mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 22:00:05 +00:00
commit
c97d1041ed
@ -47,21 +47,19 @@ class CartPoleBulletEnv(gym.Env):
|
||||
self.action_space = spaces.Discrete(2)
|
||||
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
|
||||
|
||||
self._seed()
|
||||
self.seed()
|
||||
# self.reset()
|
||||
self.viewer = None
|
||||
self._configure()
|
||||
|
||||
|
||||
|
||||
def _configure(self, display=None):
|
||||
self.display = display
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
force = self.force_mag if action==1 else -self.force_mag
|
||||
|
||||
p.setJointMotorControl2(self.cartpole, 0, p.TORQUE_CONTROL, force=force)
|
||||
@ -79,7 +77,7 @@ class CartPoleBulletEnv(gym.Env):
|
||||
#print("state=",self.state)
|
||||
return np.array(self.state), reward, done, {}
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
# print("-----------reset simulation---------------")
|
||||
p.resetSimulation()
|
||||
self.cartpole = p.loadURDF(os.path.join(pybullet_data.getDataPath(),"cartpole.urdf"),[0,0,0])
|
||||
@ -101,11 +99,5 @@ class CartPoleBulletEnv(gym.Env):
|
||||
#print("self.state=", self.state)
|
||||
return np.array(self.state)
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
def render(self, mode='human', close=False):
|
||||
return
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
|
@ -53,7 +53,7 @@ class KukaCamGymEnv(gym.Env):
|
||||
else:
|
||||
p.connect(p.DIRECT)
|
||||
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observationDim = len(self.getExtendedObservation())
|
||||
#print("observationDim")
|
||||
@ -66,11 +66,11 @@ class KukaCamGymEnv(gym.Env):
|
||||
action_dim = 3
|
||||
self._action_bound = 1
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4))
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4), dtype=np.uint8)
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self.terminated = 0
|
||||
p.resetSimulation()
|
||||
p.setPhysicsEngineParameter(numSolverIterations=150)
|
||||
@ -95,7 +95,7 @@ class KukaCamGymEnv(gym.Env):
|
||||
def __del__(self):
|
||||
p.disconnect()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -127,7 +127,7 @@ class KukaCamGymEnv(gym.Env):
|
||||
self._observation = np_img_arr
|
||||
return self._observation
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
if (self._isDiscrete):
|
||||
dv = 0.01
|
||||
dx = [0,-dv,dv,0,0,0,0][action]
|
||||
@ -167,7 +167,7 @@ class KukaCamGymEnv(gym.Env):
|
||||
|
||||
return np.array(self._observation), reward, done, {}
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
def render(self, mode='human', close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
|
||||
@ -256,8 +256,8 @@ class KukaCamGymEnv(gym.Env):
|
||||
#print(reward)
|
||||
return reward
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -57,7 +57,7 @@ class KukaGymEnv(gym.Env):
|
||||
else:
|
||||
p.connect(p.DIRECT)
|
||||
#timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observationDim = len(self.getExtendedObservation())
|
||||
#print("observationDim")
|
||||
@ -74,7 +74,7 @@ class KukaGymEnv(gym.Env):
|
||||
self.observation_space = spaces.Box(-observation_high, observation_high)
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
#print("KukaGymEnv _reset")
|
||||
self.terminated = 0
|
||||
p.resetSimulation()
|
||||
@ -100,7 +100,7 @@ class KukaGymEnv(gym.Env):
|
||||
def __del__(self):
|
||||
p.disconnect()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -138,7 +138,7 @@ class KukaGymEnv(gym.Env):
|
||||
self._observation.extend(list(blockInGripperPosXYEulZ))
|
||||
return self._observation
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
if (self._isDiscrete):
|
||||
dv = 0.005
|
||||
dx = [0,-dv,dv,0,0,0,0][action]
|
||||
@ -183,7 +183,7 @@ class KukaGymEnv(gym.Env):
|
||||
|
||||
return np.array(self._observation), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
|
||||
@ -283,8 +283,8 @@ class KukaGymEnv(gym.Env):
|
||||
#print(reward)
|
||||
return reward
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -90,7 +90,7 @@ class KukaDiverseObjectEnv(KukaGymEnv):
|
||||
p.resetDebugVisualizerCamera(1.3,180,-41,[0.52,-0.2,-0.33])
|
||||
else:
|
||||
self.cid = p.connect(p.DIRECT)
|
||||
self._seed()
|
||||
self.seed()
|
||||
|
||||
if (self._isDiscrete):
|
||||
if self._removeHeightHack:
|
||||
@ -105,7 +105,7 @@ class KukaDiverseObjectEnv(KukaGymEnv):
|
||||
shape=(4,)) # dx, dy, dz, da
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
"""Environment reset called at the beginning of an episode.
|
||||
"""
|
||||
# Set the camera settings.
|
||||
@ -185,7 +185,7 @@ class KukaDiverseObjectEnv(KukaGymEnv):
|
||||
np_img_arr = np.reshape(rgb, (self._height, self._width, 4))
|
||||
return np_img_arr[:, :, :3]
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Environment step.
