;
int shapeB = hostCollidablesB[collidableIndexB].m_shapeIndex;
b3Scalar minDist = -1;
b3Scalar maxDist = 0.;
b3Transform trA,trB;
{
//B3_PROFILE("transform computation");
//trA.setIdentity();
trA.setOrigin(b3Vector3(posA.x,posA.y,posA.z));
trA.setRotation(b3Quaternion(ornA.x,ornA.y,ornA.z,ornA.w));
//trB.setIdentity();
trB.setOrigin(b3Vector3(posB.x,posB.y,posB.z));
trB.setRotation(b3Quaternion(ornB.x,ornB.y,ornB.z,ornB.w));
}
b3Quaternion trAorn = trA.getRotation();
b3Quaternion trBorn = trB.getRotation();
int numContactsOut = clipHullAgainstHull(hostNormal,
hostConvexDataA.at(shapeA),
hostConvexDataB.at(shapeB),
(float4&)trA.getOrigin(), (b3Quaternion&)trAorn,
(float4&)trB.getOrigin(), (b3Quaternion&)trBorn,
worldVertsB1,worldVertsB2,capacityWorldVerts,
minDist, maxDist,
(float4*)&verticesA[0], &facesA[0],&indicesA[0],
(float4*)&verticesB[0], &facesB[0],&indicesB[0],
contactsOut,contactCapacity);
if (numContactsOut>0)
{
B3_PROFILE("overlap");
float4 normalOnSurfaceB = -(float4&)hostNormal;
float4 centerOut;
b3Int4 contactIdx;
contactIdx.x = 0;
contactIdx.y = 1;
contactIdx.z = 2;
contactIdx.w = 3;
int numPoints = 0;
{
B3_PROFILE("extractManifold");
numPoints = extractManifold(contactsOut, numContactsOut, normalOnSurfaceB, &contactIdx);
}
b3Assert(numPoints);
contactOut->expand();
b3Contact4& contact = contactOut->at(nContacts);
contact.m_batchIdx = 0;//i;
contact.m_bodyAPtrAndSignBit = (bodyBuf->at(bodyIndexA).m_invMass==0)? -bodyIndexA:bodyIndexA;
contact.m_bodyBPtrAndSignBit = (bodyBuf->at(bodyIndexB).m_invMass==0)? -bodyIndexB:bodyIndexB;
contact.m_frictionCoeffCmp = 45874;
contact.m_restituitionCoeffCmp = 0;
float distance = 0.f;
for (int p=0;p<numPoints;p++)
{
contact.m_worldPos[p] = contactsOut[contactIdx.s[p]];
contact.m_worldNormal = normalOnSurfaceB;
}
//printf("bodyIndexA %d,bodyIndexB %d,normal=%f,%f,%f numPoints %d\n",bodyIndexA,bodyIndexB,normalOnSurfaceB.x,normalOnSurfaceB.y,normalOnSurfaceB.z,numPoints);
contact.m_worldNormal.w = numPoints;
nContacts++;
}
}
}
void computeContactConvexConvex(
int pairIndex,
int bodyIndexA, int bodyIndexB,
int collidableIndexA, int collidableIndexB,
const b3AlignedObjectArray<b3RigidBodyCL>& rigidBodies,
const b3AlignedObjectArray<b3Collidable>& collidables,
const b3AlignedObjectArray<b3ConvexPolyhedronCL>& convexShapes,
const b3AlignedObjectArray<b3Vector3>& convexVertices,
const b3AlignedObjectArray<b3Vector3>& uniqueEdges,
const b3AlignedObjectArray<int>& convexIndices,
const b3AlignedObjectArray<b3GpuFace>& faces,
b3AlignedObjectArray<b3Contact4>& globalContactsOut,
int& nGlobalContactsOut,
int maxContactCapacity)
{
b3Vector3 posA = rigidBodies[bodyIndexA].m_pos;
b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat;
b3Vector3 posB = rigidBodies[bodyIndexB].m_pos;
b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat;
/*int bodyIndexA, int bodyIndexB,
const float4& posA,
const float4& ornA,
const float4& posB,
const float4& ornB,
int collidableIndexA, int collidableIndexB,
