Some changes in rendering, to get shadows for trimeshes

Add dynamic aabb tree (btDbvt) optimization for btCompoundShape/btCompoundCollisionAlgorithm
Add btTransformAabb util, todo: deploy it throughout the codebase
This commit is contained in:
erwin.coumans 2008-09-10 05:20:04 +00:00
parent aad1d574ef
commit 93d1d24234
10 changed files with 773 additions and 572 deletions

View File

@ -45,7 +45,7 @@ subject to the following restrictions:
#include "GlutStuff.h"
btVector3 centroid;
btVector3 centroid=btVector3(0,0,0);
btVector3 convexDecompositionObjectOffset(10,0,0);
#define CUBE_HALF_EXTENTS 4
@ -100,6 +100,7 @@ void ConvexDecompositionDemo::initPhysics(const char* filename)
#endif//USE_PARALLEL_DISPATCHER
convexDecompositionObjectOffset.setValue(10,0,0);
btVector3 worldAabbMin(-10000,-10000,-10000);
btVector3 worldAabbMax(10000,10000,10000);
@ -124,10 +125,13 @@ void ConvexDecompositionDemo::initPhysics(const char* filename)
class MyConvexDecomposition : public ConvexDecomposition::ConvexDecompInterface
{
ConvexDecompositionDemo* m_convexDemo;
public:
btAlignedObjectArray<btConvexHullShape*> m_convexShapes;
btAlignedObjectArray<btVector3> m_convexCentroids;
MyConvexDecomposition (FILE* outputFile,ConvexDecompositionDemo* demo)
:m_convexDemo(demo),
mBaseCount(0),
@ -162,6 +166,7 @@ void ConvexDecompositionDemo::initPhysics(const char* filename)
//calc centroid, to shift vertices around center of mass
centroid.setValue(0,0,0);
btAlignedObjectArray<btVector3> vertices;
if ( 1 )
{
@ -245,29 +250,17 @@ void ConvexDecompositionDemo::initPhysics(const char* filename)
btGeometryUtil::getVerticesFromPlaneEquations(shiftedPlaneEquations,shiftedVertices);
btCollisionShape* convexShape = new btConvexHullShape(&(shiftedVertices[0].getX()),shiftedVertices.size());
btConvexHullShape* convexShape = new btConvexHullShape(&(shiftedVertices[0].getX()),shiftedVertices.size());
#else //SHRINK_OBJECT_INWARDS
#ifdef USE_PARALLEL_DISPATCHER
//SPU/multi threaded version only supports convex hull with contiguous vertices at the moment
btCollisionShape* convexShape = new btConvexHullShape(&(vertices[0].getX()),vertices.size());
#else
btCollisionShape* convexShape = new btConvexTriangleMeshShape(trimesh);
#endif //USE_PARALLEL_DISPATCHER
btConvexHullShape* convexShape = new btConvexHullShape(&(vertices[0].getX()),vertices.size());
#endif
convexShape->setMargin(0.01);
m_convexShapes.push_back(convexShape);
m_convexCentroids.push_back(centroid);
m_convexDemo->m_collisionShapes.push_back(convexShape);
btTransform trans;
trans.setIdentity();
trans.setOrigin(centroid-convexDecompositionObjectOffset);
//btRigidBody* body = m_convexDemo->localCreateRigidBody( mass, trans,convexShape);
m_convexDemo->localCreateRigidBody( mass, trans,convexShape);
mBaseCount+=result.mHullVcount; // advance the 'base index' counter.
@ -394,6 +387,34 @@ void ConvexDecompositionDemo::initPhysics(const char* filename)
ConvexBuilder cb(desc.mCallback);
cb.process(desc);
//now create some bodies
{
btCompoundShape* compound = new btCompoundShape();
m_collisionShapes.push_back (compound);
btTransform trans;
trans.setIdentity();
for (int i=0;i<convexDecomposition.m_convexShapes.size();i++)
{
btVector3 centroid = convexDecomposition.m_convexCentroids[i];
trans.setOrigin(centroid);
btConvexHullShape* convexShape = convexDecomposition.m_convexShapes[i];
compound->addChildShape(trans,convexShape);
}
btScalar mass=10.f;
trans.setOrigin(-convexDecompositionObjectOffset);
localCreateRigidBody( mass, trans,compound);
convexDecompositionObjectOffset.setZ(6);
trans.setOrigin(-convexDecompositionObjectOffset);
localCreateRigidBody( mass, trans,compound);
convexDecompositionObjectOffset.setZ(-6);
trans.setOrigin(-convexDecompositionObjectOffset);
localCreateRigidBody( mass, trans,compound);
}
if (outputFile)
fclose(outputFile);

