fix issues related to camera width/height

add width,height as arguments to pybullet.renderImage(x,y,[viewMat4x4],[projMat4x4])
This commit is contained in:
Erwin Coumans 2016-06-07 16:11:58 -07:00
parent bd668d11b0
commit d2e50d045b
13 changed files with 203 additions and 141 deletions

View File

@ -183,7 +183,7 @@ TinyRendererSetup::TinyRendererSetup(struct GUIHelperInterface* gui)
m_guiHelper->getRenderInterface()->writeTransforms();
m_internalData->m_shapePtr.push_back(0);
TinyRenderObjectData* ob = new TinyRenderObjectData(m_internalData->m_width,m_internalData->m_height,
TinyRenderObjectData* ob = new TinyRenderObjectData(
m_internalData->m_rgbColorBuffer,
m_internalData->m_depthBuffer);
//ob->loadModel("cube.obj");
@ -363,7 +363,7 @@ void TinyRendererSetup::stepSimulation(float deltaTime)
}
}
TinyRenderer::renderObject(*m_internalData->m_renderObjects[o]);
TinyRenderer::renderObject(*m_internalData->m_renderObjects[o], m_internalData->m_width,m_internalData->m_height);
}
//m_app->drawText("hello",500,500);
render->activateTexture(m_internalData->m_textureHandle);

View File

@ -735,6 +735,16 @@ void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle commandHa
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle commandHandle, int width, int height )
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_pixelWidth = width;
command->m_requestPixelDataArguments.m_pixelHeight = height;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT;
}
void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData)
{
PhysicsClient* cl = (PhysicsClient* ) physClient;

View File

@ -68,6 +68,7 @@ void b3GetDebugLines(b3PhysicsClientHandle physClient, struct b3DebugLines* l
///request an image from a simulated camera, using a software renderer.
b3SharedMemoryCommandHandle b3InitRequestCameraImage(b3PhysicsClientHandle physClient);
void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle command, float viewMatrix[16], float projectionMatrix[16]);
void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle command, int width, int height );
void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData);

View File

@ -21,8 +21,8 @@ struct MyMotorInfo2
int m_qIndex;
};
int camVisualizerWidth = 640;//1024/3;
int camVisualizerHeight = 480;//768/3;
int camVisualizerWidth = 320;//1024/3;
int camVisualizerHeight = 240;//768/3;
#define MAX_NUM_MOTORS 128
@ -77,10 +77,10 @@ protected:
virtual void resetCamera()
{
float dist = 5;
float dist = 1.1;
float pitch = 50;
float yaw = 35;
float targetPos[3]={0,0,0};//-3,2.8,-2.5};
float targetPos[3]={0,0,0.5};//-3,2.8,-2.5};
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
}
@ -248,7 +248,8 @@ void PhysicsClientExample::prepareAndSubmitCommand(int commandId)
this->m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix);
this->m_guiHelper->getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix);
b3RequestCameraImageSetCameraMatrices(commandHandle, viewMatrix,projectionMatrix);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
b3RequestCameraImageSetPixelResolution(commandHandle, camVisualizerWidth,camVisualizerHeight);
b3SubmitClientCommand(m_physicsClientHandle, commandHandle);
break;
}
case CMD_CREATE_BOX_COLLISION_SHAPE:
@ -619,18 +620,18 @@ void PhysicsClientExample::stepSimulation(float deltaTime)
b3GetCameraImageData(m_physicsClientHandle,&imageData);
if (m_canvas && m_canvasIndex >=0)
{
for (int i=0;i<imageData.m_pixelWidth;i++)
for (int i=0;i<camVisualizerWidth;i++)
{
for (int j=0;j<imageData.m_pixelHeight;j++)
for (int j=0;j<camVisualizerHeight;j++)
{
int xIndex = int(float(i)*(float(camVisualizerWidth)/float(imageData.m_pixelWidth)));
int yIndex = int(float(j)*(float(camVisualizerHeight)/float(imageData.m_pixelHeight)));
int xIndex = int(float(i)*(float(imageData.m_pixelWidth)/float(camVisualizerWidth)));
int yIndex = int(float(j)*(float(imageData.m_pixelHeight)/float(camVisualizerHeight)));
btClamp(yIndex,0,imageData.m_pixelHeight);
btClamp(xIndex,0,imageData.m_pixelWidth);
int bytesPerPixel = 4;
int pixelIndex = (i+j*imageData.m_pixelWidth)*bytesPerPixel;
m_canvas->setPixel(m_canvasIndex,xIndex,camVisualizerHeight-1-yIndex,
int pixelIndex = (xIndex+yIndex*imageData.m_pixelWidth)*bytesPerPixel;
m_canvas->setPixel(m_canvasIndex,i,camVisualizerHeight-1-j,
imageData.m_rgbColorData[pixelIndex],
imageData.m_rgbColorData[pixelIndex+1],

