add FractureDemo to AllBulletDemos

improvements in CCD handling
some cleanup of CcdPhysicsDemo and BasicDemo
This commit is contained in:
erwin.coumans 2011-04-09 01:14:21 +00:00
parent 2291a6a9d3
commit cdddf9d25a
29 changed files with 550 additions and 867 deletions

View File

@ -41,7 +41,10 @@ SET(AllBulletDemos_SRCS
../ConcaveConvexcastDemo/ConcaveConvexcastDemo.cpp
../ConvexDecompositionDemo/ConvexDecompositionDemo.cpp
../SliderConstraintDemo/SliderConstraintDemo.cpp
../RagdollDemo/RagdollDemo.cpp
../RagdollDemo/RagdollDemo.cpp
../FractureDemo/FractureDemo.cpp
../FractureDemo/btFractureBody.cpp
../FractureDemo/btFractureDynamicsWorld.cpp
../GimpactTestDemo/GimpactTestDemo.cpp
../Raytracer/Raytracer.cpp
../GjkConvexCastDemo/LinearConvexCastDemo.cpp

View File

@ -18,6 +18,7 @@ subject to the following restrictions:
#include "../CcdPhysicsDemo/CcdPhysicsDemo.h"
#include "../BspDemo/BspDemo.h"
#include "../BasicDemo/BasicDemo.h"
#include "../FractureDemo/FractureDemo.h"
#include "../ConcaveDemo/ConcaveDemo.h"
#include "../ConcaveRaycastDemo/ConcaveRaycastDemo.h"
#include "../ConcaveConvexcastDemo/ConcaveConvexcastDemo.h"
@ -107,6 +108,7 @@ public:
btDemoEntry g_demoEntries[] =
{
// {"Box2dDemo",Box2dDemo::Create},
{"FractureDemo",FractureDemo::Create},
{"ForkLift Demo",ForkLiftDemo::Create},
{"Dynamic Control Demo",MotorDemo::Create},
{"ConstraintDemo",ConstraintDemo::Create},

View File

@ -30,23 +30,10 @@ subject to the following restrictions:
#include "BasicDemo.h"
#include "GlutStuff.h"
#include "GLDebugFont.h"
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include <stdio.h> //printf debugging
#include "GLDebugDrawer.h"
static GLDebugDrawer sDebugDrawer;
BasicDemo::BasicDemo()
:m_ccdMode(USE_SPECULULATIVE_CONTACTS)
{
setDebugMode(btIDebugDraw::DBG_DrawText);
setCameraDistance(btScalar(SCALING*50.));
}
void BasicDemo::clientMoveAndDisplay()
@ -59,15 +46,13 @@ void BasicDemo::clientMoveAndDisplay()
///step the simulation
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(1./60.);//ms / 1000000.f);
m_dynamicsWorld->stepSimulation(ms / 1000000.f);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
}
renderme();
displayText();
glFlush();
swapBuffers();
@ -75,62 +60,6 @@ void BasicDemo::clientMoveAndDisplay()
}
void BasicDemo::displayText()
{
int lineWidth=400;
int xStart = m_glutScreenWidth - lineWidth;
int yStart = 20;
if((getDebugMode() & btIDebugDraw::DBG_DrawText)!=0)
{
setOrthographicProjection();
glDisable(GL_LIGHTING);
glColor3f(0, 0, 0);
char buf[124];
glRasterPos3f(xStart, yStart, 0);
switch (m_ccdMode)
{
case USE_SPECULULATIVE_CONTACTS:
{
sprintf(buf,"Predictive contacts enabled");
break;
}
case USE_CONSERVATIVE_ADVANCEMENT:
{
sprintf(buf,"Conservative advancement enabled");
break;
};
case USE_NO_CCD:
{
sprintf(buf,"CCD disabled");
break;
}
default:
{
sprintf(buf,"unknown CCD setting");
};
};
GLDebugDrawString(xStart,20,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press 'p' to change CCD mode");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press '.' or right mouse to shoot boxes");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"space to restart, h(elp), t(ext), w(ire)");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
resetPerspectiveProjection();
glEnable(GL_LIGHTING);
}
}
void BasicDemo::displayCallback(void) {
@ -138,13 +67,9 @@ void BasicDemo::displayCallback(void) {
renderme();
displayText();
//optional but useful: debug drawing to detect problems
if (m_dynamicsWorld)
{
m_dynamicsWorld->debugDrawWorld();
}
glFlush();
swapBuffers();
@ -158,17 +83,15 @@ void BasicDemo::initPhysics()
{
setTexturing(true);
setShadows(true);
m_ShootBoxInitialSpeed = 1000.f;
setCameraDistance(btScalar(SCALING*50.));
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_collisionConfiguration->setConvexConvexMultipointIterations();
//m_collisionConfiguration->setConvexConvexMultipointIterations();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_collisionConfiguration->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE,CONVEX_SHAPE_PROXYTYPE));
m_broadphase = new btDbvtBroadphase();
@ -177,13 +100,7 @@ void BasicDemo::initPhysics()
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld ->setDebugDrawer(&sDebugDrawer);
if (m_ccdMode==USE_SPECULULATIVE_CONTACTS)
{
m_dynamicsWorld->getDispatchInfo().m_convexMaxDistanceUseCPT = true;
}
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
@ -258,9 +175,8 @@ void BasicDemo::initPhysics()
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
if (m_ccdMode==USE_SPECULULATIVE_CONTACTS)
body->setContactProcessingThreshold(1e30);
m_dynamicsWorld->addRigidBody(body);
}
}
@ -269,82 +185,12 @@ void BasicDemo::initPhysics()
}
void BasicDemo::clientResetScene()
{
exitPhysics();
initPhysics();
}
void BasicDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='p')
{
switch (m_ccdMode)
{
case USE_SPECULULATIVE_CONTACTS:
{
m_ccdMode = USE_CONSERVATIVE_ADVANCEMENT;
break;
}
case USE_CONSERVATIVE_ADVANCEMENT:
{
m_ccdMode = USE_NO_CCD;
break;
};
case USE_NO_CCD:
default:
{
m_ccdMode = USE_SPECULULATIVE_CONTACTS;
}
};
clientResetScene();
} else
{
DemoApplication::keyboardCallback(key,x,y);
}
}
void BasicDemo::shootBox(const btVector3& destination)
{
if (m_dynamicsWorld)
{
float mass = 1.f;
btTransform startTransform;
startTransform.setIdentity();
btVector3 camPos = getCameraPosition();
startTransform.setOrigin(camPos);
setShootBoxShape ();
btRigidBody* body = this->localCreateRigidBody(mass, startTransform,m_shootBoxShape);
body->setLinearFactor(btVector3(1,1,1));
//body->setRestitution(1);
btVector3 linVel(destination[0]-camPos[0],destination[1]-camPos[1],destination[2]-camPos[2]);
linVel.normalize();
linVel*=m_ShootBoxInitialSpeed;
body->getWorldTransform().setOrigin(camPos);
body->getWorldTransform().setRotation(btQuaternion(0,0,0,1));
body->setLinearVelocity(linVel);
body->setAngularVelocity(btVector3(0,0,0));
body->setContactProcessingThreshold(1e30);
///when using m_ccdMode, disable regular CCD
if (m_ccdMode==USE_CONSERVATIVE_ADVANCEMENT)
{
body->setCcdMotionThreshold(1.);
body->setCcdSweptSphereRadius(0.5f*SCALING);
}
}
}
void BasicDemo::exitPhysics()
{