File diff suppressed because it is too large Load Diff

View File

@ -166,7 +166,7 @@ void OGL_displaylist_register_shape(btCollisionShape * shape)
glNewList(dlist.m_dlist,GL_COMPILE);
glEnable(GL_CULL_FACE);
// glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
@ -177,7 +177,7 @@ void OGL_displaylist_register_shape(btCollisionShape * shape)
concaveMesh->processAllTriangles(&drawCallback,aabbMin,aabbMax);
}
glDisable(GL_CULL_FACE);
// glDisable(GL_CULL_FACE);
glEndList();
}
@ -237,12 +237,16 @@ public:
} else
{
glBegin(GL_TRIANGLES);
glColor3f(1, 1, 1);
//glColor3f(1, 1, 1);
glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ());
//glColor3f(0, 1, 0);
glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ());
//glColor3f(0, 0, 1);
glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ());
glVertex3d(triangle[2].getX(), triangle[2].getY(), triangle[2].getZ());
glVertex3d(triangle[1].getX(), triangle[1].getY(), triangle[1].getZ());
glVertex3d(triangle[0].getX(), triangle[0].getY(), triangle[0].getZ());
glEnd();
}
}

View File

@ -16,12 +16,17 @@ subject to the following restrictions:
#include "BulletCollision/CollisionDispatch/btCompoundCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCompoundShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btAabbUtil2.h"
btCompoundCollisionAlgorithm::btCompoundCollisionAlgorithm( const btCollisionAlgorithmConstructionInfo& ci,btCollisionObject* body0,btCollisionObject* body1,bool isSwapped)
:btCollisionAlgorithm(ci),
m_isSwapped(isSwapped)
m_isSwapped(isSwapped),
m_sharedManifold(ci.m_manifold)
{
m_ownsManifold = false;
btCollisionObject* colObj = m_isSwapped? body1 : body0;
btCollisionObject* otherObj = m_isSwapped? body0 : body1;
assert (colObj->getCollisionShape()->isCompound());
@ -33,11 +38,17 @@ m_isSwapped(isSwapped)
m_childCollisionAlgorithms.resize(numChildren);
for (i=0;i<numChildren;i++)
{
btCollisionShape* tmpShape = colObj->getCollisionShape();
btCollisionShape* childShape = compoundShape->getChildShape(i);
colObj->internalSetTemporaryCollisionShape( childShape );
m_childCollisionAlgorithms[i] = ci.m_dispatcher1->findAlgorithm(colObj,otherObj);
colObj->internalSetTemporaryCollisionShape( tmpShape );
if (compoundShape->getDynamicAabbTree())
{
m_childCollisionAlgorithms[i] = 0;
} else
{
btCollisionShape* tmpShape = colObj->getCollisionShape();
btCollisionShape* childShape = compoundShape->getChildShape(i);
colObj->internalSetTemporaryCollisionShape( childShape );
m_childCollisionAlgorithms[i] = ci.m_dispatcher1->findAlgorithm(colObj,otherObj,m_sharedManifold);
colObj->internalSetTemporaryCollisionShape( tmpShape );
}
}
}
@ -48,11 +59,109 @@ btCompoundCollisionAlgorithm::~btCompoundCollisionAlgorithm()
int i;
for (i=0;i<numChildren;i++)
{
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
if (m_childCollisionAlgorithms[i])
{
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
}
}
}
struct btCompoundLeafCallback : btDbvt::ICollide
{
public:
btCollisionObject* m_compoundColObj;
btCollisionObject* m_otherObj;
btDispatcher* m_dispatcher;
const btDispatcherInfo& m_dispatchInfo;
btManifoldResult* m_resultOut;
btCollisionAlgorithm** m_childCollisionAlgorithms;
btPersistentManifold* m_sharedManifold;