View File

@ -450,6 +450,13 @@ const SharedMemoryStatus* PhysicsClientSharedMemory::processServerStatus() {
(unsigned char*)&m_data->m_testBlock1->m_bulletStreamDataServerToClientRefactor[0];
// printf("pixel = %d\n", rgbaPixelsReceived[0]);
float* depthBuffer = (float*)&(m_data->m_testBlock1->m_bulletStreamDataServerToClientRefactor[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied*4]);
for (int i=0;i<serverCmd.m_sendPixelDataArguments.m_numPixelsCopied;i++)
{
m_data->m_cachedCameraDepthBuffer[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = depthBuffer[i];
}
for (int i=0;i<serverCmd.m_sendPixelDataArguments.m_numPixelsCopied*numBytesPerPixel;i++)
{
m_data->m_cachedCameraPixelsRGBA[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex*numBytesPerPixel]

View File

@ -210,8 +210,15 @@ bool PhysicsDirect::processCamera(const struct SharedMemoryCommand& orgCommand)
unsigned char* rgbaPixelsReceived =
(unsigned char*)&m_data->m_bulletStreamDataServerToClient[0];
printf("pixel = %d\n", rgbaPixelsReceived[0]);
float* depthBuffer = (float*)&(m_data->m_bulletStreamDataServerToClient[serverCmd.m_sendPixelDataArguments.m_numPixelsCopied*4]);
// printf("pixel = %d\n", rgbaPixelsReceived[0]);
for (int i=0;i<serverCmd.m_sendPixelDataArguments.m_numPixelsCopied;i++)
{
m_data->m_cachedCameraDepthBuffer[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex] = depthBuffer[i];
}
for (int i=0;i<serverCmd.m_sendPixelDataArguments.m_numPixelsCopied*numBytesPerPixel;i++)
{
m_data->m_cachedCameraPixelsRGBA[i + serverCmd.m_sendPixelDataArguments.m_startingPixelIndex*numBytesPerPixel]
@ -227,6 +234,7 @@ bool PhysicsDirect::processCamera(const struct SharedMemoryCommand& orgCommand)
command.m_requestPixelDataArguments.m_startPixelIndex =
serverCmd.m_sendPixelDataArguments.m_startingPixelIndex +
serverCmd.m_sendPixelDataArguments.m_numPixelsCopied;
} else
{
m_data->m_cachedCameraPixelsWidth = serverCmd.m_sendPixelDataArguments.m_imageWidth;

View File

@ -972,6 +972,14 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
int width, height;
int numPixelsCopied = 0;
if (
(clientCmd.m_requestPixelDataArguments.m_startPixelIndex==0) &&
(clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT)!=0)
{
m_data->m_visualConverter.setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth,
clientCmd.m_requestPixelDataArguments.m_pixelHeight);
}
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL)!=0)
{
m_data->m_guiHelper->copyCameraImageData(0,0,0,0,0,&width,&height,0);
@ -1005,6 +1013,7 @@ bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryComm
{
// printf("-------------------------------\nRendering\n");
if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES)!=0)
{
m_data->m_visualConverter.render(

View File

@ -129,12 +129,16 @@ struct RequestPixelDataArgs
float m_viewMatrix[16];
float m_projectionMatrix[16];
int m_startPixelIndex;
int m_pixelWidth;
int m_pixelHeight;
};
enum EnumRequestPixelDataUpdateFlags
{
REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES=1,
REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL=2,
REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT=4,
};