View File

@ -47,20 +47,13 @@ class BasicDemo : public PlatformDemoApplication
btConstraintSolver* m_solver;
enum
{
USE_SPECULULATIVE_CONTACTS=0,
USE_CONSERVATIVE_ADVANCEMENT,
USE_NO_CCD
};
int m_ccdMode;
btDefaultCollisionConfiguration* m_collisionConfiguration;
public:
BasicDemo();
BasicDemo()
{
}
virtual ~BasicDemo()
{
exitPhysics();
@ -71,14 +64,8 @@ class BasicDemo : public PlatformDemoApplication
virtual void clientMoveAndDisplay();
void displayText();
virtual void keyboardCallback(unsigned char key, int x, int y);
virtual void displayCallback();
virtual void shootBox(const btVector3& destination);
virtual void clientResetScene();
static DemoApplication* Create()
{

View File

@ -18,62 +18,17 @@ subject to the following restrictions:
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btHashMap.h"
class OurValue
{
int m_uid;
#include "GLDebugDrawer.h"
static GLDebugDrawer sDebugDraw;
public:
OurValue(const btVector3& initialPos)
:m_position(initialPos)
{
static int gUid=0;
m_uid=gUid;
gUid++;
}
btVector3 m_position;
int getUid() const
{
return m_uid;
}
};
int main(int argc,char** argv)
{
///testing the btHashMap
btHashMap<btHashKey<OurValue>,OurValue> map;
OurValue value1(btVector3(2,3,4));
btHashKey<OurValue> key1(value1.getUid());
map.insert(key1,value1);
OurValue value2(btVector3(5,6,7));
btHashKey<OurValue> key2(value2.getUid());
map.insert(key2,value2);
{
OurValue value3(btVector3(7,8,9));
btHashKey<OurValue> key3(value3.getUid());
map.insert(key3,value3);
}
map.remove(key2);
// const OurValue* ourPtr = map.find(key1);
// for (int i=0;i<map.size();i++)
// {
// OurValue* tmp = map.getAtIndex(i);
//printf("tmp value=%f,%f,%f\n",tmp->m_position.getX(),tmp->m_position.getY(),tmp->m_position.getZ());
// }
BasicDemo ccdDemo;
ccdDemo.initPhysics();
ccdDemo.getDynamicsWorld()->setDebugDrawer(&sDebugDraw);
#ifdef CHECK_MEMORY_LEAKS
ccdDemo.exitPhysics();

View File

@ -324,10 +324,14 @@ void BenchmarkDemo::initPhysics()
setCameraDistance(btScalar(100.));
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
btDefaultCollisionConstructionInfo cci;
cci.m_defaultMaxPersistentManifoldPoolSize = 32768;
m_collisionConfiguration = new btDefaultCollisionConfiguration(cci);
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_dispatcher->setDispatcherFlags(btCollisionDispatcher::CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION);
#if USE_PARALLEL_DISPATCHER_BENCHMARK
@ -967,6 +971,9 @@ void BenchmarkDemo::createTest4()
convexHullShape->addPoint(vtx*btScalar(1./scaling));
}
//this will enable polyhedral contact clipping, better quality, slightly slower
//convexHullShape->initializePolyhedralFeatures();
btTransform trans;
trans.setIdentity();

View File

@ -22,7 +22,7 @@ subject to the following restrictions:
#include "GlutStuff.h"
#include "GLDebugDrawer.h"
GLDebugDrawer gDebugDrawer;
#define benchmarkDemo benchmarkDemo2
#define benchmarkDemo benchmarkDemo4
#endif //USE_GRAPHICAL_BENCHMARK