btCompoundLeafCallback (btCollisionObject* compoundObj,btCollisionObject* otherObj,btDispatcher* dispatcher,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut,btCollisionAlgorithm** childCollisionAlgorithms,btPersistentManifold* sharedManifold)
:m_compoundColObj(compoundObj),m_otherObj(otherObj),m_dispatcher(dispatcher),m_dispatchInfo(dispatchInfo),m_resultOut(resultOut),
m_childCollisionAlgorithms(childCollisionAlgorithms),
m_sharedManifold(sharedManifold)
{
}
void ProcessChildShape(btCollisionShape* childShape,int index)
{
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
//backup
btTransform orgTrans = m_compoundColObj->getWorldTransform();
btTransform orgInterpolationTrans = m_compoundColObj->getInterpolationWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(index);
btTransform newChildWorldTrans = orgTrans*childTrans ;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
m_otherObj->getCollisionShape()->getAabb(m_otherObj->getWorldTransform(),aabbMin1,aabbMax1);
if (TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
m_compoundColObj->setWorldTransform( newChildWorldTrans);
m_compoundColObj->setInterpolationWorldTransform(newChildWorldTrans);
//the contactpoint is still projected back using the original inverted worldtrans
btCollisionShape* tmpShape = m_compoundColObj->getCollisionShape();
m_compoundColObj->internalSetTemporaryCollisionShape( childShape );
if (!m_childCollisionAlgorithms[index])
m_childCollisionAlgorithms[index] = m_dispatcher->findAlgorithm(m_compoundColObj,m_otherObj,m_sharedManifold);
m_childCollisionAlgorithms[index]->processCollision(m_compoundColObj,m_otherObj,m_dispatchInfo,m_resultOut);
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
{
btVector3 worldAabbMin,worldAabbMax;
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin0,aabbMax0,btVector3(1,1,1));
m_dispatchInfo.m_debugDraw->drawAabb(aabbMin1,aabbMax1,btVector3(1,1,1));
}
//revert back transform
m_compoundColObj->internalSetTemporaryCollisionShape( tmpShape);
m_compoundColObj->setWorldTransform( orgTrans );
m_compoundColObj->setInterpolationWorldTransform(orgInterpolationTrans);
}
}
void Process(const btDbvtNode* leaf)
{
int index = int(leaf->data);
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(m_compoundColObj->getCollisionShape());
btCollisionShape* childShape = compoundShape->getChildShape(index);
if (m_dispatchInfo.m_debugDraw && (m_dispatchInfo.m_debugDraw->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
{
btVector3 worldAabbMin,worldAabbMax;
btTransform orgTrans = m_compoundColObj->getWorldTransform();
btTransformAabb(leaf->volume.Mins(),leaf->volume.Maxs(),0.,orgTrans,worldAabbMin,worldAabbMax);
m_dispatchInfo.m_debugDraw->drawAabb(worldAabbMin,worldAabbMax,btVector3(1,0,0));
}
ProcessChildShape(childShape,index);
}
};
void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,btCollisionObject* body1,const btDispatcherInfo& dispatchInfo,btManifoldResult* resultOut)
{
btCollisionObject* colObj = m_isSwapped? body1 : body0;
@ -61,37 +170,69 @@ void btCompoundCollisionAlgorithm::processCollision (btCollisionObject* body0,bt
assert (colObj->getCollisionShape()->isCompound());
btCompoundShape* compoundShape = static_cast<btCompoundShape*>(colObj->getCollisionShape());
//We will use the OptimizedBVH, AABB tree to cull potential child-overlaps
//If both proxies are Compound, we will deal with that directly, by performing sequential/parallel tree traversals