View File

@ -462,7 +462,7 @@ void TinyRendererVisualShapeConverter::convertVisualShapes(int linkIndex, const
if (vertices.size() && indices.size())
{
TinyRenderObjectData* tinyObj = new TinyRenderObjectData(m_data->m_swWidth,m_data->m_swHeight,m_data->m_rgbColorBuffer,m_data->m_depthBuffer);
TinyRenderObjectData* tinyObj = new TinyRenderObjectData(m_data->m_rgbColorBuffer,m_data->m_depthBuffer);
tinyObj->registerMeshShape(&vertices[0].xyzw[0],vertices.size(),&indices[0],indices.size(),rgbaColor);
visuals->m_renderObjects.push_back(tinyObj);
}
@ -576,7 +576,7 @@ void TinyRendererVisualShapeConverter::render(const float viewMat[16], const flo
renderObj->m_lightDirWorld = lightDirWorld;
}
}
TinyRenderer::renderObject(*renderObj);
TinyRenderer::renderObject(*renderObj,m_data->m_swWidth,m_data->m_swHeight);
}
}
//printf("write tga \n");
@ -590,6 +590,17 @@ void TinyRendererVisualShapeConverter::getWidthAndHeight(int& width, int& height
height = m_data->m_swHeight;
}
void TinyRendererVisualShapeConverter::setWidthAndHeight(int width, int height)
{
m_data->m_swWidth = width;
m_data->m_swHeight = height;
m_data->m_depthBuffer.resize(m_data->m_swWidth*m_data->m_swHeight);
m_data->m_rgbColorBuffer = TGAImage(width, height, TGAImage::RGB);
}
void TinyRendererVisualShapeConverter::copyCameraImageData(unsigned char* pixelsRGBA, int rgbaBufferSizeInPixels, float* depthBuffer, int depthBufferSizeInPixels, int startPixelIndex, int* widthPtr, int* heightPtr, int* numPixelsCopied)
{
int w = m_data->m_rgbColorBuffer.get_width();
@ -612,6 +623,10 @@ void TinyRendererVisualShapeConverter::copyCameraImageData(unsigned char* pixels
{
for (int i=0;i<numRequestedPixels;i++)
{
if (depthBuffer)
{
depthBuffer[i] = m_data->m_depthBuffer[i+startPixelIndex];
}
if (pixelsRGBA)
{
pixelsRGBA[i*numBytesPerPixel] = m_data->m_rgbColorBuffer.buffer()[(i+startPixelIndex)*3+0];

View File

@ -24,6 +24,7 @@ struct TinyRendererVisualShapeConverter : public LinkVisualShapesConverter
void resetAll();
void getWidthAndHeight(int& width, int& height);
void setWidthAndHeight(int width, int height);
void copyCameraImageData(unsigned char* pixelsRGBA, int rgbaBufferSizeInPixels, float* depthBuffer, int depthBufferSizeInPixels, int startPixelIndex, int* widthPtr, int* heightPtr, int* numPixelsCopied);

View File

@ -88,10 +88,8 @@ struct Shader : public IShader {
};
TinyRenderObjectData::TinyRenderObjectData(int width, int height,TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer)
:m_width(width),
m_height(height),
m_rgbColorBuffer(rgbColorBuffer),
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>&depthBuffer)
:m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_model(0),
m_userData(0),
@ -103,11 +101,6 @@ m_userIndex(-1)
m_lightDirWorld.setValue(0,0,0);
m_localScaling.setValue(1,1,1);
m_modelMatrix = Matrix::identity();
m_viewMatrix = lookat(eye, center, up);
//m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
//m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
m_viewportMatrix = viewport(0,0,width,height);
m_projectionMatrix = projection(-1.f/(eye-center).norm());
}
@ -238,7 +231,7 @@ TinyRenderObjectData::~TinyRenderObjectData()
delete m_model;
}
void TinyRenderer::renderObject(TinyRenderObjectData& renderData)
void TinyRenderer::renderObject(TinyRenderObjectData& renderData, int width, int height)
{
Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0],renderData.m_lightDirWorld[1],renderData.m_lightDirWorld[2]);
Model* model = renderData.m_model;
@ -247,13 +240,8 @@ void TinyRenderer::renderObject(TinyRenderObjectData& renderData)
//renderData.m_viewMatrix = lookat(eye, center, up);
int width = renderData.m_width;
int height = renderData.m_height;
//renderData.m_viewportMatrix = viewport(width/8, height/8, width*3/4, height*3/4);
renderData.m_viewportMatrix = viewport(0,0,renderData.m_width,renderData.m_height);
//renderData.m_projectionMatrix = projection(-1.f/(eye-center).norm());
renderData.m_viewportMatrix = viewport(0,0,width, height);
b3AlignedObjectArray<float>& zbuffer = renderData.m_depthBuffer;
TGAImage& frame = renderData.m_rgbColorBuffer;

View File

@ -25,12 +25,11 @@ struct TinyRenderObjectData
//class IShader* m_shader; todo(erwincoumans) expose the shader, for now we use a default shader
//Output
int m_width;
int m_height;
TGAImage& m_rgbColorBuffer;
b3AlignedObjectArray<float>& m_depthBuffer;
TinyRenderObjectData(int width, int height,TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>& depthBuffer);
TinyRenderObjectData(TGAImage& rgbColorBuffer,b3AlignedObjectArray<float>& depthBuffer);
virtual ~TinyRenderObjectData();
void loadModel(const char* fileName);
@ -48,7 +47,7 @@ struct TinyRenderObjectData
class TinyRenderer
{
public:
static void renderObject(TinyRenderObjectData& renderData);
static void renderObject(TinyRenderObjectData& renderData, int width, int height);
};
#endif // TINY_RENDERER_Hbla