const b3AlignedObjectArray<b3RigidBodyCL>* bodyBuf,
b3AlignedObjectArray<b3Contact4>* contactOut,
int& nContacts,
const b3AlignedObjectArray<b3ConvexPolyhedronCL>& hostConvexDataA,
const b3AlignedObjectArray<b3ConvexPolyhedronCL>& hostConvexDataB,
const b3AlignedObjectArray<b3Vector3>& verticesA,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA,
const b3AlignedObjectArray<b3GpuFace>& facesA,
const b3AlignedObjectArray<int>& indicesA,
const b3AlignedObjectArray<b3Vector3>& verticesB,
const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
const b3AlignedObjectArray<b3GpuFace>& facesB,
const b3AlignedObjectArray<int>& indicesB,
const b3AlignedObjectArray<b3Collidable>& hostCollidablesA,
const b3AlignedObjectArray<b3Collidable>& hostCollidablesB
)
*/
b3ConvexPolyhedronCL hullA, hullB;
b3Vector3 sepNormalWorldSpace;
b3Collidable colA = collidables[collidableIndexA];
hullA = convexShapes[colA.m_shapeIndex];
//printf("numvertsA = %d\n",hullA.m_numVertices);
b3Collidable colB = collidables[collidableIndexB];
hullB = convexShapes[colB.m_shapeIndex];
//printf("numvertsB = %d\n",hullB.m_numVertices);
float4 contactsOut[MAX_VERTS];
int contactCapacity = MAX_VERTS;
int numContactsOut=0;
#ifdef _WIN32
b3Assert(_finite(rigidBodies[bodyIndexA].m_pos.x));
b3Assert(_finite(rigidBodies[bodyIndexB].m_pos.x));
#endif
bool foundSepAxis = findSeparatingAxis(hullA,hullB,
posA,
ornA,
posB,
ornB,
convexVertices,uniqueEdges,faces,convexIndices,
convexVertices,uniqueEdges,faces,convexIndices,
sepNormalWorldSpace
);
if (foundSepAxis)
{
clipHullHullSingle(
bodyIndexA, bodyIndexB,
posA,ornA,
posB,ornB,
collidableIndexA, collidableIndexB,
&rigidBodies,
&globalContactsOut,
nGlobalContactsOut,
convexShapes,
convexShapes,
convexVertices,
uniqueEdges,
faces,
convexIndices,
convexVertices,
uniqueEdges,
faces,
convexIndices,
collidables,
collidables,
sepNormalWorldSpace);
}
}
void GpuSatCollision::computeConvexConvexContactsGPUSAT( const b3OpenCLArray<b3Int2>* pairs, int nPairs,
const b3OpenCLArray<b3RigidBodyCL>* bodyBuf,
@ -972,6 +1807,15 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( const b3OpenCLArray<b3I
}
if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&
hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)
{
computeContactConvexConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf,
hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity);
// printf("plane-convex\n");
}
}
@ -981,7 +1825,7 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( const b3OpenCLArray<b3I
contactOut->copyFromHost(hostContacts);
}
return;
#else
{
@ -1016,6 +1860,7 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( const b3OpenCLArray<b3I
}
}
#endif//CHECK_ON_HOST
B3_PROFILE("computeConvexConvexContactsGPUSAT");
@ -1508,7 +2353,7 @@ void GpuSatCollision::computeConvexConvexContactsGPUSAT( const b3OpenCLArray<b3I
nContacts = m_totalContactsOut.at(0);
contactOut->resize(nContacts);
// Contact4 pt = contactOut->at(0);
// b3Contact4 pt = contactOut->at(0);
// printf("nContacts = %d\n",nContacts);
}