//given Proxy0 and Proxy1, if both have a tree, Tree0 and Tree1, this means:
//determine overlapping nodes of Proxy1 using Proxy0 AABB against Tree1
//then use each overlapping node AABB against Tree0
//and vise versa.
btDbvt* tree = compoundShape->getDynamicAabbTree();
//use a dynamic aabb tree to cull potential child-overlaps
btCompoundLeafCallback callback(colObj,otherObj,m_dispatcher,dispatchInfo,resultOut,&m_childCollisionAlgorithms[0],m_sharedManifold);
int numChildren = m_childCollisionAlgorithms.size();
int i;
for (i=0;i<numChildren;i++)
if (tree)
{
//temporarily exchange parent btCollisionShape with childShape, and recurse
btCollisionShape* childShape = compoundShape->getChildShape(i);
//backup
btTransform orgTrans = colObj->getWorldTransform();
btTransform orgInterpolationTrans = colObj->getInterpolationWorldTransform();
btVector3 localAabbMin,localAabbMax;
btTransform otherInCompoundSpace;
otherInCompoundSpace = colObj->getWorldTransform().inverse() * otherObj->getWorldTransform();
otherObj->getCollisionShape()->getAabb(otherInCompoundSpace,localAabbMin,localAabbMax);
const btTransform& childTrans = compoundShape->getChildTransform(i);
btTransform newChildWorldTrans = orgTrans*childTrans ;
colObj->setWorldTransform( newChildWorldTrans);
colObj->setInterpolationWorldTransform(newChildWorldTrans);
const btDbvtVolume bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
//process all children, that overlap with the given AABB bounds
tree->collideTV(tree->m_root,bounds,callback);
} else
{
//iterate over all children, perform an AABB check inside ProcessChildShape
int numChildren = m_childCollisionAlgorithms.size();
int i;
for (i=0;i<numChildren;i++)
{
callback.ProcessChildShape(compoundShape->getChildShape(i),i);
}
}
{
//iterate over all children, perform an AABB check inside ProcessChildShape
int numChildren = m_childCollisionAlgorithms.size();
int i;
btManifoldArray manifoldArray;
for (i=0;i<numChildren;i++)
{
if (m_childCollisionAlgorithms[i])
{
btCollisionShape* childShape = compoundShape->getChildShape(i);
//if not longer overlapping, remove the algorithm
btTransform orgTrans = colObj->getWorldTransform();
btTransform orgInterpolationTrans = colObj->getInterpolationWorldTransform();
const btTransform& childTrans = compoundShape->getChildTransform(i);
btTransform newChildWorldTrans = orgTrans*childTrans ;
//perform an AABB check first
btVector3 aabbMin0,aabbMax0,aabbMin1,aabbMax1;
childShape->getAabb(newChildWorldTrans,aabbMin0,aabbMax0);
otherObj->getCollisionShape()->getAabb(otherObj->getWorldTransform(),aabbMin1,aabbMax1);
if (!TestAabbAgainstAabb2(aabbMin0,aabbMax0,aabbMin1,aabbMax1))
{
m_childCollisionAlgorithms[i]->~btCollisionAlgorithm();
m_dispatcher->freeCollisionAlgorithm(m_childCollisionAlgorithms[i]);
m_childCollisionAlgorithms[i] = 0;
}
}
}
//the contactpoint is still projected back using the original inverted worldtrans
btCollisionShape* tmpShape = colObj->getCollisionShape();
colObj->internalSetTemporaryCollisionShape( childShape );
m_childCollisionAlgorithms[i]->processCollision(colObj,otherObj,dispatchInfo,resultOut);
//revert back
colObj->internalSetTemporaryCollisionShape( tmpShape);
colObj->setWorldTransform( orgTrans );
colObj->setInterpolationWorldTransform(orgInterpolationTrans);
}
}