View File

@ -4,8 +4,8 @@ Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
@ -13,280 +13,118 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
//enable just one, DO_BENCHMARK_PYRAMIDS or DO_WALL
//#define DO_BENCHMARK_PYRAMIDS 1
#define DO_WALL 1
//Note: some of those settings need 'DO_WALL' demo
//#define USE_KINEMATIC_GROUND 1
//#define PRINT_CONTACT_STATISTICS 1
//#define USER_DEFINED_FRICTION_MODEL 1
//#define USE_CUSTOM_NEAR_CALLBACK 1
//#define CENTER_OF_MASS_SHIFT 1
//#define VERBOSE_TIMESTEPPING_CONSOLEOUTPUT 1
//#define USE_PARALLEL_DISPATCHER 1
//#define USE_PARALLEL_SOLVER 1 //experimental parallel solver
//from Bullet 2.68 onwards ODE Quickstep constraint solver is optional part of Bullet, re-distributed under the ZLib license with permission of Russell L. Smith
//#define COMPARE_WITH_QUICKSTEP 1
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionDispatch/btSphereSphereCollisionAlgorithm.h"
#include "BulletCollision/CollisionDispatch/btSphereTriangleCollisionAlgorithm.h"
#ifdef USE_PARALLEL_DISPATCHER
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#ifdef _WIN32
#include "BulletMultiThreaded/Win32ThreadSupport.h"
#include "BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
#endif //_WIN32
#ifdef USE_LIBSPE2
#include "../../Extras/BulletMultiThreaded/SpuLibspe2Support.h"
#endif //USE_LIBSPE2
#ifdef USE_PARALLEL_SOLVER
#include "BulletMultiThreaded/SpuParallelSolver.h"
#include "BulletMultiThreaded/SpuSolverTask/SpuParallellSolverTask.h"
#endif //USE_PARALLEL_SOLVER
#endif//USE_PARALLEL_DISPATCHER
#include "LinearMath/btQuickprof.h"
#include "LinearMath/btIDebugDraw.h"
#include "GLDebugFont.h"
#include <stdio.h> //printf debugging
static float gCollisionMargin = 0.05f;
#include "CcdPhysicsDemo.h"
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
btTransform comOffset;
btVector3 comOffsetVec(0,2,0);
extern float eye[3];
extern int glutScreenWidth;
extern int glutScreenHeight;
const int maxProxies = 32766;
const int maxOverlap = 65535;
bool createConstraint = true;//false;
#ifdef CENTER_OF_MASS_SHIFT
bool useCompound = true;
#else
bool useCompound = false;
#endif
#ifdef _DEBUG
const int gNumObjects = 120;
#else
const int gNumObjects = 120;//try this in release mode: 3000. never go above 16384, unless you increate maxNumObjects value in DemoApplication.cp
#endif
const int maxNumObjects = 32760;
int shapeIndex[maxNumObjects];
#define CUBE_HALF_EXTENTS 0.5
#define EXTRA_HEIGHT 1.f
#define EXTRA_HEIGHT -10.f
//GL_LineSegmentShape shapeE(btVector3(-50,0,0),
// btVector3(50,0,0));
#include "CcdPhysicsDemo.h"
#include "GlutStuff.h"
#include "GLDebugFont.h"
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include <stdio.h> //printf debugging
#include "GLDebugDrawer.h"
#if 0
extern btAlignedObjectArray<btVector3> debugContacts;
extern btAlignedObjectArray<btVector3> debugNormals;
#endif
static GLDebugDrawer sDebugDrawer;
void CcdPhysicsDemo::createStack( btCollisionShape* boxShape, float halfCubeSize, int size, float zPos )
CcdPhysicsDemo::CcdPhysicsDemo()
:m_ccdMode(USE_CCD)
{
btTransform trans;
trans.setIdentity();
for(int i=0; i<size; i++)
{
// This constructs a row, from left to right
int rowSize = size - i;
for(int j=0; j< rowSize; j++)
{
btVector3 pos;
pos.setValue(
-rowSize * halfCubeSize + halfCubeSize + j * 2.0f * halfCubeSize,
halfCubeSize + i * halfCubeSize * 2.0f,
zPos);
trans.setOrigin(pos);
btScalar mass = 1.f;
btRigidBody* body = 0;
body = localCreateRigidBody(mass,trans,boxShape);
#ifdef USER_DEFINED_FRICTION_MODEL
///Advanced use: override the friction solver
body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1;
#endif //USER_DEFINED_FRICTION_MODEL
}
}
setDebugMode(btIDebugDraw::DBG_DrawText+btIDebugDraw::DBG_NoHelpText);
setCameraDistance(btScalar(20.));
}
////////////////////////////////////
//by default, Bullet will use its own nearcallback, but you can override it using dispatcher->setNearCallback()
void customNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo)
{
btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;
if (dispatcher.needsCollision(colObj0,colObj1))
{
//dispatcher will keep algorithms persistent in the collision pair
if (!collisionPair.m_algorithm)
{
collisionPair.m_algorithm = dispatcher.findAlgorithm(colObj0,colObj1);
}
if (collisionPair.m_algorithm)
{
btManifoldResult contactPointResult(colObj0,colObj1);
if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
{
//discrete collision detection query
collisionPair.m_algorithm->processCollision(colObj0,colObj1,dispatchInfo,&contactPointResult);
} else
{
//continuous collision detection query, time of impact (toi)
float toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0,colObj1,dispatchInfo,&contactPointResult);
if (dispatchInfo.m_timeOfImpact > toi)
dispatchInfo.m_timeOfImpact = toi;
}
}
}
}
//experimental jitter damping (1 = no damping, 0 = total damping once motion below threshold)
extern btScalar gJitterVelocityDampingFactor;
extern int gNumManifold;
extern int gOverlappingPairs;
void CcdPhysicsDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
#ifdef USE_KINEMATIC_GROUND
//btQuaternion kinRotation(btVector3(0,0,1),0.);
btVector3 kinTranslation(-0.01,0,0);
//kinematic object
btCollisionObject* colObj = m_dynamicsWorld->getCollisionObjectArray()[0];
//is this a rigidbody with a motionstate? then use the motionstate to update positions!
if (btRigidBody::upcast(colObj) && btRigidBody::upcast(colObj)->getMotionState())
{
btTransform newTrans;
btRigidBody::upcast(colObj)->getMotionState()->getWorldTransform(newTrans);
newTrans.getOrigin()+=kinTranslation;
btRigidBody::upcast(colObj)->getMotionState()->setWorldTransform(newTrans);
} else
{
m_dynamicsWorld->getCollisionObjectArray()[0]->getWorldTransform().getOrigin() += kinTranslation;
}
#endif //USE_KINEMATIC_GROUND
float dt = getDeltaTimeMicroseconds() * 0.000001f;
// printf("dt = %f: ",dt);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//simple dynamics world doesn't handle fixed-time-stepping
float ms = getDeltaTimeMicroseconds();
///step the simulation
if (m_dynamicsWorld)
{
//#define FIXED_STEP 1
#ifdef FIXED_STEP
m_dynamicsWorld->stepSimulation(1.0f/60.f,0);
#else
//during idle mode, just run 1 simulation step maximum
int maxSimSubSteps = m_idle ? 1 : 1;
if (m_idle)
dt = 1.0/420.f;
int numSimSteps = 0;
numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps);
m_dynamicsWorld->stepSimulation(1./60.);//ms / 1000000.f);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
#ifdef VERBOSE_TIMESTEPPING_CONSOLEOUTPUT
if (!numSimSteps)
printf("Interpolated transforms\n");
else
{
if (numSimSteps > maxSimSubSteps)
{
//detect dropping frames
printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps);
} else
{
printf("Simulated (%i) steps\n",numSimSteps);
}
}
#endif //VERBOSE_TIMESTEPPING_CONSOLEOUTPUT
#endif
}
renderme();
#ifdef USE_QUICKPROF
btProfiler::beginBlock("render");
#endif //USE_QUICKPROF
renderme();
//render the graphics objects, with center of mass shift
updateCamera();
#ifdef USE_QUICKPROF
btProfiler::endBlock("render");
displayText();
#if 0
for (int i=0;i<debugContacts.size();i++)
{
getDynamicsWorld()->getDebugDrawer()->drawContactPoint(debugContacts[i],debugNormals[i],0,0,btVector3(1,0,0));
}
#endif
glFlush();
//some additional debugging info
#ifdef PRINT_CONTACT_STATISTICS
printf("num manifolds: %i\n",gNumManifold);
printf("num gOverlappingPairs: %i\n",gOverlappingPairs);
#endif //PRINT_CONTACT_STATISTICS
glutSwapBuffers();
glFlush();
swapBuffers();
}
void CcdPhysicsDemo::displayText()
{
int lineWidth=440;
int xStart = m_glutScreenWidth - lineWidth;
int yStart = 20;
if((getDebugMode() & btIDebugDraw::DBG_DrawText)!=0)
{
setOrthographicProjection();
glDisable(GL_LIGHTING);
glColor3f(0, 0, 0);
char buf[124];
glRasterPos3f(xStart, yStart, 0);
switch (m_ccdMode)
{
case USE_CCD:
{
sprintf(buf,"Predictive contacts and motion clamping");
break;
}
case USE_NO_CCD:
{
sprintf(buf,"CCD handling disabled");
break;
}
default:
{
sprintf(buf,"unknown CCD setting");
};
};
GLDebugDrawString(xStart,20,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press 'p' to change CCD mode");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press '.' or right mouse to shoot bullets");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"space to restart, h(elp), t(ext), w(ire)");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
resetPerspectiveProjection();
glEnable(GL_LIGHTING);
}
}
@ -294,233 +132,136 @@ void CcdPhysicsDemo::clientMoveAndDisplay()
void CcdPhysicsDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
//optional but useful: debug drawing
displayText();
//optional but useful: debug drawing to detect problems
if (m_dynamicsWorld)
{
m_dynamicsWorld->debugDrawWorld();
}
#if 0
for (int i=0;i<debugContacts.size();i++)
{
getDynamicsWorld()->getDebugDrawer()->drawContactPoint(debugContacts[i],debugNormals[i],0,0,btVector3(1,0,0));
}
#endif
glFlush();
glutSwapBuffers();
swapBuffers();
}
///User-defined friction model, the most simple friction model available: no friction
float myFrictionModel( btRigidBody& body1, btRigidBody& body2, btManifoldPoint& contactPoint, const btContactSolverInfo& solverInfo )
{
//don't do any friction
return 0.f;
}
void CcdPhysicsDemo::initPhysics()
{
setTexturing(true);
setShadows(false);
#ifdef USE_PARALLEL_DISPATCHER
#ifdef _WIN32
m_threadSupportSolver = 0;
m_threadSupportCollision = 0;
#endif //
#endif
//#define USE_GROUND_PLANE 1
#ifdef USE_GROUND_PLANE
m_collisionShapes.push_back(new btStaticPlaneShape(btVector3(0,1,0),0.5));
#else
///Please don't make the box sizes larger then 1000: the collision detection will be inaccurate.
///See http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=346
m_collisionShapes.push_back(new btBoxShape (btVector3(200,CUBE_HALF_EXTENTS,200)));
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
m_collisionShapes.push_back(new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
#else
