1)Added SCE Physics Effects boxBoxDistance

BulletMultiThreaded/NarrowPhaseCollision makes use of this boxBoxDistance.
Cache some values in src/BulletMultiThreaded/SpuContactManifoldCollisionAlgorithm.cpp, to avoid DMA transfers

2) Added btConvexSeparatingDistanceUtil: this allows caching of separating distance/vector as early-out to avoid convex-convex collision detection.
btConvexSeparatingDistanceUtil is used in src/BulletCollision/CollisionDispatch/btConvexConvexAlgorithm.cpp and can be controlled by btDispatcherInfo.m_useConvexConservativeDistanceUtil/m_convexConservativeDistanceThreshold

3) Use BulletMultiThreaded/vectormath/scalar/cpp/vectormath/scalar/cpp/vectormath_aos.h as fallback for non-PlayStation 3 Cell SPU/PPU platforms (used by boxBoxDistance).
Note there are other implementations in Extras/vectormath folder, that are potentially faster for IBM Cell SDK 3.0 SPU (libspe2)
This commit is contained in:
erwin.coumans 2008-10-20 20:12:39 +00:00
parent b95810245f
commit e6202f58ad
22 changed files with 6716 additions and 49 deletions

View File

@ -26,6 +26,11 @@ subject to the following restrictions:
#include "Taru.mdl"
#include "landscape.mdl"
#include "BulletCollision/BroadphaseCollision/btDbvtBroadphase.h"
#include "BulletMultiThreaded/SpuGatheringCollisionDispatcher.h"
#include "BulletMultiThreaded/SequentialThreadSupport.h"
#include "BulletMultiThreaded/SpuNarrowPhaseCollisionTask/SpuGatheringCollisionTask.h"
@ -268,6 +273,16 @@ void BenchmarkDemo::initPhysics()
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
#if 0
SequentialThreadSupport::SequentialThreadConstructionInfo sci("spuCD",
processCollisionTask,
createCollisionLocalStoreMemory);
SequentialThreadSupport* seq = new SequentialThreadSupport(sci);
m_dispatcher = new SpuGatheringCollisionDispatcher(seq,1,m_collisionConfiguration);
#endif
///the maximum size of the collision world. Make sure objects stay within these boundaries
///Don't make the world AABB size too large, it will harm simulation quality and performance
btVector3 worldAabbMin(-10000,-10000,-10000);
@ -1132,9 +1147,9 @@ void BenchmarkDemo::castRays()
void BenchmarkDemo::createTest7()
{
setCameraDistance(btScalar(150.));
createTest6();
createTest6();
setCameraDistance(btScalar(150.));
initRays();
}

View File

@ -17,7 +17,7 @@ subject to the following restrictions:
#include "DemoApplication.h"
#include "LinearMath/btAlignedObjectArray.h"
#define NUMRAYS 200
#define NUMRAYS 500
class btBroadphaseInterface;
class btCollisionShape;

View File

@ -27,12 +27,12 @@ int main(int argc,char** argv)
GLDebugDrawer gDebugDrawer;
// BenchmarkDemo1 benchmarkDemo;
// BenchmarkDemo2 benchmarkDemo;
BenchmarkDemo2 benchmarkDemo;
// BenchmarkDemo3 benchmarkDemo;
// BenchmarkDemo4 benchmarkDemo;
// BenchmarkDemo5 benchmarkDemo;
// BenchmarkDemo6 benchmarkDemo;
BenchmarkDemo7 benchmarkDemo;
// BenchmarkDemo7 benchmarkDemo;
benchmarkDemo.initPhysics();

View File

@ -46,6 +46,8 @@ struct btDispatcherInfo
m_enableSPU(true),
m_useEpa(true),
m_allowedCcdPenetration(btScalar(0.04)),
m_useConvexConservativeDistanceUtil(true),
m_convexConservativeDistanceThreshold(0.01f),
m_stackAllocator(0)
{
@ -60,8 +62,9 @@ struct btDispatcherInfo
bool m_enableSPU;
bool m_useEpa;
btScalar m_allowedCcdPenetration;
bool m_useConvexConservativeDistanceUtil;
btScalar m_convexConservativeDistanceThreshold;
btStackAlloc* m_stackAllocator;
};
///The btDispatcher interface class can be used in combination with broadphase to dispatch calculations for overlapping pairs.