View File

@ -28,11 +28,13 @@ class btDispatcher;
class btDispatcher;
/// btCompoundCollisionAlgorithm supports collision between CompoundCollisionShapes and other collision shapes
/// Place holder, not fully implemented yet
class btCompoundCollisionAlgorithm : public btCollisionAlgorithm
{
btAlignedObjectArray<btCollisionAlgorithm*> m_childCollisionAlgorithms;
bool m_isSwapped;
class btPersistentManifold* m_sharedManifold;
bool m_ownsManifold;
public:

View File

@ -21,20 +21,7 @@ subject to the following restrictions:
void btBoxShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 halfExtents = getHalfExtentsWithoutMargin();
halfExtents += btVector3(getMargin(),getMargin(),getMargin());
btMatrix3x3 abs_b = t.getBasis().absolute();
btPoint3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtents),
abs_b[1].dot(halfExtents),
abs_b[2].dot(halfExtents));
aabbMin = center - extent;
aabbMax = center + extent;
btTransformAabb(getHalfExtentsWithoutMargin(),getMargin(),t,aabbMin,aabbMax);
}

View File

@ -14,23 +14,29 @@ subject to the following restrictions:
*/
#include "btCompoundShape.h"
#include "btCollisionShape.h"
#include "BulletCollision/BroadphaseCollision/btDbvt.h"
btCompoundShape::btCompoundShape()
:m_localAabbMin(btScalar(1e30),btScalar(1e30),btScalar(1e30)),
m_localAabbMax(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30)),
m_aabbTree(0),
m_collisionMargin(btScalar(0.)),
m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.))
m_localScaling(btScalar(1.),btScalar(1.),btScalar(1.)),
m_dynamicAabbTree(0)
{
void* mem = btAlignedAlloc(sizeof(btDbvt),16);
m_dynamicAabbTree = new(mem) btDbvt();
btAssert(mem==m_dynamicAabbTree);
}
btCompoundShape::~btCompoundShape()
{
if (m_dynamicAabbTree)
{
m_dynamicAabbTree->~btDbvt();
btAlignedFree(m_dynamicAabbTree);
}
}
void btCompoundShape::addChildShape(const btTransform& localTransform,btCollisionShape* shape)
@ -60,68 +66,85 @@ void btCompoundShape::addChildShape(const btTransform& localTransform,btCollisio
}
}
if (m_dynamicAabbTree)
{
const btDbvtVolume bounds=btDbvtVolume::FromMM(localAabbMin,localAabbMax);
int index = m_children.size()-1;
child.m_node = m_dynamicAabbTree->insert(bounds,(void*)index);
}
}
void btCompoundShape::removeChildShapeByIndex(int childShapeIndex)
{
btAssert(childShapeIndex >=0 && childShapeIndex < m_children.size());
if (m_dynamicAabbTree)
{
m_dynamicAabbTree->remove(m_children[childShapeIndex].m_node);
}
m_children.swap(childShapeIndex,m_children.size()-1);
m_children.pop_back();
}
void btCompoundShape::removeChildShape(btCollisionShape* shape)
{
bool done_removing;
// Find the children containing the shape specified, and remove those children.
do
{
done_removing = true;
for(int i = 0; i < m_children.size(); i++)
{
if(m_children[i].m_childShape == shape)
{
m_children.remove(m_children[i]);
done_removing = false; // Do another iteration pass after removing from the vector
break;
}
}
}
while (!done_removing);
recalculateLocalAabb();
// Find the children containing the shape specified, and remove those children.
//note: there might be multiple children using the same shape!
for(int i = m_children.size()-1; i >= 0 ; i--)
{
if(m_children[i].m_childShape == shape)
{
m_children.swap(i,m_children.size()-1);
m_children.pop_back();
//remove it from the m_dynamicAabbTree too
//m_dynamicAabbTree->remove(m_aabbProxies[i]);
//m_aabbProxies.swap(i,m_children.size()-1);
//m_aabbProxies.pop_back();
}
}
recalculateLocalAabb();
}
void btCompoundShape::recalculateLocalAabb()
{
// Recalculate the local aabb
// Brute force, it iterates over all the shapes left.
m_localAabbMin = btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30));
m_localAabbMax = btVector3(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
//extend the local aabbMin/aabbMax
for (int j = 0; j < m_children.size(); j++)
{
btVector3 localAabbMin,localAabbMax;
m_children[j].m_childShape->getAabb(m_children[j].m_transform, localAabbMin, localAabbMax);
for (int i=0;i<3;i++)
{
if (m_localAabbMin[i] > localAabbMin[i])
m_localAabbMin[i] = localAabbMin[i];
if (m_localAabbMax[i] < localAabbMax[i])