// m_collisionShapes.push_back(new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
m_collisionShapes.push_back(new btCylinderShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
#endif
setShadows(true);
m_ShootBoxInitialSpeed = 4000.f;
#ifdef DO_BENCHMARK_PYRAMIDS
setCameraDistance(32.5f);
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
m_azi = 90.f;
#endif //DO_BENCHMARK_PYRAMIDS
m_dispatcher=0;
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
// m_collisionConfiguration->setConvexConvexMultipointIterations();
#ifdef USE_PARALLEL_DISPATCHER
int maxNumOutstandingTasks = 4;
#ifdef USE_WIN32_THREADING
m_threadSupportCollision = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"collision",
processCollisionTask,
createCollisionLocalStoreMemory,
maxNumOutstandingTasks));
#else
#ifdef USE_LIBSPE2
spe_program_handle_t * program_handle;
#ifndef USE_CESOF
program_handle = spe_image_open ("./spuCollision.elf");
if (program_handle == NULL)
{
perror( "SPU OPEN IMAGE ERROR\n");
}
else
{
printf( "IMAGE OPENED\n");
}
#else
extern spe_program_handle_t spu_program;
program_handle = &spu_program;
#endif
SpuLibspe2Support* threadSupportCollision = new SpuLibspe2Support( program_handle, maxNumOutstandingTasks);
#endif //USE_LIBSPE2
///Playstation 3 SPU (SPURS) version is available through PS3 Devnet
/// For Unix/Mac someone could implement a pthreads version of btThreadSupportInterface?
///you can hook it up to your custom task scheduler by deriving from btThreadSupportInterface
#endif
m_dispatcher = new SpuGatheringCollisionDispatcher(m_threadSupportCollision,maxNumOutstandingTasks,m_collisionConfiguration);
// m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#else
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#endif //USE_PARALLEL_DISPATCHER
#ifdef USE_CUSTOM_NEAR_CALLBACK
//this is optional
m_dispatcher->setNearCallback(customNearCallback);
#endif
m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_collisionConfiguration->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE,CONVEX_SHAPE_PROXYTYPE));
m_broadphase = new btDbvtBroadphase();
#ifdef COMPARE_WITH_QUICKSTEP
m_solver = new btOdeQuickstepConstraintSolver();
#else
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld ->setDebugDrawer(&sDebugDrawer);
m_dynamicsWorld->getSolverInfo().m_splitImpulse=true;
m_dynamicsWorld->getSolverInfo().m_numIterations = 20;
#ifdef USE_PARALLEL_SOLVER
m_threadSupportSolver = new Win32ThreadSupport(Win32ThreadSupport::Win32ThreadConstructionInfo(
"solver",
processSolverTask,
createSolverLocalStoreMemory,
maxNumOutstandingTasks));
m_solver = new btParallelSequentialImpulseSolver(m_threadSupportSolver,maxNumOutstandingTasks);
#else
btSequentialImpulseConstraintSolver* solver = new btSequentialImpulseConstraintSolver();
m_solver = solver;//new btOdeQuickstepConstraintSolver();
#endif //USE_PARALLEL_SOLVER
#endif
btDiscreteDynamicsWorld* world = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = world;
///SOLVER_RANDMIZE_ORDER makes cylinder stacking a bit more stable
world->getSolverInfo().m_solverMode |= SOLVER_RANDMIZE_ORDER;
#ifdef USER_DEFINED_FRICTION_MODEL
//user defined friction model is not supported in 'cache friendly' solver yet, so switch to old solver
world->getSolverInfo().m_solverMode = SOLVER_RANDMIZE_ORDER;
#endif //USER_DEFINED_FRICTION_MODEL
#ifdef DO_BENCHMARK_PYRAMIDS
world->getSolverInfo().m_numIterations = 4;
#endif //DO_BENCHMARK_PYRAMIDS
m_dynamicsWorld->getDispatchInfo().m_enableSPU = true;
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
#ifdef USER_DEFINED_FRICTION_MODEL
if (m_ccdMode==USE_CCD)
{
//m_solver->setContactSolverFunc(ContactSolverFunc func,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,DEFAULT_CONTACT_SOLVER_TYPE);
solver->SetFrictionSolverFunc(myFrictionModel,DEFAULT_CONTACT_SOLVER_TYPE,USER_CONTACT_SOLVER_TYPE1);
solver->SetFrictionSolverFunc(myFrictionModel,USER_CONTACT_SOLVER_TYPE1,USER_CONTACT_SOLVER_TYPE1);
//m_physicsEnvironmentPtr->setNumIterations(2);
m_dynamicsWorld->getDispatchInfo().m_useContinuous=true;
} else
{
m_dynamicsWorld->getDispatchInfo().m_useContinuous=false;
}
#endif //USER_DEFINED_FRICTION_MODEL
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
btBoxShape* box = new btBoxShape(btVector3(btScalar(110.),btScalar(1.),btScalar(110.)));
box->initializePolyhedralFeatures();
btCollisionShape* groundShape = box;
int i;
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
m_collisionShapes.push_back(new btCylinderShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
btTransform tr;
tr.setIdentity();
btTransform groundTransform;
groundTransform.setIdentity();
//groundTransform.setOrigin(btVector3(5,5,5));
for (i=0;i<gNumObjects;i++)
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
if (i>0)
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
int gNumObjects = 120;
int i;
for (i=0;i<gNumObjects;i++)
{
shapeIndex[i] = 1;//sphere
}
else
shapeIndex[i] = 0;
}
btCollisionShape* shape = m_collisionShapes[1];
btTransform trans;
trans.setIdentity();
if (useCompound)
{
btCompoundShape* compoundShape = new btCompoundShape();
btCollisionShape* oldShape = m_collisionShapes[1];
m_collisionShapes[1] = compoundShape;
btVector3 sphereOffset(0,0,2);
comOffset.setIdentity();
#ifdef CENTER_OF_MASS_SHIFT
comOffset.setOrigin(comOffsetVec);
compoundShape->addChildShape(comOffset,oldShape);
#else
compoundShape->addChildShape(tr,oldShape);
tr.setOrigin(sphereOffset);
compoundShape->addChildShape(tr,new btSphereShape(0.9));
#endif
}
#ifdef DO_WALL
for (i=0;i<gNumObjects;i++)
{
btCollisionShape* shape = m_collisionShapes[shapeIndex[i]];
shape->setMargin(gCollisionMargin);
bool isDyna = i>0;
btTransform trans;
trans.setIdentity();
if (i>0)
{
//stack them
int colsize = 10;
int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS);
@ -538,83 +279,91 @@ int maxNumOutstandingTasks = 4;
row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0);
trans.setOrigin(pos);
} else
{
trans.setOrigin(btVector3(0,EXTRA_HEIGHT-CUBE_HALF_EXTENTS,0));
float mass = 1.f;
btRigidBody* body = localCreateRigidBody(mass,trans,shape);
///when using m_ccdMode
if (m_ccdMode==USE_CCD)
{
body->setCcdMotionThreshold(1e-7);
body->setCcdSweptSphereRadius(0.9*CUBE_HALF_EXTENTS);
}
}
float mass = 1.f;
if (!isDyna)
mass = 0.f;
btRigidBody* body = localCreateRigidBody(mass,trans,shape);
#ifdef USE_KINEMATIC_GROUND
if (mass == 0.f)
{
body->setCollisionFlags( body->getCollisionFlags() | btCollisionObject::CF_KINEMATIC_OBJECT);
body->setActivationState(DISABLE_DEACTIVATION);
}
#endif //USE_KINEMATIC_GROUND
// Only do CCD if motion in one timestep (1.f/60.f) exceeds CUBE_HALF_EXTENTS
body->setCcdMotionThreshold( CUBE_HALF_EXTENTS );
//Experimental: better estimation of CCD Time of Impact:
body->setCcdSweptSphereRadius( 0.2*CUBE_HALF_EXTENTS );
#ifdef USER_DEFINED_FRICTION_MODEL
///Advanced use: override the friction solver
body->m_frictionSolverType = USER_CONTACT_SOLVER_TYPE1;
#endif //USER_DEFINED_FRICTION_MODEL
}
#endif
#ifdef DO_BENCHMARK_PYRAMIDS
btTransform trans;
trans.setIdentity();
btScalar halfExtents = CUBE_HALF_EXTENTS;
trans.setOrigin(btVector3(0,-halfExtents,0));
localCreateRigidBody(0.f,trans,m_collisionShapes[shapeIndex[0]]);
int numWalls = 15;
int wallHeight = 15;
float wallDistance = 3;
for (int i=0;i<numWalls;i++)
{
float zPos = (i-numWalls/2) * wallDistance;
createStack(m_collisionShapes[shapeIndex[1]],halfExtents,wallHeight,zPos);
}
// createStack(m_collisionShapes[shapeIndex[1]],halfExtends,20,10);
// createStack(m_collisionShapes[shapeIndex[1]],halfExtends,20,20);
#define DESTROYER_BALL 1
#ifdef DESTROYER_BALL
btTransform sphereTrans;
sphereTrans.setIdentity();
sphereTrans.setOrigin(btVector3(0,2,40));
btSphereShape* ball = new btSphereShape(2.f);
m_collisionShapes.push_back(ball);
btRigidBody* ballBody = localCreateRigidBody(10000.f,sphereTrans,ball);
ballBody->setLinearVelocity(btVector3(0,0,-10));
#endif
#endif //DO_BENCHMARK_PYRAMIDS
// clientResetScene();
}
void CcdPhysicsDemo::clientResetScene()
{
exitPhysics();
initPhysics();
}
void CcdPhysicsDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='p')
{
switch (m_ccdMode)
{
case USE_CCD:
{
m_ccdMode = USE_NO_CCD;
break;
}
case USE_NO_CCD:
default:
{
m_ccdMode = USE_CCD;
}
};
clientResetScene();
} else
{
DemoApplication::keyboardCallback(key,x,y);
}
}
void CcdPhysicsDemo::shootBox(const btVector3& destination)
{
if (m_dynamicsWorld)
{
float mass = 1.f;
btTransform startTransform;
startTransform.setIdentity();
btVector3 camPos = getCameraPosition();
startTransform.setOrigin(camPos);
setShootBoxShape ();
btRigidBody* body = this->localCreateRigidBody(mass, startTransform,m_shootBoxShape);
body->setLinearFactor(btVector3(1,1,1));
//body->setRestitution(1);
btVector3 linVel(destination[0]-camPos[0],destination[1]-camPos[1],destination[2]-camPos[2]);
linVel.normalize();
linVel*=m_ShootBoxInitialSpeed;
body->getWorldTransform().setOrigin(camPos);
body->getWorldTransform().setRotation(btQuaternion(0,0,0,1));
body->setLinearVelocity(linVel);
body->setAngularVelocity(btVector3(0,0,0));
body->setContactProcessingThreshold(1e30);
///when using m_ccdMode, disable regular CCD
if (m_ccdMode==USE_CCD)
{
body->setCcdMotionThreshold(0.0001);
body->setCcdSweptSphereRadius(0.4f);
}
}
}
@ -622,7 +371,6 @@ int maxNumOutstandingTasks = 4;
void CcdPhysicsDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
@ -643,42 +391,23 @@ void CcdPhysicsDemo::exitPhysics()
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
m_collisionShapes[j] = 0;
delete shape;
}
m_collisionShapes.clear();
//delete dynamics world
delete m_dynamicsWorld;
//delete solver
delete m_solver;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef _WIN32
if (m_threadSupportSolver)
{
delete m_threadSupportSolver;
}
#endif
#endif
//delete broadphase
delete m_broadphase;
//delete dispatcher
delete m_dispatcher;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef _WIN32
if (m_threadSupportCollision)
{
delete m_threadSupportCollision;
}
#endif
#endif
delete m_collisionConfiguration;
}