View File

@ -362,6 +362,11 @@ pybullet_getNumJoints(PyObject* self, PyObject* args)
static PyObject*
pybullet_setJointPositions(PyObject* self, PyObject* args)
{
if (0==sm)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
@ -372,17 +377,22 @@ pybullet_setJointPositions(PyObject* self, PyObject* args)
static PyObject* pybullet_renderImage(PyObject* self, PyObject* args)
{
if (0==sm)
{
PyErr_SetString(SpamError, "Not connected to physics server.");
return NULL;
}
///request an image from a simulated camera, using a software renderer.
struct b3CameraImageData imageData;
PyObject* objViewMat,* objProjMat;
int width, height;
b3SharedMemoryCommandHandle command = b3InitRequestCameraImage(sm);
if (PyArg_ParseTuple(args, "OO", &objViewMat, &objProjMat))
if (PyArg_ParseTuple(args, "iiOO", &width, &height, &objViewMat, &objProjMat))
{
PyObject* seq;
int i, len;
PyObject* seq;
int i, len;
PyObject* item;
float viewMatrix[16];
float projectionMatrix[16];
@ -391,124 +401,133 @@ static PyObject* pybullet_renderImage(PyObject* self, PyObject* args)
seq = PySequence_Fast(objViewMat, "expected a sequence");
len = PySequence_Size(objViewMat);
//printf("objViewMat size = %d\n", len);
if (len==16)
{
if (PyList_Check(seq))
{
for (i = 0; i < len; i++)
if (len==16)
{
if (PyList_Check(seq))
{
for (i = 0; i < len; i++)
{
item = PyList_GET_ITEM(seq, i);
viewMatrix[i] = PyFloat_AsDouble(item);
float v = viewMatrix[i];
viewMatrix[i] = PyFloat_AsDouble(item);
float v = viewMatrix[i];
//printf("view %d to %f\n", i,v);
}
}
else
{
for (i = 0; i < len; i++)
{
item = PyTuple_GET_ITEM(seq,i);
viewMatrix[i] = PyFloat_AsDouble(item);
}
}
} else
{
valid = 0;
}
}
else
{
for (i = 0; i < len; i++)
{
item = PyTuple_GET_ITEM(seq,i);
viewMatrix[i] = PyFloat_AsDouble(item);
}
}
} else
{
valid = 0;
}
}
{
seq = PySequence_Fast(objProjMat, "expected a sequence");
len = PySequence_Size(objProjMat);
//printf("projMat len = %d\n", len);
if (len==16)
{
if (PyList_Check(seq))
{
for (i = 0; i < len; i++)
{
item = PyList_GET_ITEM(seq, i);
projectionMatrix[i] = PyFloat_AsDouble(item);
}
}
else
{
for (i = 0; i < len; i++)
{
item = PyTuple_GET_ITEM(seq,i);
projectionMatrix[i] = PyFloat_AsDouble(item);
}
}
} else
{
valid = 0;
}
}
seq = PySequence_Fast(objProjMat, "expected a sequence");
len = PySequence_Size(objProjMat);
//printf("projMat len = %d\n", len);
if (len==16)
{
if (PyList_Check(seq))
{
for (i = 0; i < len; i++)
{
item = PyList_GET_ITEM(seq, i);
projectionMatrix[i] = PyFloat_AsDouble(item);
}
}
else
{
for (i = 0; i < len; i++)
{
item = PyTuple_GET_ITEM(seq,i);
projectionMatrix[i] = PyFloat_AsDouble(item);
}
}
} else
{
valid = 0;
}
}
Py_DECREF(seq);
if (valid)
{
b3SharedMemoryCommandHandle command;
command = b3InitRequestCameraImage(sm);
//printf("set b3RequestCameraImageSetCameraMatrices\n");
b3RequestCameraImageSetCameraMatrices(command, viewMatrix, projectionMatrix);
}
}
if (b3CanSubmitCommand(sm))
{
b3SharedMemoryStatusHandle statusHandle;
int statusType;
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
statusType = b3GetStatusType(statusHandle);
if (statusType==CMD_CAMERA_IMAGE_COMPLETED)
{
PyObject *item2;
PyObject* pyResultList;//store 4 elements in this result: width, height, rgbData, depth
b3GetCameraImageData(sm, &imageData);
//todo: error handling if image size is 0
pyResultList = PyTuple_New(4);
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
PyObject *pylistPos;
PyObject* pylistDep;