m_localAabbMax[i] = localAabbMax[i];
}
}
// Recalculate the local aabb
// Brute force, it iterates over all the shapes left.
m_localAabbMin = btVector3(btScalar(1e30),btScalar(1e30),btScalar(1e30));
m_localAabbMax = btVector3(btScalar(-1e30),btScalar(-1e30),btScalar(-1e30));
//extend the local aabbMin/aabbMax
for (int j = 0; j < m_children.size(); j++)
{
btVector3 localAabbMin,localAabbMax;
m_children[j].m_childShape->getAabb(m_children[j].m_transform, localAabbMin, localAabbMax);
for (int i=0;i<3;i++)
{
if (m_localAabbMin[i] > localAabbMin[i])
m_localAabbMin[i] = localAabbMin[i];
if (m_localAabbMax[i] < localAabbMax[i])
m_localAabbMax[i] = localAabbMax[i];
}
}
}
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
void btCompoundShape::getAabb(const btTransform& trans,btVector3& aabbMin,btVector3& aabbMax) const
{
btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
localHalfExtents += btVector3(getMargin(),getMargin(),getMargin());
btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btPoint3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
aabbMin = center-extent;
aabbMax = center+extent;
@ -134,9 +157,9 @@ void btCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia) co
ident.setIdentity();
btVector3 aabbMin,aabbMax;
getAabb(ident,aabbMin,aabbMax);
btVector3 halfExtents = (aabbMax-aabbMin)*btScalar(0.5);
btScalar lx=btScalar(2.)*(halfExtents.x());
btScalar ly=btScalar(2.)*(halfExtents.y());
btScalar lz=btScalar(2.)*(halfExtents.z());
@ -152,57 +175,57 @@ void btCompoundShape::calculateLocalInertia(btScalar mass,btVector3& inertia) co
void btCompoundShape::calculatePrincipalAxisTransform(btScalar* masses, btTransform& principal, btVector3& inertia) const
{
int n = m_children.size();
int n = m_children.size();
btScalar totalMass = 0;
btVector3 center(0, 0, 0);
for (int k = 0; k < n; k++)
{
center += m_children[k].m_transform.getOrigin() * masses[k];
totalMass += masses[k];
}
center /= totalMass;
principal.setOrigin(center);
btScalar totalMass = 0;
btVector3 center(0, 0, 0);
for (int k = 0; k < n; k++)
{
center += m_children[k].m_transform.getOrigin() * masses[k];
totalMass += masses[k];
}
center /= totalMass;
principal.setOrigin(center);
btMatrix3x3 tensor(0, 0, 0, 0, 0, 0, 0, 0, 0);
for (int k = 0; k < n; k++)
{
btVector3 i;
m_children[k].m_childShape->calculateLocalInertia(masses[k], i);
btMatrix3x3 tensor(0, 0, 0, 0, 0, 0, 0, 0, 0);
for (int k = 0; k < n; k++)
{
btVector3 i;
m_children[k].m_childShape->calculateLocalInertia(masses[k], i);
const btTransform& t = m_children[k].m_transform;
btVector3 o = t.getOrigin() - center;
//compute inertia tensor in coordinate system of compound shape
btMatrix3x3 j = t.getBasis().transpose();
j[0] *= i[0];
j[1] *= i[1];
j[2] *= i[2];
j = t.getBasis() * j;
//add inertia tensor
tensor[0] += j[0];
tensor[1] += j[1];
tensor[2] += j[2];
const btTransform& t = m_children[k].m_transform;
btVector3 o = t.getOrigin() - center;
//compute inertia tensor of pointmass at o
btScalar o2 = o.length2();
j[0].setValue(o2, 0, 0);
j[1].setValue(0, o2, 0);
j[2].setValue(0, 0, o2);
j[0] += o * -o.x();
j[1] += o * -o.y();
j[2] += o * -o.z();
//compute inertia tensor in coordinate system of compound shape
btMatrix3x3 j = t.getBasis().transpose();
j[0] *= i[0];
j[1] *= i[1];
j[2] *= i[2];
j = t.getBasis() * j;
//add inertia tensor of pointmass
tensor[0] += masses[k] * j[0];
tensor[1] += masses[k] * j[1];
tensor[2] += masses[k] * j[2];
}
//add inertia tensor
tensor[0] += j[0];
tensor[1] += j[1];
tensor[2] += j[2];
tensor.diagonalize(principal.getBasis(), btScalar(0.00001), 20);
inertia.setValue(tensor[0][0], tensor[1][1], tensor[2][2]);
//compute inertia tensor of pointmass at o
btScalar o2 = o.length2();
j[0].setValue(o2, 0, 0);
j[1].setValue(0, o2, 0);
j[2].setValue(0, 0, o2);
j[0] += o * -o.x();
j[1] += o * -o.y();
j[2] += o * -o.z();
//add inertia tensor of pointmass
tensor[0] += masses[k] * j[0];
tensor[1] += masses[k] * j[1];
tensor[2] += masses[k] * j[2];
}
tensor.diagonalize(principal.getBasis(), btScalar(0.00001), 20);
inertia.setValue(tensor[0][0], tensor[1][1], tensor[2][2]);
}