View File

@ -12,10 +12,17 @@ subject to the following restrictions:
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef CCD_PHYSICS_DEMO_H
#define CCD_PHYSICS_DEMO_H
#ifndef BT_CCD_PHYSICS_DEMO_H
#define BT_CCD_PHYSICS_DEMO_H
#ifdef _WINDOWS
#include "Win32DemoApplication.h"
#define PlatformDemoApplication Win32DemoApplication
#else
#include "GlutDemoApplication.h"
#define PlatformDemoApplication GlutDemoApplication
#endif
#include "LinearMath/btAlignedObjectArray.h"
class btBroadphaseInterface;
@ -26,9 +33,9 @@ class btConstraintSolver;
struct btCollisionAlgorithmCreateFunc;
class btDefaultCollisionConfiguration;
///CcdPhysicsDemo is good starting point for learning the code base and porting.
///CcdPhysicsDemo shows basic stacking using Bullet physics, and allows toggle of Ccd (using key '1')
class CcdPhysicsDemo : public GlutDemoApplication
class CcdPhysicsDemo : public PlatformDemoApplication
{
//keep the collision shapes, for deletion/cleanup
@ -38,36 +45,39 @@ class CcdPhysicsDemo : public GlutDemoApplication
btCollisionDispatcher* m_dispatcher;
#ifdef USE_PARALLEL_DISPATCHER
#ifdef WIN32
class Win32ThreadSupport* m_threadSupportCollision;
class Win32ThreadSupport* m_threadSupportSolver;
#endif
#endif
btConstraintSolver* m_solver;
btCollisionAlgorithmCreateFunc* m_boxBoxCF;
enum
{
USE_CCD=1,
USE_NO_CCD
};
int m_ccdMode;
btDefaultCollisionConfiguration* m_collisionConfiguration;
public:
void initPhysics();
void exitPhysics();
CcdPhysicsDemo();
virtual ~CcdPhysicsDemo()
{
exitPhysics();
}
void initPhysics();
void exitPhysics();
virtual void clientMoveAndDisplay();
void displayText();
virtual void keyboardCallback(unsigned char key, int x, int y);
virtual void displayCallback();
void createStack( btCollisionShape* boxShape, float halfCubeSize, int size, float zPos );
virtual void shootBox(const btVector3& destination);
virtual void clientResetScene();
static DemoApplication* Create()
{
@ -77,7 +87,8 @@ class CcdPhysicsDemo : public GlutDemoApplication
return demo;
}
};
#endif //CCD_PHYSICS_DEMO_H
#endif //BT_CCD_PHYSICS_DEMO_H