|
||||
|
||||
Args:
|
||||
@ -326,8 +326,6 @@ class KukaDiverseObjectEnv(KukaGymEnv):
|
||||
selected_objects_filenames += [found_object_directories[object_index]]
|
||||
return selected_objects_filenames
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
|
||||
reset = _reset
|
||||
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_reset = reset
|
||||
_step = step
|
||||
|
@ -2,7 +2,8 @@
|
||||
|
||||
"""
|
||||
|
||||
import os, inspect
|
||||
import os
|
||||
import inspect
|
||||
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
||||
parentdir = os.path.dirname(os.path.dirname(currentdir))
|
||||
os.sys.path.insert(0,parentdir)
|
||||
@ -10,6 +11,8 @@ os.sys.path.insert(0,parentdir)
|
||||
|
||||
import math
|
||||
import time
|
||||
from pkg_resources import parse_version
|
||||
|
||||
import gym
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
@ -17,7 +20,6 @@ import numpy as np
|
||||
import pybullet
|
||||
from . import bullet_client
|
||||
from . import minitaur
|
||||
import os
|
||||
import pybullet_data
|
||||
from . import minitaur_env_randomizer
|
||||
|
||||
@ -155,7 +157,7 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
else:
|
||||
self._pybullet_client = bullet_client.BulletClient()
|
||||
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observation_high = (
|
||||
self.minitaur.GetObservationUpperBound() + OBSERVATION_EPS)
|
||||
@ -163,8 +165,8 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
self.minitaur.GetObservationLowerBound() - OBSERVATION_EPS)
|
||||
action_dim = 8
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high)
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high, dtype=np.float32)
|
||||
self.viewer = None
|
||||
self._hard_reset = hard_reset # This assignment need to be after reset()
|
||||
|
||||
@ -174,7 +176,7 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
def configure(self, args):
|
||||
self._args = args
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if self._hard_reset:
|
||||
self._pybullet_client.resetSimulation()
|
||||
self._pybullet_client.setPhysicsEngineParameter(
|
||||
@ -217,7 +219,7 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
self._pybullet_client.stepSimulation()
|
||||
return self._noisy_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -231,7 +233,7 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
action = self.minitaur.ConvertFromLegModel(action)
|
||||
return action
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -268,7 +270,7 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
done = self._termination()
|
||||
return np.array(self._noisy_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos = self.minitaur.GetBasePosition()
|
||||
@ -386,7 +388,8 @@ class MinitaurBulletDuckEnv(gym.Env):
|
||||
self.minitaur.GetObservationUpperBound())
|
||||
return observation
|
||||
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -152,7 +152,7 @@ class MinitaurBulletEnv(gym.Env):
|
||||
else:
|
||||
self._pybullet_client = bullet_client.BulletClient()
|
||||
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observation_high = (
|
||||
self.minitaur.GetObservationUpperBound() + OBSERVATION_EPS)
|
||||
@ -160,8 +160,8 @@ class MinitaurBulletEnv(gym.Env):
|
||||
self.minitaur.GetObservationLowerBound() - OBSERVATION_EPS)
|
||||
action_dim = 8
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high)
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high, dtype=np.float32)
|
||||
self.viewer = None
|
||||
self._hard_reset = hard_reset # This assignment need to be after reset()
|
||||
|
||||
@ -171,7 +171,7 @@ class MinitaurBulletEnv(gym.Env):
|
||||
def configure(self, args):
|
||||
self._args = args
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if self._hard_reset:
|
||||
self._pybullet_client.resetSimulation()
|
||||
self._pybullet_client.setPhysicsEngineParameter(
|
||||
@ -215,7 +215,7 @@ class MinitaurBulletEnv(gym.Env):
|
||||
self._pybullet_client.stepSimulation()
|
||||
return self._noisy_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -229,7 +229,7 @@ class MinitaurBulletEnv(gym.Env):
|
||||
action = self.minitaur.ConvertFromLegModel(action)
|
||||
return action
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -274,7 +274,7 @@ class MinitaurBulletEnv(gym.Env):
|
||||
done = self._termination()
|
||||
return np.array(self._noisy_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos = self.minitaur.GetBasePosition()
|
||||
@ -388,8 +388,8 @@ class MinitaurBulletEnv(gym.Env):
|
||||
self.minitaur.GetObservationUpperBound())
|
||||
return observation
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -1,8 +1,9 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
|
||||
class Racecar:
|
||||
|
||||
def __init__(self, bullet_client, urdfRootPath='', timeStep=0.01):