View File

@ -64,12 +64,12 @@ btConvexConvexAlgorithm::btConvexConvexAlgorithm(btPersistentManifold* mf,const
m_gjkPairDetector(0,0,simplexSolver,pdSolver),
m_ownManifold (false),
m_manifoldPtr(mf),
m_lowLevelOfDetail(false)
m_lowLevelOfDetail(false),
m_sepDistance((static_cast<btConvexShape*>(body0->getCollisionShape()))->getAngularMotionDisc(),
(static_cast<btConvexShape*>(body1->getCollisionShape()))->getAngularMotionDisc())
{
(void)body0;
(void)body1;
}
@ -107,6 +107,16 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
}
resultOut->setPersistentManifold(m_manifoldPtr);
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
m_sepDistance.updateSeparatingDistance(body0->getWorldTransform(),body1->getWorldTransform());
if (!dispatchInfo.m_useConvexConservativeDistanceUtil || m_sepDistance.getConservativeSeparatingDistance()<=0.f)
{
#ifdef USE_BT_GJKEPA
btConvexShape* shape0(static_cast<btConvexShape*>(body0->getCollisionShape()));
btConvexShape* shape1(static_cast<btConvexShape*>(body1->getCollisionShape()));
@ -121,16 +131,15 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
}
#else
btConvexShape* min0 = static_cast<btConvexShape*>(body0->getCollisionShape());
btConvexShape* min1 = static_cast<btConvexShape*>(body1->getCollisionShape());
btGjkPairDetector::ClosestPointInput input;
//TODO: if (dispatchInfo.m_useContinuous)
m_gjkPairDetector.setMinkowskiA(min0);
m_gjkPairDetector.setMinkowskiB(min1);
input.m_maximumDistanceSquared = min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
input.m_maximumDistanceSquared = 1e30f;//min0->getMargin() + min1->getMargin() + m_manifoldPtr->getContactBreakingThreshold();
//input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
input.m_stackAlloc = dispatchInfo.m_stackAllocator;
// input.m_maximumDistanceSquared = btScalar(1e30);
@ -141,6 +150,13 @@ void btConvexConvexAlgorithm ::processCollision (btCollisionObject* body0,btColl
m_gjkPairDetector.getClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
#endif
btScalar sepDist = m_gjkPairDetector.getCachedSeparatingDistance()+dispatchInfo.m_convexConservativeDistanceThreshold;
m_sepDistance.initSeparatingDistance(m_gjkPairDetector.getCachedSeparatingAxis(),sepDist,body0->getWorldTransform(),body1->getWorldTransform());
}
if (m_ownManifold)
{
resultOut->refreshContactPoints();

View File

@ -23,6 +23,7 @@ subject to the following restrictions:
#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "btCollisionCreateFunc.h"
#include "btCollisionDispatcher.h"
#include "LinearMath/btTransformUtil.h" //for btConvexSeparatingDistanceUtil
class btConvexPenetrationDepthSolver;
@ -36,6 +37,9 @@ public:
btPersistentManifold* m_manifoldPtr;
bool m_lowLevelOfDetail;
///cache separating vector to speedup collision detection
btConvexSeparatingDistanceUtil m_sepDistance;
public:

View File

@ -53,6 +53,8 @@ m_catchDegeneracies(1)
void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result& output,class btIDebugDraw* debugDraw,bool swapResults)
{
m_cachedSeparatingDistance = 0.f;
btScalar distance=btScalar(0.);
btVector3 normalInB(btScalar(0.),btScalar(0.),btScalar(0.));
btVector3 pointOnA,pointOnB;
@ -331,6 +333,9 @@ void btGjkPairDetector::getClosestPoints(const ClosestPointInput& input,Result&
#ifdef DEBUG_SPU_COLLISION_DETECTION
spu_printf("output 1\n");
#endif
m_cachedSeparatingAxis = normalInB;
m_cachedSeparatingDistance = distance;
output.addContactPoint(
normalInB,
pointOnB+positionOffset,

View File

@ -38,6 +38,7 @@ class btGjkPairDetector : public btDiscreteCollisionDetectorInterface
const btConvexShape* m_minkowskiA;
const btConvexShape* m_minkowskiB;
bool m_ignoreMargin;
btScalar m_cachedSeparatingDistance;
public:
@ -68,6 +69,15 @@ public:
m_cachedSeparatingAxis = seperatingAxis;
}
const btVector3& getCachedSeparatingAxis() const
{
return m_cachedSeparatingAxis;
}
btScalar getCachedSeparatingDistance() const
{
return m_cachedSeparatingDistance;
}
void setPenetrationDepthSolver(btConvexPenetrationDepthSolver* penetrationDepthSolver)
{
m_penetrationDepthSolver = penetrationDepthSolver;