View File

@ -24,8 +24,8 @@ subject to the following restrictions:
#include "btCollisionMargin.h"
#include "LinearMath/btAlignedObjectArray.h"
class btOptimizedBvh;
//class btOptimizedBvh;
struct btDbvt;
ATTRIBUTE_ALIGNED16(struct) btCompoundShapeChild
{
@ -35,14 +35,15 @@ ATTRIBUTE_ALIGNED16(struct) btCompoundShapeChild
btCollisionShape* m_childShape;
int m_childShapeType;
btScalar m_childMargin;
struct btDbvtNode* m_node;
};
SIMD_FORCE_INLINE bool operator==(const btCompoundShapeChild& c1, const btCompoundShapeChild& c2)
{
return ( c1.m_transform == c2.m_transform &&
c1.m_childShape == c2.m_childShape &&
c1.m_childShapeType == c2.m_childShapeType &&
c1.m_childMargin == c2.m_childMargin );
return ( c1.m_transform == c2.m_transform &&
c1.m_childShape == c2.m_childShape &&
c1.m_childShapeType == c2.m_childShapeType &&
c1.m_childMargin == c2.m_childMargin );
}
/// btCompoundShape allows to store multiple other btCollisionShapes
@ -55,7 +56,8 @@ ATTRIBUTE_ALIGNED16(class) btCompoundShape : public btCollisionShape
btVector3 m_localAabbMin;
btVector3 m_localAabbMax;
btOptimizedBvh* m_aabbTree;
//btOptimizedBvh* m_aabbTree;
btDbvt* m_dynamicAabbTree;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
@ -66,11 +68,11 @@ public:
void addChildShape(const btTransform& localTransform,btCollisionShape* shape);
/** Remove all children shapes that contain the specified shape. */
/// Remove all children shapes that contain the specified shape
virtual void removeChildShape(btCollisionShape* shape);
void removeChildShapeByIndex(int childShapeindex);
int getNumChildShapes() const
{
@ -103,9 +105,9 @@ public:
///getAabb's default implementation is brute force, expected derived classes to implement a fast dedicated version
virtual void getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const;
/** Re-calculate the local Aabb. Is called at the end of removeChildShapes.
Use this yourself if you modify the children or their transforms. */
/** Re-calculate the local Aabb. Is called at the end of removeChildShapes.
Use this yourself if you modify the children or their transforms. */
virtual void recalculateLocalAabb();
virtual void setLocalScaling(const btVector3& scaling)
@ -118,7 +120,7 @@ public:
}
virtual void calculateLocalInertia(btScalar mass,btVector3& inertia) const;
virtual int getShapeType() const { return COMPOUND_SHAPE_PROXYTYPE;}
virtual void setMargin(btScalar margin)
@ -137,9 +139,9 @@ public:
//this is optional, but should make collision queries faster, by culling non-overlapping nodes
void createAabbTreeFromChildren();
const btOptimizedBvh* getAabbTree() const
btDbvt* getDynamicAabbTree()
{
return m_aabbTree;
return m_dynamicAabbTree;
}
///computes the exact moment of inertia and the transform from the coordinate system defined by the principal axes of the moment of inertia