|
||||
@ -80,4 +81,3 @@ class Racecar:
|
||||
self._p.setJointMotorControl2(self.racecarUniqueId,motor,self._p.VELOCITY_CONTROL,targetVelocity=targetVelocity,force=self.maxForce)
|
||||
for steer in self.steeringLinks:
|
||||
self._p.setJointMotorControl2(self.racecarUniqueId,steer,self._p.POSITION_CONTROL,targetPosition=steeringAngle)
|
||||
|
||||
|
@ -5,10 +5,10 @@ os.sys.path.insert(0,parentdir)
|
||||
|
||||
import math
|
||||
import gym
|
||||
import time
|
||||
from gym import spaces
|
||||
from gym.utils import seeding
|
||||
import numpy as np
|
||||
import time
|
||||
import pybullet
|
||||
from . import racecar
|
||||
import random
|
||||
@ -47,7 +47,7 @@ class RacecarGymEnv(gym.Env):
|
||||
else:
|
||||
self._p = bullet_client.BulletClient()
|
||||
|
||||
self._seed()
|
||||
self.seed()
|
||||
#self.reset()
|
||||
observationDim = 2 #len(self.getExtendedObservation())
|
||||
#print("observationDim")
|
||||
@ -60,11 +60,11 @@ class RacecarGymEnv(gym.Env):
|
||||
action_dim = 2
|
||||
self._action_bound = 1
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(-observation_high, observation_high)
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(-observation_high, observation_high, dtype=np.float32)
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self._p.resetSimulation()
|
||||
#p.setPhysicsEngineParameter(numSolverIterations=300)
|
||||
self._p.setTimeStep(self._timeStep)
|
||||
@ -95,7 +95,7 @@ class RacecarGymEnv(gym.Env):
|
||||
def __del__(self):
|
||||
self._p = 0
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -109,7 +109,7 @@ class RacecarGymEnv(gym.Env):
|
||||
self._observation.extend([ballPosInCar[0],ballPosInCar[1]])
|
||||
return self._observation
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
if (self._renders):
|
||||
basePos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
|
||||
#self._p.resetDebugVisualizerCamera(1, 30, -40, basePos)
|
||||
@ -139,7 +139,7 @@ class RacecarGymEnv(gym.Env):
|
||||
|
||||
return np.array(self._observation), reward, done, {}
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
def render(self, mode='human', close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
|
||||
@ -176,8 +176,8 @@ class RacecarGymEnv(gym.Env):
|
||||
#print(reward)
|
||||
return reward
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -49,7 +49,7 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
else:
|
||||
self._p = bullet_client.BulletClient()
|
||||
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observationDim = len(self.getExtendedObservation())
|
||||
#print("observationDim")
|
||||
@ -62,12 +62,12 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
action_dim = 2
|
||||
self._action_bound = 1
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4))
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(low=0, high=255, shape=(self._height, self._width, 4), dtype=np.uint8)
|
||||
|
||||
self.viewer = None
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self._p.resetSimulation()
|
||||
#p.setPhysicsEngineParameter(numSolverIterations=300)
|
||||
self._p.setTimeStep(self._timeStep)
|
||||
@ -98,7 +98,7 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
def __del__(self):
|
||||
self._p = 0
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -124,7 +124,7 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
self._observation = np_img_arr
|
||||
return self._observation
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
if (self._renders):
|
||||
basePos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
|
||||
#self._p.resetDebugVisualizerCamera(1, 30, -40, basePos)
|
||||
@ -154,7 +154,7 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
|
||||
return np.array(self._observation), reward, done, {}
|
||||
|
||||
def _render(self, mode='human', close=False):
|
||||
def render(self, mode='human', close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos,orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
|
||||
@ -191,8 +191,8 @@ class RacecarZEDGymEnv(gym.Env):
|
||||
#print(reward)
|
||||
return reward
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -56,21 +56,21 @@ class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
self._pybullet_client = None
|
||||
self._humanoid = None
|
||||
self._control_time_step = 8.*(1./240.)#0.033333
|
||||
self._seed()
|
||||
self.seed()
|
||||
observation_high = (self._get_observation_upper_bound())
|
||||
observation_low = (self._get_observation_lower_bound())
|
||||
action_dim = 36
|
||||
self._action_bound = 3.14 #todo: check this
|
||||
action_high = np.array([self._action_bound] * action_dim)
|
||||
self.action_space = spaces.Box(-action_high, action_high)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high)
|
||||