View File

@ -1,5 +1,5 @@
INCLUDE_DIRECTORIES(
${BULLET_PHYSICS_SOURCE_DIR}/src
${BULLET_PHYSICS_SOURCE_DIR}/src ${BULLET_PHYSICS_SOURCE_DIR}/src/BulletMultiThreaded/vectormath/scalar/cpp
)
ADD_LIBRARY(LibBulletMultiThreaded
@ -30,6 +30,9 @@ ADD_LIBRARY(LibBulletMultiThreaded
SpuGatheringCollisionDispatcher.cpp
SpuContactManifoldCollisionAlgorithm.cpp
SpuContactManifoldCollisionAlgorithm.h
SpuNarrowPhaseCollisionTask/Box.h
SpuNarrowPhaseCollisionTask/boxBoxDistance.cpp
SpuNarrowPhaseCollisionTask/boxBoxDistance.h
SpuNarrowPhaseCollisionTask/SpuContactResult.cpp
SpuNarrowPhaseCollisionTask/SpuContactResult.h
SpuNarrowPhaseCollisionTask/SpuMinkowskiPenetrationDepthSolver.cpp

View File

@ -3,10 +3,12 @@ SubDir TOP src BulletMultiThreaded ;
#IncludeDir src/BulletMultiThreaded ;
Library bulletmultithreaded : [ Wildcard . : */.h *.cpp ] [ Wildcard SpuNarrowPhaseCollisionTask : *.h *.cpp ] [ Wildcard SpuSolverTask : *.h *.cpp ] : noinstall ;
CFlags bulletmultithreaded : [ FIncludes $(TOP)/src/BulletMultiThreaded ] ;
CFlags bulletmultithreaded : [ FIncludes $(TOP)/src/BulletMultiThreaded ] [ FIncludes $(TOP)/src/BulletMultiThreaded/vectormath/scalar/cpp ] ;
LibDepends bulletmultithreaded : ;
MsvcIncDirs bulletmultithreaded :
"../../src/BulletMultiThreaded" ;
"../../src/BulletMultiThreaded"
"../../src/BulletMultiThreaded/vectormath/scalar/cpp"
;
InstallHeader [ Wildcard *.h ] : bulletmultithreaded ;

View File

@ -17,7 +17,7 @@ subject to the following restrictions:
#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
SpuContactManifoldCollisionAlgorithm::SpuContactManifoldCollisionAlgorithm()
:m_manifoldPtr(0)
@ -46,7 +46,19 @@ SpuContactManifoldCollisionAlgorithm::SpuContactManifoldCollisionAlgorithm(const
m_shapeType1 = body1->getCollisionShape()->getShapeType();
m_collisionMargin0 = body0->getCollisionShape()->getMargin();
m_collisionMargin1 = body1->getCollisionShape()->getMargin();
m_collisionObject0 = body0;
m_collisionObject1 = body1;
if (body0->getCollisionShape()->isPolyhedral())
{
btPolyhedralConvexShape* convex0 = (btPolyhedralConvexShape*)body0->getCollisionShape();
m_shapeDimensions0 = convex0->getImplicitShapeDimensions();
}
if (body1->getCollisionShape()->isPolyhedral())
{
btPolyhedralConvexShape* convex1 = (btPolyhedralConvexShape*)body1->getCollisionShape();
m_shapeDimensions1 = convex1->getImplicitShapeDimensions();
}
}
#endif //__SPU__