View File

@ -68,6 +68,7 @@ void CharacterDemo::initPhysics()
m_constraintSolver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_constraintSolver,m_collisionConfiguration);
m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration=0.0001f;
#ifdef DYNAMIC_CHARACTER_CONTROLLER
m_character = new DynamicCharacterController ();

View File

@ -20,22 +20,7 @@ subject to the following restrictions:
#include "GL_ShapeDrawer.h"
#include "GlutStuff.h"
//#define BATCH_RAYCASTER
#ifdef BATCH_RAYCASTER
#include "BulletMultiThreaded/SpuBatchRaycaster.h"
static SpuBatchRaycaster* gBatchRaycaster = NULL;
#ifdef USE_LIBSPE2
#include "BulletMultiThreaded/SpuLibspe2Support.h"
#elif defined (_WIN32)
#include "BulletMultiThreaded/Win32ThreadSupport.h"
#else
//other platforms run the parallel code sequentially (until pthread support or other parallel implementation is added)
#include "BulletMultiThreaded/SequentialThreadSupport.h"
#endif //USE_LIBSPE2
#endif //BATCH_RAYCASTER
static GLDebugDrawer sDebugDraw;
static btVector3* gVertices=0;
static int* gIndices=0;
@ -290,6 +275,7 @@ void ConcaveRaycastDemo::keyboardCallback(unsigned char key, int x, int y)
void ConcaveRaycastDemo::initPhysics()
{
m_ShootBoxInitialSpeed = 1000;
#define TRISIZE 10.f
@ -346,7 +332,8 @@ void ConcaveRaycastDemo::initPhysics()
m_broadphase = new btAxisSweep3(worldMin,worldMax);
m_solver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld->getSolverInfo().m_splitImpulse=true;
m_dynamicsWorld->setDebugDrawer(&sDebugDraw);
float mass = 0.f;
btTransform startTransform;
@ -387,6 +374,41 @@ int maxNumOutstandingTasks = 4;
raycastBar = btRaycastBar (4000.0, 0.0);
//raycastBar = btRaycastBar (true, 40.0, -50.0, 50.0);
{
btVector3 camPos(0.000000,10.260604,-28.190779);
btVector3 destination(6958.333333,-8539.096384,7501.875480);
float mass = 1.f;
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(camPos);
setShootBoxShape ();
btRigidBody* body = this->localCreateRigidBody(mass, startTransform,m_shootBoxShape);
body->setLinearFactor(btVector3(1,1,1));
//body->setRestitution(1);
btVector3 linVel(destination[0]-camPos[0],destination[1]-camPos[1],destination[2]-camPos[2]);
linVel.normalize();
linVel*=m_ShootBoxInitialSpeed;
body->getWorldTransform().setOrigin(camPos);
body->getWorldTransform().setRotation(btQuaternion(0,0,0,1));
body->setLinearVelocity(linVel);
body->setAngularVelocity(btVector3(0,0,0));
body->setCcdMotionThreshold(0.5);
body->setCcdSweptSphereRadius(0.9f);
printf("shootBox uid=%d\n", body->getBroadphaseHandle()->getUid());
printf("camPos=%f,%f,%f\n",camPos.getX(),camPos.getY(),camPos.getZ());
printf("destination=%f,%f,%f\n",destination.getX(),destination.getY(),destination.getZ());
}
}
void ConcaveRaycastDemo::clientMoveAndDisplay()
@ -411,7 +433,7 @@ void ConcaveRaycastDemo::clientMoveAndDisplay()
m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(staticBody->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher());
}
m_dynamicsWorld->stepSimulation(dt);
m_dynamicsWorld->stepSimulation(1./60.,0);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
@ -432,6 +454,10 @@ void ConcaveRaycastDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//optional but useful: debug drawing
if (m_dynamicsWorld)
m_dynamicsWorld->debugDrawWorld();
renderme();
raycastBar.draw ();
glFlush();

View File

@ -39,7 +39,7 @@ subject to the following restrictions:
#define TaruVtxCount 43
static float TaruVtx[] = {
static btScalar TaruVtx[] = {
1.08664f,-1.99237f,0.0f,
0.768369f,-1.99237f,-0.768369f,
1.28852f,1.34412e-007f,-1.28852f,
@ -246,7 +246,7 @@ int main(int argc,char** argv)
//btVector3 points1[5]={btVector3(1,0,0),btVector3(0,1,0),btVector3(0,0,1),btVector3(0,0,-1),btVector3(-1,-1,0)};
btConvexHullShape hullA(&points0[0].getX(),3);
btConvexHullShape hullB(TaruVtx,TaruVtxCount,3*sizeof(float));
btConvexHullShape hullB(TaruVtx,TaruVtxCount,3*sizeof(btScalar));
shapePtr[0] = &hullA;
shapePtr[1] = &hullB;
@ -276,7 +276,7 @@ void clientDisplay(void) {
//GL_ShapeDrawer::drawCoordSystem();
float m[16];
btScalar m[16];
int i;
#ifdef USE_GJK
btGjkEpaPenetrationDepthSolver epa;

View File

@ -76,7 +76,6 @@ void FractureDemo::initPhysics()
btFractureDynamicsWorld* fractureWorld = new btFractureDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld = fractureWorld;
m_dynamicsWorld->getDispatchInfo().m_convexMaxDistanceUseCPT = true;
m_ShootBoxInitialSpeed=100;
//m_splitImpulse removes the penetration resolution from the applied impulse, otherwise objects might fracture due to deep penetrations.