self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
|
||||
self.observation_space = spaces.Box(observation_low, observation_high, dtype=np.float32)
|
||||
|
||||
def _close(self):
|
||||
def close(self):
|
||||
self._humanoid = None
|
||||
self._pybullet_client.disconnect()
|
||||
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if (self._pybullet_client==None):
|
||||
if self._is_render:
|
||||
self._pybullet_client = bullet_client.BulletClient(
|
||||
@ -108,11 +108,11 @@ class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
self._pybullet_client.COV_ENABLE_RENDERING, 1)
|
||||
return self._get_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -157,7 +157,7 @@ class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
self._env_step_counter += 1
|
||||
return np.array(self._get_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode == "human":
|
||||
self._is_render = True
|
||||
if mode != "rgb_array":
|
||||
@ -252,12 +252,12 @@ class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
def configure(self, args):
|
||||
pass
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
close = _close
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
_close = close
|
||||
|
||||
|
||||
@property
|
||||
@ -275,5 +275,3 @@ class HumanoidDeepMimicGymEnv(gym.Env):
|
||||
@property
|
||||
def env_step_counter(self):
|
||||
return self._env_step_counter
|
||||
|
||||
|
||||
|
@ -24,7 +24,7 @@ class MJCFBaseBulletEnv(gym.Env):
|
||||
self.camera = Camera()
|
||||
self.isRender = render
|
||||
self.robot = robot
|
||||
self._seed()
|
||||
self.seed()
|
||||
self._cam_dist = 3
|
||||
self._cam_yaw = 0
|
||||
self._cam_pitch = -30
|
||||
@ -33,18 +33,19 @@ class MJCFBaseBulletEnv(gym.Env):
|
||||
|
||||
self.action_space = robot.action_space
|
||||
self.observation_space = robot.observation_space
|
||||
|
||||
def configure(self, args):
|
||||
self.robot.args = args
|
||||
def _seed(self, seed=None):
|
||||
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = gym.utils.seeding.np_random(seed)
|
||||
self.robot.np_random = self.np_random # use the same np_randomizer for robot as for env
|
||||
return [seed]
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if (self.physicsClientId<0):
|
||||
self.ownsPhysicsClient = True
|
||||
|
||||
|
||||
if self.isRender:
|
||||
self._p = bullet_client.BulletClient(connection_mode=pybullet.GUI)
|
||||
else:
|
||||
@ -68,8 +69,8 @@ class MJCFBaseBulletEnv(gym.Env):
|
||||
self.potential = self.robot.calc_potential()
|
||||
return s
|
||||
|
||||
def _render(self, mode, close=False):
|
||||
if (mode=="human"):
|
||||
def render(self, mode='human'):
|
||||
if mode == "human":
|
||||
self.isRender = True
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
@ -99,7 +100,7 @@ class MJCFBaseBulletEnv(gym.Env):
|
||||
return rgb_array
|
||||
|
||||
|
||||
def _close(self):
|
||||
def close(self):
|
||||
if (self.ownsPhysicsClient):
|
||||
if (self.physicsClientId>=0):
|
||||
self._p.disconnect()
|
||||
@ -108,27 +109,23 @@ class MJCFBaseBulletEnv(gym.Env):
|
||||
def HUD(self, state, a, done):
|
||||
pass
|
||||
|
||||
# backwards compatibility for gym >= v0.9.x
|
||||
# for extension of this class.
|
||||
def step(self, *args, **kwargs):
|
||||
if self.isRender:
|
||||
base_pos=[0,0,0]
|
||||
if (hasattr(self,'robot')):
|
||||
if (hasattr(self.robot,'body_xyz')):
|
||||
base_pos = self.robot.body_xyz
|
||||
# Keep the previous orientation of the camera set by the user.
|
||||
#[yaw, pitch, dist] = self._p.getDebugVisualizerCamera()[8:11]
|
||||
self._p.resetDebugVisualizerCamera(3,0,0, base_pos)
|
||||
|
||||
|
||||
return self._step(*args, **kwargs)
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
close = _close
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
|
||||
# def step(self, *args, **kwargs):
|
||||
# if self.isRender:
|
||||
# base_pos=[0,0,0]
|
||||
# if (hasattr(self,'robot')):
|
||||
# if (hasattr(self.robot,'body_xyz')):
|
||||
# base_pos = self.robot.body_xyz
|
||||
# # Keep the previous orientation of the camera set by the user.
|
||||
# #[yaw, pitch, dist] = self._p.getDebugVisualizerCamera()[8:11]
|
||||
# self._p.resetDebugVisualizerCamera(3,0,0, base_pos)
|
||||
#
|
||||
#
|
||||
# return self.step(*args, **kwargs)
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
||||
class Camera:
|
||||
def __init__(self):
|
||||
|
@ -7,7 +7,7 @@ from robot_locomotors import Hopper, Walker2D, HalfCheetah, Ant, Humanoid, Human
|
||||
|
||||
class WalkerBaseBulletEnv(MJCFBaseBulletEnv):
|
||||
def __init__(self, robot, render=False):
|
||||
print("WalkerBase::__init__ start")
|
||||
# print("WalkerBase::__init__ start")
|
||||
MJCFBaseBulletEnv.__init__(self, robot, render)
|
||||
|
||||
self.camera_x = 0
|
||||
@ -20,12 +20,12 @@ class WalkerBaseBulletEnv(MJCFBaseBulletEnv):