View File

@ -26,13 +26,18 @@ class btPersistentManifold;
/// SpuContactManifoldCollisionAlgorithm provides contact manifold and should be processed on SPU.
ATTRIBUTE_ALIGNED16(class) SpuContactManifoldCollisionAlgorithm : public btCollisionAlgorithm
{
btVector3 m_shapeDimensions0;
btVector3 m_shapeDimensions1;
btPersistentManifold* m_manifoldPtr;
int m_shapeType0;
int m_shapeType1;
float m_collisionMargin0;
float m_collisionMargin1;
btCollisionObject* m_collisionObject0;
btCollisionObject* m_collisionObject1;
public:
@ -57,6 +62,16 @@ public:
return m_manifoldPtr;
}
btCollisionObject* getCollisionObject0()
{
return m_collisionObject0;
}
btCollisionObject* getCollisionObject1()
{
return m_collisionObject1;
}
int getShapeType0() const
{
return m_shapeType0;
@ -75,6 +90,16 @@ public:
return m_collisionMargin1;
}
const btVector3& getShapeDimensions0() const
{
return m_shapeDimensions0;
}
const btVector3& getShapeDimensions1() const
{
return m_shapeDimensions1;
}
struct CreateFunc :public btCollisionAlgorithmCreateFunc
{
virtual btCollisionAlgorithm* CreateCollisionAlgorithm(btCollisionAlgorithmConstructionInfo& ci, btCollisionObject* body0,btCollisionObject* body1)

View File

@ -126,7 +126,7 @@ public:
if (m_dispatcher->supportsDispatchPairOnSpu(proxyType0,proxyType1))
{
int so = sizeof(SpuContactManifoldCollisionAlgorithm);
void* mem = m_dispatcher->allocateCollisionAlgorithm(so);
void* mem = btAlignedAlloc(sizeof(SpuContactManifoldCollisionAlgorithm),16);//m_dispatcher->allocateCollisionAlgorithm(so);
collisionPair.m_algorithm = new(mem) SpuContactManifoldCollisionAlgorithm(ci,colObj0,colObj1);
collisionPair.m_userInfo = (void*) 2;
} else

View File

@ -0,0 +1,158 @@
/*
Copyright (C) 2006, 2008 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BOX_H__
#define __BOX_H__
#include <math.h>
#include <vectormath_aos.h>
using namespace Vectormath::Aos;
enum FeatureType { F, E, V };
//----------------------------------------------------------------------------
// Box
//----------------------------------------------------------------------------
class Box
{
public:
Vector3 half;
inline Box()
{}
inline Box(Vector3 half_);
inline Box(float hx, float hy, float hz);
inline void Set(Vector3 half_);
inline void Set(float hx, float hy, float hz);
inline Vector3 GetAABB(const Matrix3& rotation) const;
};
inline
Box::Box(Vector3 half_)
{
Set(half_);
}
inline
Box::Box(float hx, float hy, float hz)
{
Set(hx, hy, hz);
}
inline
void
Box::Set(Vector3 half_)
{
half = half_;
}
inline
void
Box::Set(float hx, float hy, float hz)
{
half = Vector3(hx, hy, hz);
}
inline
Vector3
Box::GetAABB(const Matrix3& rotation) const
{
return absPerElem(rotation) * half;
}
//-------------------------------------------------------------------------------------------------
// BoxPoint
//-------------------------------------------------------------------------------------------------
class BoxPoint
{
public:
BoxPoint() : localPoint(0.0f) {}
Point3 localPoint;
FeatureType featureType;
int featureIdx;
inline void setVertexFeature(int plusX, int plusY, int plusZ);
inline void setEdgeFeature(int dim0, int plus0, int dim1, int plus1);
inline void setFaceFeature(int dim, int plus);
inline void getVertexFeature(int & plusX, int & plusY, int & plusZ) const;
inline void getEdgeFeature(int & dim0, int & plus0, int & dim1, int & plus1) const;
inline void getFaceFeature(int & dim, int & plus) const;
};
inline
void
BoxPoint::setVertexFeature(int plusX, int plusY, int plusZ)
{
featureType = V;
featureIdx = plusX << 2 | plusY << 1 | plusZ;
}
inline
void
BoxPoint::setEdgeFeature(int dim0, int plus0, int dim1, int plus1)
{
featureType = E;
if (dim0 > dim1) {
featureIdx = plus1 << 5 | dim1 << 3 | plus0 << 2 | dim0;
} else {
featureIdx = plus0 << 5 | dim0 << 3 | plus1 << 2 | dim1;
}
}
inline
void
BoxPoint::setFaceFeature(int dim, int plus)
{
featureType = F;
featureIdx = plus << 2 | dim;
}
inline
void
BoxPoint::getVertexFeature(int & plusX, int & plusY, int & plusZ) const
{
plusX = featureIdx >> 2;
plusY = featureIdx >> 1 & 1;
plusZ = featureIdx & 1;
}
inline
void
BoxPoint::getEdgeFeature(int & dim0, int & plus0, int & dim1, int & plus1) const
{
plus0 = featureIdx >> 5;
dim0 = featureIdx >> 3 & 3;
plus1 = featureIdx >> 2 & 1;
dim1 = featureIdx & 3;
}
inline
void
BoxPoint::getFaceFeature(int & dim, int & plus) const
{
plus = featureIdx >> 2;
dim = featureIdx & 3;
}
#endif /* __BOX_H__ */