View File

@ -27,8 +27,8 @@ void btFractureBody::recomputeConnectivity(btCollisionWorld* world)
}
virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObject* colObj0,int partId0,int index0,const btCollisionObject* colObj1,int partId1,int index1)
{
//@todo additional check on cp?
m_connected = true;
if (cp.getDistance()<=0)
m_connected = true;
return 1.f;
}
};

View File

@ -342,8 +342,7 @@ void InternalEdgeDemo::initPhysics()
#endif //USE_TRIMESH_SHAPE
m_collisionConfiguration = new btDefaultCollisionConfiguration();
m_collisionConfiguration->setConvexConvexMultipointIterations(10,5);
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
@ -367,7 +366,9 @@ void InternalEdgeDemo::initPhysics()
startTransform.setIdentity();
startTransform.setOrigin(btVector3(0,-2,0));
btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
btBoxShape* colShape = new btBoxShape(btVector3(1,1,1));
colShape->initializePolyhedralFeatures();
//colShape->setMargin(0.f);
colShape->setMargin(0.1f);
@ -399,7 +400,7 @@ void InternalEdgeDemo::initPhysics()
staticBody->setCollisionFlags(staticBody->getCollisionFlags() | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
getDynamicsWorld()->setDebugDrawer(&gDebugDrawer);
setDebugMode(btIDebugDraw::DBG_DrawText|btIDebugDraw::DBG_NoHelpText);
setDebugMode(btIDebugDraw::DBG_DrawText|btIDebugDraw::DBG_NoHelpText+btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
@ -482,9 +483,7 @@ void InternalEdgeDemo::clientMoveAndDisplay()
//m_dynamicsWorld->stepSimulation(1./60.,100,1./800.);
//m_dynamicsWorld->stepSimulation(1./60.,0);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
int lineWidth=450;
int xStart = m_glutScreenWidth - lineWidth;
int yStart = 20;
@ -519,6 +518,10 @@ void InternalEdgeDemo::clientMoveAndDisplay()
renderme();
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
glFlush();
swapBuffers();

View File

@ -17,8 +17,7 @@ subject to the following restrictions:
#ifndef BMPLOADER_H_
#define BMPLOADER_H_
#include <cstdlib>
#include <iostream>
#include <stdlib.h>
namespace amd
{

View File

@ -182,7 +182,7 @@ class piece_of_cloth
glBindTexture(GL_TEXTURE_2D, 0);
}
else {
std::cout << "ERROR: could not load bitmap, using placeholder " << std::endl;
printf("ERROR: could not load bitmap, using placeholder\n");
GLubyte* image=new GLubyte[256*256*3];
for(int y=0;y<256;++y)

View File

@ -17,14 +17,10 @@ subject to the following restrictions:
#include "clstuff.h"
#include "gl_win.h"
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <string>
#include <iterator>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <cmath>
#include <cstring>
#include <string.h>
//#ifndef _WIN32 && !defined(__APPLE__)

View File

@ -540,7 +540,9 @@ void DemoApplication::setShootBoxShape ()
{
if (!m_shootBoxShape)
{
m_shootBoxShape = new btBoxShape(btVector3(.5f,.5f,.5f));
btBoxShape* box = new btBoxShape(btVector3(.5f,.5f,.5f));
box->initializePolyhedralFeatures();
m_shootBoxShape = box;
}
}
@ -569,8 +571,11 @@ void DemoApplication::shootBox(const btVector3& destination)
body->getWorldTransform().setRotation(btQuaternion(0,0,0,1));
body->setLinearVelocity(linVel);
body->setAngularVelocity(btVector3(0,0,0));
body->setCcdMotionThreshold(1.);
body->setCcdSweptSphereRadius(0.2f);
body->setCcdMotionThreshold(0.5);
body->setCcdSweptSphereRadius(0.9f);
// printf("shootBox uid=%d\n", body->getBroadphaseHandle()->getUid());
// printf("camPos=%f,%f,%f\n",camPos.getX(),camPos.getY(),camPos.getZ());
// printf("destination=%f,%f,%f\n",destination.getX(),destination.getY(),destination.getZ());
}
}
@ -1318,7 +1323,7 @@ void DemoApplication::renderme()
resetPerspectiveProjection();
}
glEnable(GL_LIGHTING);
glDisable(GL_LIGHTING);
}

View File

@ -860,7 +860,6 @@ bool btBulletWorldImporter::convertAllObjects( bParse::btBulletFile* bulletFile
}
}
printf("bla");
}

View File

@ -40,15 +40,14 @@ struct btDispatcherInfo
m_stepCount(0),
m_dispatchFunc(DISPATCH_DISCRETE),
m_timeOfImpact(btScalar(1.)),
m_useContinuous(false),
m_useContinuous(true),
m_debugDraw(0),
m_enableSatConvex(true),
m_enableSatConvex(false),
m_enableSPU(true),
m_useEpa(true),
m_allowedCcdPenetration(btScalar(0.04)),
m_useConvexConservativeDistanceUtil(false),
m_convexConservativeDistanceThreshold(0.0f),
m_convexMaxDistanceUseCPT(false),
m_stackAllocator(0)
{
@ -65,7 +64,6 @@ struct btDispatcherInfo
btScalar m_allowedCcdPenetration;
bool m_useConvexConservativeDistanceUtil;
btScalar m_convexConservativeDistanceThreshold;
bool m_convexMaxDistanceUseCPT;
btStackAlloc* m_stackAllocator;
};

View File

@ -155,7 +155,7 @@ void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
minAabb -= contactThreshold;
maxAabb += contactThreshold;
if(getDispatchInfo().m_convexMaxDistanceUseCPT)
if(getDispatchInfo().m_useContinuous && colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY)
{
btVector3 minAabb2,maxAabb2;
colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2);
@ -1452,12 +1452,14 @@ void btCollisionWorld::debugDrawWorld()
btVector3 minAabb2,maxAabb2;
colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2);
minAabb2 -= contactThreshold;
maxAabb2 += contactThreshold;
minAabb.setMin(minAabb2);
maxAabb.setMax(maxAabb2);
if(colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY)
{
colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2);
minAabb2 -= contactThreshold;
maxAabb2 += contactThreshold;
minAabb.setMin(minAabb2);
maxAabb.setMax(maxAabb2);
}
m_debugDrawer->drawAabb(minAabb,maxAabb,colorvec);
}

View File

@ -361,13 +361,14 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
} else
#endif //USE_SEPDISTANCE_UTIL2
{
if (dispatchInfo.m_convexMaxDistanceUseCPT)
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
} else
{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
}
//if (dispatchInfo.m_convexMaxDistanceUseCPT)
//{
// input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactProcessingThreshold();
//} else
//{
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
// }
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
}

View File

@ -68,9 +68,53 @@ void btContactConstraint::buildJacobian()
#include "LinearMath/btMinMax.h"
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
#define ASSERT2 btAssert
#define USE_INTERNAL_APPLY_IMPULSE 1
//response between two dynamic objects without friction, assuming 0 penetration depth
btScalar resolveSingleCollision(
btRigidBody* body1,
btCollisionObject* colObj2,
const btVector3& contactPositionWorld,
const btVector3& contactNormalOnB,
const btContactSolverInfo& solverInfo,
btScalar distance)
{
btRigidBody* body2 = btRigidBody::upcast(colObj2);
const btVector3& normal = contactNormalOnB;
btVector3 rel_pos1 = contactPositionWorld - body1->getWorldTransform().getOrigin();
btVector3 rel_pos2 = contactPositionWorld - colObj2->getWorldTransform().getOrigin();
btVector3 vel1 = body1->getVelocityInLocalPoint(rel_pos1);
btVector3 vel2 = body2? body2->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
btVector3 vel = vel1 - vel2;
btScalar rel_vel;
rel_vel = normal.dot(vel);
btScalar combinedRestitution = body1->getRestitution() * colObj2->getRestitution();
btScalar restitution = combinedRestitution* -rel_vel;
btScalar positionalError = solverInfo.m_erp *-distance /solverInfo.m_timeStep ;
btScalar velocityError = -(1.0f + restitution) * rel_vel;// * damping;
btScalar denom0 = body1->computeImpulseDenominator(contactPositionWorld,normal);
btScalar denom1 = body2? body2->computeImpulseDenominator(contactPositionWorld,normal) : 0.f;
btScalar relaxation = 1.f;
btScalar jacDiagABInv = relaxation/(denom0+denom1);
btScalar penetrationImpulse = positionalError * jacDiagABInv;
btScalar velocityImpulse = velocityError * jacDiagABInv;
btScalar normalImpulse = penetrationImpulse+velocityImpulse;
normalImpulse = 0.f > normalImpulse ? 0.f: normalImpulse;
body1->applyImpulse(normal*(normalImpulse), rel_pos1);
if (body2)
body2->applyImpulse(-normal*(normalImpulse), rel_pos2);
return normalImpulse;
}
//bilateral constraint between two dynamic objects
@ -83,7 +127,7 @@ void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,
btScalar normalLenSqr = normal.length2();
ASSERT2(btFabs(normalLenSqr) < btScalar(1.1));
btAssert(btFabs(normalLenSqr) < btScalar(1.1));
if (normalLenSqr > btScalar(1.1))
{
impulse = btScalar(0.);