|
||||
self.stadium_scene = SinglePlayerStadiumScene(bullet_client, gravity=9.8, timestep=0.0165/4, frame_skip=4)
|
||||
return self.stadium_scene
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if (self.stateId>=0):
|
||||
#print("restoreState self.stateId:",self.stateId)
|
||||
self._p.restoreState(self.stateId)
|
||||
|
||||
r = MJCFBaseBulletEnv._reset(self)
|
||||
r = MJCFBaseBulletEnv.reset(self)
|
||||
self._p.configureDebugVisualizer(pybullet.COV_ENABLE_RENDERING,0)
|
||||
|
||||
self.parts, self.jdict, self.ordered_joints, self.robot_body = self.robot.addToScene(self._p,
|
||||
@ -56,7 +56,7 @@ class WalkerBaseBulletEnv(MJCFBaseBulletEnv):
|
||||
foot_ground_object_names = set(["floor"]) # to distinguish ground and other objects
|
||||
joints_at_limit_cost = -0.1 # discourage stuck joints
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
if not self.scene.multiplayer: # if multiplayer, action first applied to all robots, then global step() called, then _step() for all robots with the same actions
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
@ -125,41 +125,41 @@ class WalkerBaseBulletEnv(MJCFBaseBulletEnv):
|
||||
self.camera.move_and_look_at(self.camera_x, y-2.0, 1.4, x, y, 1.0)
|
||||
|
||||
class HopperBulletEnv(WalkerBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Hopper()
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot)
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
class Walker2DBulletEnv(WalkerBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Walker2D()
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot)
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
class HalfCheetahBulletEnv(WalkerBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = HalfCheetah()
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot)
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def _isDone(self):
|
||||
return False
|
||||
|
||||
class AntBulletEnv(WalkerBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Ant()
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot)
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
class HumanoidBulletEnv(WalkerBaseBulletEnv):
|
||||
def __init__(self, robot=Humanoid()):
|
||||
def __init__(self, robot=Humanoid(), render=False):
|
||||
self.robot = robot
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot)
|
||||
WalkerBaseBulletEnv.__init__(self, self.robot, render)
|
||||
self.electricity_cost = 4.25*WalkerBaseBulletEnv.electricity_cost
|
||||
self.stall_torque_cost = 4.25*WalkerBaseBulletEnv.stall_torque_cost
|
||||
|
||||
class HumanoidFlagrunBulletEnv(HumanoidBulletEnv):
|
||||
random_yaw = True
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = HumanoidFlagrun()
|
||||
HumanoidBulletEnv.__init__(self, self.robot)
|
||||
HumanoidBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
s = HumanoidBulletEnv.create_single_player_scene(self, bullet_client)
|
||||
@ -169,10 +169,10 @@ class HumanoidFlagrunBulletEnv(HumanoidBulletEnv):
|
||||
class HumanoidFlagrunHarderBulletEnv(HumanoidBulletEnv):
|
||||
random_lean = True # can fall on start
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = HumanoidFlagrunHarder()
|
||||
self.electricity_cost /= 4 # don't care that much about electricity, just stand up!
|
||||
HumanoidBulletEnv.__init__(self, self.robot)
|
||||
HumanoidBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
s = HumanoidBulletEnv.create_single_player_scene(self, bullet_client)
|
||||
|
@ -5,14 +5,14 @@ from robot_manipulators import Reacher, Pusher, Striker, Thrower
|
||||
|
||||
|
||||
class ReacherBulletEnv(MJCFBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Reacher()
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot)
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=0.0, timestep=0.0165, frame_skip=1)
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
assert (not self.scene.multiplayer)
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
@ -39,14 +39,14 @@ class ReacherBulletEnv(MJCFBaseBulletEnv):
|
||||
|
||||
|
||||
class PusherBulletEnv(MJCFBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Pusher()
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot)
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=9.81, timestep=0.0020, frame_skip=5)
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
|
||||
@ -93,9 +93,9 @@ class PusherBulletEnv(MJCFBaseBulletEnv):
|
||||
|
||||
|
||||
class StrikerBulletEnv(MJCFBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Striker()
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot)
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot, render)
|
||||
self._striked = False
|
||||
self._min_strike_dist = np.inf
|
||||
self.strike_threshold = 0.1
|
||||