View File

@ -1,4 +1,7 @@
bool b3GpuBatchContacts = true;
bool b3GpuSolveConstraint = true;
#include "b3GpuBatchingPgsSolver.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.h"
@ -37,8 +40,6 @@ enum
};
bool b3GpuBatchContacts = true;//true;
bool b3GpuSolveConstraint = true;//true;
struct b3GpuBatchingPgsSolverInternalData
@ -401,10 +402,14 @@ void b3GpuBatchingPgsSolver::solveContactConstraint( const b3OpenCLArray<b3Rigi
static bool sortfnc(const b3SortData& a,const b3SortData& b)
{
return (a.m_key<b.m_key);
}
void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const b3Config& config)
void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const b3Config& config, int static0Index)
{
m_data->m_bodyBufferGPU->setFromOpenCLBuffer(bodyBuf,numBodies);
m_data->m_inertiaBufferGPU->setFromOpenCLBuffer(inertiaBuf,numBodies);
@ -420,7 +425,7 @@ void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem
b3ConstraintCfg csCfg( dt );
csCfg.m_enableParallelSolve = true;
csCfg.m_averageExtent = .2f;//@TODO m_averageObjExtent;
csCfg.m_staticIdx = 0;//m_static0Index;//m_planeBodyIndex;
csCfg.m_staticIdx = static0Index;
b3OpenCLArray<b3RigidBodyCL>* bodyBuf = m_data->m_bodyBufferGPU;
@ -500,6 +505,7 @@ void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem
launcher.setConst( cdata.m_nContacts );
launcher.setConst( cdata.m_scale );
launcher.setConst(cdata.m_nSplit);
launcher.setConst(cdata.m_staticIdx);
launcher.launch1D( sortSize, 64 );
@ -519,12 +525,16 @@ void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
this->m_data->m_solverGPU->m_sort32->execute(keyValuesInOut);
/*b3AlignedObjectArray<b3SortData> hostValues;
keyValuesInOut.copyToHost(hostValues);
printf("hostValues.size=%d\n",hostValues.size());
*/
}
} else
{
b3OpenCLArray<b3SortData>& keyValuesInOut = *(m_data->m_solverGPU->m_sortDataBuffer);
b3AlignedObjectArray<b3SortData> hostValues;
keyValuesInOut.copyToHost(hostValues);
hostValues.quickSort(sortfnc);
keyValuesInOut.copyFromHost(hostValues);
}
{
// 4. find entries
@ -630,7 +640,9 @@ void b3GpuBatchingPgsSolver::solveContacts(int numBodies, cl_mem bodyBuf, cl_mem
int simdWidth =64;//-1;//32;
//int numBatches = sortConstraintByBatch( &cpuContacts[0]+offset, n, simdWidth,csCfg.m_staticIdx ,numBodies); // on GPU
int numBatches = sortConstraintByBatch3( &cpuContacts[0]+offset, n, simdWidth,csCfg.m_staticIdx ,numBodies); // on GPU
int numBatches = sortConstraintByBatch2( &cpuContacts[0]+offset, n, simdWidth,csCfg.m_staticIdx ,numBodies); // on GPU
//int numBatches = sortConstraintByBatch3( &cpuContacts[0]+offset, n, simdWidth,csCfg.m_staticIdx ,numBodies); // on GPU
maxNumBatches = b3Max(numBatches,maxNumBatches);
@ -724,10 +736,6 @@ void b3GpuBatchingPgsSolver::batchContacts( b3OpenCLArray<b3Contact4>* contacts,
static bool sortfnc(const b3SortData& a,const b3SortData& b)
{
return (a.m_key<b.m_key);
}

View File

@ -32,7 +32,7 @@ public:
b3GpuBatchingPgsSolver(cl_context ctx,cl_device_id device, cl_command_queue q,int pairCapacity);
virtual ~b3GpuBatchingPgsSolver();
void solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const struct b3Config& config);
void solveContacts(int numBodies, cl_mem bodyBuf, cl_mem inertiaBuf, int numContacts, cl_mem contactBuf, const struct b3Config& config, int static0Index);
};

View File

@ -157,6 +157,8 @@ m_queue(queue)
//m_data->m_contactCGPU = new b3OpenCLArray<Constraint4>(ctx,queue,config.m_maxBroadphasePairs,false);
//m_data->m_frictionCGPU = new b3OpenCLArray<adl::Solver<adl::TYPE_CL>::allocateFrictionConstraint( m_data->m_deviceCL, config.m_maxBroadphasePairs);
}

View File

@ -76,6 +76,10 @@ public:
int allocateCollidable();
int getStatic0Index() const
{
return m_static0Index;
}
b3Collidable& getCollidableCpu(int collidableIndex);
const b3Collidable& getCollidableCpu(int collidableIndex) const;