View File

@ -57,6 +57,9 @@ public:
};
///very basic collision resolution without friction
btScalar resolveSingleCollision(btRigidBody* body1, class btCollisionObject* colObj2, const btVector3& contactPositionWorld,const btVector3& contactNormalOnB, const struct btContactSolverInfo& solverInfo,btScalar distance);
///resolveSingleBilateral is an obsolete methods used for vehicle friction between two dynamic objects
void resolveSingleBilateral(btRigidBody& body1, const btVector3& pos1,

View File

@ -35,6 +35,8 @@ subject to the following restrictions:
#include "BulletDynamics/ConstraintSolver/btConeTwistConstraint.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h"
#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h"
#include "BulletDynamics/ConstraintSolver/btContactConstraint.h"
#include "LinearMath/btIDebugDraw.h"
#include "BulletCollision/CollisionShapes/btSphereShape.h"
@ -325,7 +327,8 @@ void btDiscreteDynamicsWorld::internalSingleStepSimulation(btScalar timeStep)
///perform collision detection
performDiscreteCollisionDetection();
addSpeculativeContacts(timeStep);
if (getDispatchInfo().m_useContinuous)
addSpeculativeContacts(timeStep);
calculateSimulationIslands();
@ -851,36 +854,93 @@ void btDiscreteDynamicsWorld::integrateTransforms(btScalar timeStep)
if (body->isActive() && (!body->isStaticOrKinematicObject()))
{
body->predictIntegratedTransform(timeStep, predictedTrans);
btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();
if (body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion)
if (getDispatchInfo().m_useContinuous && body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion)
{
BT_PROFILE("CCD motion clamping");
if (body->getCollisionShape()->isConvex())
{
gNumClampedCcdMotions++;
#ifdef USE_STATIC_ONLY
class StaticOnlyCallback : public btClosestNotMeConvexResultCallback
{
public:
StaticOnlyCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) :
btClosestNotMeConvexResultCallback(me,fromA,toA,pairCache,dispatcher)
{
}
virtual bool needsCollision(btBroadphaseProxy* proxy0) const
{
btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject;
if (!otherObj->isStaticOrKinematicObject())
return false;
return btClosestNotMeConvexResultCallback::needsCollision(proxy0);
}
};
StaticOnlyCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#else
btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher());
#endif
//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape());
sweepResults.m_allowedPenetration=getDispatchInfo().m_allowedCcdPenetration;
sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup;
sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask;
btTransform modifiedPredictedTrans = predictedTrans;
modifiedPredictedTrans.setBasis(body->getWorldTransform().getBasis());
convexSweepTest(&tmpSphere,body->getWorldTransform(),predictedTrans,sweepResults);
convexSweepTest(&tmpSphere,body->getWorldTransform(),modifiedPredictedTrans,sweepResults);
if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f))
{
//printf("clamped integration to hit fraction = %f\n",fraction);
body->setHitFraction(sweepResults.m_closestHitFraction);
body->predictIntegratedTransform(timeStep*body->getHitFraction(), predictedTrans);
body->setHitFraction(0.f);
body->setLinearVelocity(btVector3(0,0.1,0));
body->proceedToTransform( predictedTrans);
// printf("clamped integration to hit fraction = %f\n",fraction);
#if 0
btVector3 linVel = body->getLinearVelocity();
btScalar maxSpeed = body->getCcdMotionThreshold()/getSolverInfo().m_timeStep;
btScalar maxSpeedSqr = maxSpeed*maxSpeed;
if (linVel.length2()>maxSpeedSqr)
{
linVel.normalize();
linVel*= maxSpeed;
body->setLinearVelocity(linVel);
btScalar ms2 = body->getLinearVelocity().length2();
body->predictIntegratedTransform(timeStep, predictedTrans);
btScalar sm2 = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2();
btScalar smt = body->getCcdSquareMotionThreshold();
printf("sm2=%f\n",sm2);
}
#else
//response between two dynamic objects without friction, assuming 0 penetration depth
btScalar appliedImpulse = 0.f;
btScalar depth = 0.f;
appliedImpulse = resolveSingleCollision(body,sweepResults.m_hitCollisionObject,sweepResults.m_hitPointWorld,sweepResults.m_hitNormalWorld,getSolverInfo(), depth);
#endif
continue;
}
}
}
body->proceedToTransform( predictedTrans);
}
}

View File

@ -102,9 +102,14 @@ bool ManifoldResultAddContactPoint(const btVector3& normalOnBInWorld,
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("SPU: contactTreshold %f\n",contactTreshold);
#endif //DEBUG_SPU_COLLISION_DETECTION
if (depth > manifoldPtr->getContactBreakingThreshold())
//if (depth > manifoldPtr->getContactBreakingThreshold())
// return false;
if (depth > manifoldPtr->getContactProcessingThreshold())
return false;
btVector3 pointA;
btVector3 localA;
btVector3 localB;
@ -156,6 +161,7 @@ bool ManifoldResultAddContactPoint(const btVector3& normalOnBInWorld,
(*gContactAddedCallback)(newPt,m_body0,m_partId0,m_index0,m_body1,m_partId1,m_index1);
}
*/
manifoldPtr->addManifoldPoint(newPt);
return true;

View File

@ -1138,6 +1138,9 @@ btScalar btParallelConstraintSolver::solveGroup(btCollisionObject** bodies1,int
pfxSetBroadphaseFlag(pair,0);
int contactId = m-offsetContactManifolds;
//likely the contact pool is not contiguous, make sure to allocate large enough contact pool
btAssert(contactId>=0);
btAssert(contactId<dispatcher->getInternalManifoldPool()->getUsedCount());
pfxSetContactId(pair,contactId);
pfxSetNumConstraints(pair,numPosPoints);//manifoldPtr[i]->getNumContacts());

View File

@ -25,8 +25,6 @@ subject to the following restrictions:
#include <math.h>
#include <stdlib.h>//size_t for MSVC 6.0
#include <cstdlib>
#include <cfloat>
#include <float.h>
/* SVN $Revision$ on $Date$ from http://bullet.googlecode.com*/