@ -103,7 +103,7 @@ class StrikerBulletEnv(MJCFBaseBulletEnv):
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=9.81, timestep=0.0020, frame_skip=5)
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
|
||||
@ -169,14 +169,14 @@ class StrikerBulletEnv(MJCFBaseBulletEnv):
|
||||
|
||||
|
||||
class ThrowerBulletEnv(MJCFBaseBulletEnv):
|
||||
def __init__(self):
|
||||
def __init__(self, render=False):
|
||||
self.robot = Thrower()
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot)
|
||||
MJCFBaseBulletEnv.__init__(self, self.robot, render)
|
||||
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=0.0, timestep=0.0020, frame_skip=5)
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
state = self.robot.calc_state() # sets self.to_target_vec
|
||||
@ -231,4 +231,3 @@ class ThrowerBulletEnv(MJCFBaseBulletEnv):
|
||||
x *= 0.5
|
||||
y *= 0.5
|
||||
self.camera.move_and_look_at(0.3, 0.3, 0.3, x, y, z)
|
||||
|
||||
|
@ -15,17 +15,17 @@ class InvertedPendulumBulletEnv(MJCFBaseBulletEnv):
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=9.8, timestep=0.0165, frame_skip=1)
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if (self.stateId>=0):
|
||||
#print("InvertedPendulumBulletEnv reset p.restoreState(",self.stateId,")")
|
||||
self._p.restoreState(self.stateId)
|
||||
r = MJCFBaseBulletEnv._reset(self)
|
||||
r = MJCFBaseBulletEnv.reset(self)
|
||||
if (self.stateId<0):
|
||||
self.stateId = self._p.saveState()
|
||||
#print("InvertedPendulumBulletEnv reset self.stateId=",self.stateId)
|
||||
return r
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
state = self.robot.calc_state() # sets self.pos_x self.pos_y
|
||||
@ -57,15 +57,15 @@ class InvertedDoublePendulumBulletEnv(MJCFBaseBulletEnv):
|
||||
def create_single_player_scene(self, bullet_client):
|
||||
return SingleRobotEmptyScene(bullet_client, gravity=9.8, timestep=0.0165, frame_skip=1)
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if (self.stateId>=0):
|
||||
self._p.restoreState(self.stateId)
|
||||
r = MJCFBaseBulletEnv._reset(self)
|
||||
r = MJCFBaseBulletEnv.reset(self)
|
||||
if (self.stateId<0):
|
||||
self.stateId = self._p.saveState()
|
||||
return r
|
||||
|
||||
def _step(self, a):
|
||||
def step(self, a):
|
||||
self.robot.apply_action(a)
|
||||
self.scene.global_step()
|
||||
state = self.robot.calc_state() # sets self.pos_x self.pos_y
|
||||
|
@ -74,7 +74,7 @@ class MinitaurAlternatingLegsEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
be running, but only first num_steps_to_log will be recorded in logging.
|
||||
env_randomizer: An instance (or a list) of EnvRanzomier(s) that can
|
||||
randomize the environment during when env.reset() is called and add
|
||||
perturbations when env._step() is called.
|
||||
perturbations when env.step() is called.
|
||||
log_path: The path to write out logs. For the details of logging, refer to
|
||||
minitaur_logging.proto.
|
||||
"""
|
||||
@ -107,7 +107,7 @@ class MinitaurAlternatingLegsEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
self._cam_yaw = 30
|
||||
self._cam_pitch = -30
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self.desired_pitch = DESIRED_PITCH
|
||||
# In this environment, the actions are
|
||||
# [swing leg 1, swing leg 2, swing leg 3, swing leg 4,
|
||||
@ -123,7 +123,7 @@ class MinitaurAlternatingLegsEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
INIT_EXTENSION_POS + self._extension_offset[3]
|
||||
]
|
||||
initial_motor_angles = self._convert_from_leg_model(init_pose)
|
||||
super(MinitaurAlternatingLegsEnv, self)._reset(
|
||||
super(MinitaurAlternatingLegsEnv, self).reset(
|
||||
initial_motor_angles=initial_motor_angles, reset_duration=0.5)
|
||||
return self._get_observation()
|
||||
|
||||
|
@ -66,9 +66,9 @@ class MinitaurBallGymEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
self.observation_space = spaces.Box(np.array([-math.pi, 0]),
|
||||
np.array([math.pi, 100]))
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self._ball_id = 0
|
||||
super(MinitaurBallGymEnv, self)._reset()
|
||||
super(MinitaurBallGymEnv, self).reset()
|
||||
self._init_ball_theta = random.uniform(-INIT_BALL_ANGLE, INIT_BALL_ANGLE)
|
||||
self._init_ball_distance = INIT_BALL_DISTANCE
|
||||
self._ball_pos = [self._init_ball_distance *
|
||||
|
@ -85,7 +85,7 @@ class MinitaurFourLegStandEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
render: Whether to render the simulation.
|
||||
env_randomizer: An instance (or a list) of EnvRanzomier(s) that can
|
||||
randomize the environment during when env.reset() is called and add
|
||||
perturbations when env._step() is called.
|
||||
perturbations when env.step() is called.
|
||||
use_angular_velocity_in_observation: Whether to include roll_dot and
|
||||
pitch_dot of the base in the observation.