View File

@ -18,6 +18,7 @@ subject to the following restrictions:
#include "LinearMath/btPoint3.h"
#include "LinearMath/btMatrix3x3.h"
#include "LinearMath/btAabbUtil2.h"
#include "btConvexInternalShape.h"
@ -46,28 +47,7 @@ public:
//lazy evaluation of local aabb
btAssert(m_isLocalAabbValid);
btAssert(m_localAabbMin.getX() <= m_localAabbMax.getX());
btAssert(m_localAabbMin.getY() <= m_localAabbMax.getY());
btAssert(m_localAabbMin.getZ() <= m_localAabbMax.getZ());
btVector3 localHalfExtents = btScalar(0.5)*(m_localAabbMax-m_localAabbMin);
localHalfExtents+= btVector3(margin,margin,margin);
btVector3 localCenter = btScalar(0.5)*(m_localAabbMax+m_localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btPoint3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
aabbMin = center-extent;
aabbMax = center+extent;
btTransformAabb(m_localAabbMin,m_localAabbMax,margin,trans,aabbMin,aabbMax);
}

View File

@ -17,6 +17,7 @@ subject to the following restrictions:
#ifndef AABB_UTIL2
#define AABB_UTIL2
#include "btTransform.h"
#include "btVector3.h"
#include "btMinMax.h"
@ -163,6 +164,38 @@ SIMD_FORCE_INLINE bool btRayAabb(const btVector3& rayFrom,
}
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& halfExtents, btScalar margin,const btTransform& t,btVector3& aabbMinOut,btVector3& aabbMaxOut)
{
btVector3 halfExtentsWithMargin = halfExtents+btVector3(margin,margin,margin);
btMatrix3x3 abs_b = t.getBasis().absolute();
btVector3 center = t.getOrigin();
btVector3 extent = btVector3(abs_b[0].dot(halfExtentsWithMargin),
abs_b[1].dot(halfExtentsWithMargin),
abs_b[2].dot(halfExtentsWithMargin));
aabbMinOut = center - extent;
aabbMaxOut = center + extent;
};
SIMD_FORCE_INLINE void btTransformAabb(const btVector3& localAabbMin,const btVector3& localAabbMax, btScalar margin,const btTransform& trans,btVector3& aabbMinOut,btVector3& aabbMaxOut)
{
btAssert(localAabbMin.getX() <= localAabbMax.getX());
btAssert(localAabbMin.getY() <= localAabbMax.getY());
btAssert(localAabbMin.getZ() <= localAabbMax.getZ());
btVector3 localHalfExtents = btScalar(0.5)*(localAabbMax-localAabbMin);
localHalfExtents+=btVector3(margin,margin,margin);
btVector3 localCenter = btScalar(0.5)*(localAabbMax+localAabbMin);
btMatrix3x3 abs_b = trans.getBasis().absolute();
btVector3 center = trans(localCenter);
btVector3 extent = btVector3(abs_b[0].dot(localHalfExtents),
abs_b[1].dot(localHalfExtents),
abs_b[2].dot(localHalfExtents));
aabbMinOut = center-extent;
aabbMaxOut = center+extent;
}
#endif