//printf("image width = %d, height = %d\n", imageData.m_pixelWidth, imageData.m_pixelHeight);
{
PyObject *item;
int bytesPerPixel = 3;//Red, Green, Blue, each 8 bit values
int num=bytesPerPixel*imageData.m_pixelWidth*imageData.m_pixelHeight;
pylistPos = PyTuple_New(num);
pylistDep = PyTuple_New(imageData.m_pixelWidth*imageData.m_pixelHeight);
for (int i=0;i<imageData.m_pixelWidth;i++)
b3RequestCameraImageSetPixelResolution(command,width,height);
if (b3CanSubmitCommand(sm))
{
b3SharedMemoryStatusHandle statusHandle;
int statusType;
statusHandle = b3SubmitClientCommandAndWaitStatus(sm, command);
statusType = b3GetStatusType(statusHandle);
if (statusType==CMD_CAMERA_IMAGE_COMPLETED)
{
for (int j=0;j<imageData.m_pixelHeight;j++)
{
int depIndex = i+j*imageData.m_pixelWidth;
item = PyFloat_FromDouble(imageData.m_depthValues[depIndex]);
PyTuple_SetItem(pylistDep, depIndex, item);
for (int p=0;p<bytesPerPixel;p++)
PyObject *item2;
PyObject* pyResultList;//store 4 elements in this result: width, height, rgbData, depth
b3GetCameraImageData(sm, &imageData);
//todo: error handling if image size is 0
pyResultList = PyTuple_New(4);
PyTuple_SetItem(pyResultList, 0, PyInt_FromLong(imageData.m_pixelWidth));
PyTuple_SetItem(pyResultList, 1, PyInt_FromLong(imageData.m_pixelHeight));
PyObject *pylistPos;
PyObject* pylistDep;
//printf("image width = %d, height = %d\n", imageData.m_pixelWidth, imageData.m_pixelHeight);
{
int pixelIndex = bytesPerPixel*(i+j*imageData.m_pixelWidth)+p;
item = PyInt_FromLong(imageData.m_rgbColorData[pixelIndex]);
PyTuple_SetItem(pylistPos, pixelIndex, item);
}
PyObject *item;
int bytesPerPixel = 3;//Red, Green, Blue, each 8 bit values
int num=bytesPerPixel*imageData.m_pixelWidth*imageData.m_pixelHeight;
pylistPos = PyTuple_New(num);
pylistDep = PyTuple_New(imageData.m_pixelWidth*imageData.m_pixelHeight);
for (int i=0;i<imageData.m_pixelWidth;i++)
{
for (int j=0;j<imageData.m_pixelHeight;j++)
{
int depIndex = i+j*imageData.m_pixelWidth;
item = PyFloat_FromDouble(imageData.m_depthValues[depIndex]);
PyTuple_SetItem(pylistDep, depIndex, item);
for (int p=0;p<bytesPerPixel;p++)
{
int pixelIndex = bytesPerPixel*(i+j*imageData.m_pixelWidth)+p;
item = PyInt_FromLong(imageData.m_rgbColorData[pixelIndex]);
PyTuple_SetItem(pylistPos, pixelIndex, item);
}
}
}
}
PyTuple_SetItem(pyResultList, 2,pylistPos);
PyTuple_SetItem(pyResultList, 3,pylistDep);
return pyResultList;
}
}
PyTuple_SetItem(pyResultList, 2,pylistPos);
PyTuple_SetItem(pyResultList, 3,pylistDep);
return pyResultList;
}
}
}
}
Py_INCREF(Py_None);
return Py_None;
return Py_None;
}
static PyMethodDef SpamMethods[] = {
@ -534,7 +553,7 @@ static PyMethodDef SpamMethods[] = {
"Initialize the joint positions for all joints. This method skips any physics simulation and teleports all joints to the new positions."},
{"renderImage", pybullet_renderImage, METH_VARARGS,
"Render an image (given the camera view & projection matrices and resolution), and return the 8-8-8bit RGB pixel data and floating point depth values"},
"Render an image (given the pixel resolution width & height and camera view & projection matrices), and return the 8-8-8bit RGB pixel data and floating point depth values"},
{"getBasePositionAndOrientation", pybullet_getBasePositionAndOrientation, METH_VARARGS,
"Get the world position and orientation of the base of the object. (x,y,z) position vector and (x,y,z,w) quaternion orientation."},