|
||||
use_motor_angle_in_observation: Whether to include motor angles in the
|
||||
@ -132,7 +132,7 @@ class MinitaurFourLegStandEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
self._cur_ori = [0, 0, 0, 1]
|
||||
self._goal_ori = [0, 0, 0, 1]
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self.desired_pitch = DESIRED_PITCH
|
||||
# In this environment, the actions are
|
||||
# [swing leg 1, swing leg 2, swing leg 3, swing leg 4,
|
||||
@ -150,11 +150,11 @@ class MinitaurFourLegStandEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
initial_motor_angles = self._convert_from_leg_model(init_pose)
|
||||
self._pybullet_client.resetBasePositionAndOrientation(
|
||||
0, [0, 0, 0], [0, 0, 0, 1])
|
||||
super(MinitaurFourLegStandEnv, self)._reset(
|
||||
super(MinitaurFourLegStandEnv, self).reset(
|
||||
initial_motor_angles=initial_motor_angles, reset_duration=0.5)
|
||||
return self._get_observation()
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -187,9 +187,9 @@ class MinitaurFourLegStandEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
action = self._transform_action_to_motor_command(action)
|
||||
t = self._env_step_counter % MOVING_FLOOR_TOTAL_STEP
|
||||
if t == 0:
|
||||
self._seed()
|
||||
self.seed()
|
||||
orientation_x = random.uniform(-0.2, 0.2)
|
||||
self._seed()
|
||||
self.seed()
|
||||
orientation_y = random.uniform(-0.2, 0.2)
|
||||
_, self._cur_ori = self._pybullet_client.getBasePositionAndOrientation(0)
|
||||
self._goal_ori = self._pybullet_client.getQuaternionFromEuler(
|
||||
|
@ -237,7 +237,7 @@ class MinitaurGymEnv(gym.Env):
|
||||
if self._urdf_version is None:
|
||||
self._urdf_version = DEFAULT_URDF_VERSION
|
||||
self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0)
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
observation_high = (self._get_observation_upper_bound() + OBSERVATION_EPS)
|
||||
observation_low = (self._get_observation_lower_bound() - OBSERVATION_EPS)
|
||||
@ -248,14 +248,14 @@ class MinitaurGymEnv(gym.Env):
|
||||
self.viewer = None
|
||||
self._hard_reset = hard_reset # This assignment need to be after reset()
|
||||
|
||||
def _close(self):
|
||||
def close(self):
|
||||
self.logging.save_episode(self._episode_proto)
|
||||
self.minitaur.Terminate()
|
||||
|
||||
def add_env_randomizer(self, env_randomizer):
|
||||
self._env_randomizers.append(env_randomizer)
|
||||
|
||||
def _reset(self, initial_motor_angles=None, reset_duration=1.0):
|
||||
def reset(self, initial_motor_angles=None, reset_duration=1.0):
|
||||
self._pybullet_client.configureDebugVisualizer(
|
||||
self._pybullet_client.COV_ENABLE_RENDERING, 0)
|
||||
self.logging.save_episode(self._episode_proto)
|
||||
@ -317,7 +317,7 @@ class MinitaurGymEnv(gym.Env):
|
||||
self._pybullet_client.COV_ENABLE_RENDERING, 1)
|
||||
return self._get_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
@ -331,7 +331,7 @@ class MinitaurGymEnv(gym.Env):
|
||||
action = self.minitaur.ConvertFromLegModel(action)
|
||||
return action
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -379,7 +379,7 @@ class MinitaurGymEnv(gym.Env):
|
||||
self.minitaur.Terminate()
|
||||
return np.array(self._get_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos = self.minitaur.GetBasePosition()
|
||||
@ -569,12 +569,12 @@ class MinitaurGymEnv(gym.Env):
|
||||
"""
|
||||
return len(self._get_observation())
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
close = _close
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
||||
|
||||
def set_time_step(self, control_step, simulation_step=0.001):
|
||||
"""Sets the time step of the environment.
|
||||
@ -617,5 +617,3 @@ class MinitaurGymEnv(gym.Env):
|
||||
@property
|
||||
def env_step_counter(self):
|
||||
return self._env_step_counter
|
||||
|
||||
|
||||
|
@ -27,7 +27,7 @@ class MinitaurRandomizeTerrainGymEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
|
||||
"""
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
self._pybullet_client.resetSimulation()
|
||||
self._pybullet_client.setPhysicsEngineParameter(
|
||||
numSolverIterations=self._num_bullet_solver_iterations)
|
||||
|
@ -90,7 +90,7 @@ class MinitaurReactiveEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
and moved to the origin.
|
||||
env_randomizer: An instance (or a list) of EnvRanzomier(s) that can
|
||||
randomize the environment during when env.reset() is called and add
|
||||
perturbations when env._step() is called.
|
||||
perturbations when env.step() is called.
|
||||
log_path: The path to write out logs. For the details of logging, refer to
|
||||
minitaur_logging.proto.
|
||||
"""
|
||||
@ -123,7 +123,7 @@ class MinitaurReactiveEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
self._cam_yaw = 30
|
||||
self._cam_pitch = -30
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
# TODO(b/73666007): Use composition instead of inheritance.
|
||||
# (http://go/design-for-testability-no-inheritance).
|
||||
init_pose = MinitaurPose(
|
||||
@ -137,7 +137,7 @@ class MinitaurReactiveEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
extension_angle_4=INIT_EXTENSION_POS)
|
||||
# TODO(b/73734502): Refactor input of _convert_from_leg_model to namedtuple.
|
||||
initial_motor_angles = self._convert_from_leg_model(list(init_pose))
|
||||
super(MinitaurReactiveEnv, self)._reset(
|
||||
super(MinitaurReactiveEnv, self).reset(
|
||||
initial_motor_angles=initial_motor_angles, reset_duration=0.5)
|
||||
return self._get_observation()
|
||||
|
||||
|
@ -101,13 +101,13 @@ class MinitaurStandGymEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
done = self._termination()
|
||||
return np.array(self._get_observation()), reward, done, {}
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
# At start, use policy_flip to lift the robot to its two legs. After the
|
||||
# robot reaches the lift up stage, give control back to the agent by
|
||||
# returning the current state and reward.
|
||||
if self._env_step_counter < 1:
|
||||
return self._stand_up()
|
||||
return super(MinitaurStandGymEnv, self)._step(action)
|
||||
return super(MinitaurStandGymEnv, self).step(action)
|
||||
|
||||
def _reward(self):
|
||||
"""Reward function for standing up pose.