View File

@ -276,7 +276,9 @@ void b3GpuRigidBodyPipeline::stepSimulation(float deltaTime)
#endif //TEST_OTHER_GPU_SOLVER
{
b3Config config;
m_data->m_solver2->solveContacts(numBodies, gpuBodies.getBufferCL(),gpuInertias.getBufferCL(),numContacts, gpuContacts.getBufferCL(),config);
int static0Index = m_data->m_narrowphase->getStatic0Index();
m_data->m_solver2->solveContacts(numBodies, gpuBodies.getBufferCL(),gpuInertias.getBufferCL(),numContacts, gpuContacts.getBufferCL(),config, static0Index);
//m_data->m_solver4->solveContacts(m_data->m_narrowphase->getNumBodiesGpu(), gpuBodies.getBufferCL(), gpuInertias.getBufferCL(), numContacts, gpuContacts.getBufferCL());
@ -366,6 +368,7 @@ void b3GpuRigidBodyPipeline::writeAllInstancesToGpu()
int b3GpuRigidBodyPipeline::registerPhysicsInstance(float mass, const float* position, const float* orientation, int collidableIndex, int userIndex, bool writeInstanceToGpu)
{
b3Vector3 aabbMin(0,0,0),aabbMax(0,0,0);
int bodyIndex = m_data->m_narrowphase->getNumRigidBodies();

View File

@ -452,20 +452,21 @@ typedef struct
__kernel
__attribute__((reqd_work_group_size(WG_SIZE,1,1)))
void SetSortDataKernel(__global Contact4* gContact, __global Body* gBodies, __global int2* gSortDataOut,
int nContacts,
float scale,
int N_SPLIT
)
int nContacts,float scale,int N_SPLIT, int staticIdx)
{
int gIdx = GET_GLOBAL_IDX;
if( gIdx < nContacts )
{
int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit);
int aPtrAndSignBit = gContact[gIdx].m_bodyAPtrAndSignBit;
int aIdx = abs(aPtrAndSignBit );
int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit);
int idx = (gContact[gIdx].m_bodyAPtrAndSignBit<0)? bIdx: aIdx;
bool aStatic = (aPtrAndSignBit<0) ||(aPtrAndSignBit==staticIdx);
int idx = (aStatic)? bIdx: aIdx;
float4 p = gBodies[idx].m_pos;
int xIdx = (int)((p.x-((p.x<0.f)?1.f:0.f))*scale) & (N_SPLIT-1);
int zIdx = (int)((p.z-((p.z<0.f)?1.f:0.f))*scale) & (N_SPLIT-1);

View File

@ -454,20 +454,21 @@ static const char* solverSetup2CL= \
"__kernel\n"
"__attribute__((reqd_work_group_size(WG_SIZE,1,1)))\n"
"void SetSortDataKernel(__global Contact4* gContact, __global Body* gBodies, __global int2* gSortDataOut, \n"
"int nContacts,\n"
"float scale,\n"
"int N_SPLIT\n"
")\n"
"int nContacts,float scale,int N_SPLIT, int staticIdx)\n"
"\n"
"{\n"
" int gIdx = GET_GLOBAL_IDX;\n"
" \n"
" if( gIdx < nContacts )\n"
" {\n"
" int aIdx = abs(gContact[gIdx].m_bodyAPtrAndSignBit);\n"
" int aPtrAndSignBit = gContact[gIdx].m_bodyAPtrAndSignBit;\n"
"\n"
" int aIdx = abs(aPtrAndSignBit );\n"
" int bIdx = abs(gContact[gIdx].m_bodyBPtrAndSignBit);\n"
"\n"
" int idx = (gContact[gIdx].m_bodyAPtrAndSignBit<0)? bIdx: aIdx;\n"
" bool aStatic = (aPtrAndSignBit<0) ||(aPtrAndSignBit==staticIdx);\n"
" \n"
" int idx = (aStatic)? bIdx: aIdx;\n"
" float4 p = gBodies[idx].m_pos;\n"
" int xIdx = (int)((p.x-((p.x<0.f)?1.f:0.f))*scale) & (N_SPLIT-1);\n"
" int zIdx = (int)((p.z-((p.z<0.f)?1.f:0.f))*scale) & (N_SPLIT-1);\n"