|
||||
|
@ -85,7 +85,7 @@ class MinitaurTrottingEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
reposition the robot.
|
||||
env_randomizer: A list of EnvRandomizers that can randomize the
|
||||
environment during when env.reset() is called and add perturbation
|
||||
forces when env._step() is called.
|
||||
forces when env.step() is called.
|
||||
log_path: The path to write out logs. For the details of logging, refer to
|
||||
minitaur_logging.proto.
|
||||
init_extension: The initial reset length of the leg.
|
||||
@ -139,12 +139,12 @@ class MinitaurTrottingEnv(minitaur_gym_env.MinitaurGymEnv):
|
||||
self._cam_yaw = 30
|
||||
self._cam_pitch = -30
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
# In this environment, the actions are
|
||||
# [swing leg 1, swing leg 2, swing leg 3, swing leg 4,
|
||||
# extension leg 1, extension leg 2, extension leg 3, extension leg 4]
|
||||
initial_motor_angles = self._convert_from_leg_model(self._init_pose)
|
||||
super(MinitaurTrottingEnv, self)._reset(
|
||||
super(MinitaurTrottingEnv, self).reset(
|
||||
initial_motor_angles=initial_motor_angles, reset_duration=0.5)
|
||||
return self._get_observation()
|
||||
|
||||
|
@ -87,7 +87,7 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
|
||||
|
||||
self._pybullet_client.setAdditionalSearchPath(urdf_root)
|
||||
self._seed()
|
||||
self.seed()
|
||||
self.reset()
|
||||
|
||||
observation_high = (
|
||||
@ -108,7 +108,7 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
def configure(self, args):
|
||||
self._args = args
|
||||
|
||||
def _reset(self):
|
||||
def reset(self):
|
||||
if self._hard_reset:
|
||||
self._pybullet_client.resetSimulation()
|
||||
|
||||
@ -130,11 +130,11 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
|
||||
return self._get_observation()
|
||||
|
||||
def _seed(self, seed=None):
|
||||
def seed(self, seed=None):
|
||||
self.np_random, seed = seeding.np_random(seed)
|
||||
return [seed]
|
||||
|
||||
def _step(self, action):
|
||||
def step(self, action):
|
||||
"""Step forward the simulation, given the action.
|
||||
|
||||
Args:
|
||||
@ -173,7 +173,7 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
done = self._termination()
|
||||
return np.array(self._get_observation()), reward, done, {}
|
||||
|
||||
def _render(self, mode="rgb_array", close=False):
|
||||
def render(self, mode="rgb_array", close=False):
|
||||
if mode != "rgb_array":
|
||||
return np.array([])
|
||||
base_pos = [0,0,0]
|
||||
@ -196,8 +196,6 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
rgb_array = rgb_array[:, :, :3]
|
||||
return rgb_array
|
||||
|
||||
|
||||
|
||||
def _termination(self):
|
||||
terminate=self._example_sim.Termination()
|
||||
return terminate
|
||||
@ -206,14 +204,12 @@ class PyBulletSimGymEnv(gym.Env):
|
||||
reward = 0
|
||||
return reward
|
||||
|
||||
|
||||
def _get_observation(self):
|
||||
self._observation = self._example_sim.GetObservation()
|
||||
return self._observation
|
||||
|
||||
|
||||
if parse_version(gym.__version__)>=parse_version('0.9.6'):
|
||||
render = _render
|
||||
reset = _reset
|
||||
seed = _seed
|
||||
step = _step
|
||||
if parse_version(gym.__version__) < parse_version('0.9.6'):
|
||||
_render = render
|
||||
_reset = reset
|
||||
_seed = seed
|
||||
_step = step
|
||||
|
@ -22,9 +22,9 @@ class XmlBasedRobot:
|
||||
self.robot_body = None
|
||||
|
||||
high = np.ones([action_dim])
|
||||
self.action_space = gym.spaces.Box(-high, high)
|
||||
self.action_space = gym.spaces.Box(-high, high, dtype=np.float32)
|
||||
high = np.inf * np.ones([obs_dim])
|
||||
self.observation_space = gym.spaces.Box(-high, high)
|
||||
self.observation_space = gym.spaces.Box(-high, high, dtype=np.float32)
|
||||
|
||||
#self.model_xml = model_xml
|
||||
self.robot_name = robot_name
|
||||
|
Loading…
Reference in New Issue
Block a user