View File

@ -26,7 +26,8 @@
#include "SpuEpaPenetrationDepthSolver.h"
#include "SpuGjkPairDetector.h"
#include "SpuVoronoiSimplexSolver.h"
#include "boxBoxDistance.h"
#include "Util/Vectormath2Bullet.h"
#include "SpuCollisionShapes.h" //definition of SpuConvexPolyhedronVertexData
#ifdef __SPU__
@ -89,11 +90,14 @@ bool gUseEpa = false;
#include <LibSN_SPU.h>
#endif //USE_SN_TUNER
#if defined (__CELLOS_LV2__) || defined (USE_LIBSPE2)
#if defined (__SPU__) || defined (USE_LIBSPE2)
#include <spu_printf.h>
#else
#define IGNORE_ALIGNMENT 1
#define spu_printf printf
#include <stdio.h>
#include <stdlib.h>
#define spu_printf printf
#endif
//int gNumConvexPoints0=0;
@ -101,14 +105,7 @@ bool gUseEpa = false;
///Make sure no destructors are called on this memory
struct CollisionTask_LocalStoreMemory
{
ATTRIBUTE_ALIGNED16(char bufferProxy0[sizeof(btBroadphaseProxy)+16]);
ATTRIBUTE_ALIGNED16(char bufferProxy1[sizeof(btBroadphaseProxy)+16]);
ATTRIBUTE_ALIGNED16(btBroadphaseProxy* gProxyPtr0);
ATTRIBUTE_ALIGNED16(btBroadphaseProxy* gProxyPtr1);
//ATTRIBUTE_ALIGNED16(btCollisionObject gColObj0);
//ATTRIBUTE_ALIGNED16(btCollisionObject gColObj1);
ATTRIBUTE_ALIGNED16(char gColObj0 [sizeof(btCollisionObject)+16]);
ATTRIBUTE_ALIGNED16(char gColObj1 [sizeof(btCollisionObject)+16]);
@ -472,18 +469,19 @@ void ProcessSpuConvexConvexCollision(SpuCollisionPairInput* wuInput, CollisionTa
//try generic GJK
SpuVoronoiSimplexSolver vsSolver;
SpuEpaPenetrationDepthSolver epaPenetrationSolver;
SpuMinkowskiPenetrationDepthSolver minkowskiPenetrationSolver;
SpuConvexPenetrationDepthSolver* penetrationSolver;
#ifdef ENABLE_EPA
SpuEpaPenetrationDepthSolver epaPenetrationSolver;
if (gUseEpa)
{
penetrationSolver = &epaPenetrationSolver;
} else {
} else
#endif
{
penetrationSolver = &minkowskiPenetrationSolver;
}
///DMA in the vertices for convex shapes
ATTRIBUTE_ALIGNED16(char convexHullShape0[sizeof(btConvexHullShape)]);
ATTRIBUTE_ALIGNED16(char convexHullShape1[sizeof(btConvexHullShape)]);
@ -582,12 +580,12 @@ SIMD_FORCE_INLINE void dmaAndSetupCollisionObjects(SpuCollisionPairInput& collis
register int dmaSize;
register ppu_address_t dmaPpuAddress2;
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr0->m_clientObject;
dmaSize = sizeof(btCollisionObject);//btTransform);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr1->m_clientObject :*/ (ppu_address_t)lsMem.gSpuContactManifoldAlgo.getCollisionObject0();
cellDmaGet(&lsMem.gColObj0, dmaPpuAddress2 , dmaSize, DMA_TAG(1), 0, 0);
dmaSize = sizeof(btCollisionObject);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gProxyPtr1->m_clientObject;
dmaSize = sizeof(btCollisionObject);//btTransform);
dmaPpuAddress2 = /*collisionPairInput.m_isSwapped ? (ppu_address_t)lsMem.gProxyPtr0->m_clientObject :*/ (ppu_address_t)lsMem.gSpuContactManifoldAlgo.getCollisionObject1();
cellDmaGet(&lsMem.gColObj1, dmaPpuAddress2 , dmaSize, DMA_TAG(2), 0, 0);
cellDmaWaitTagStatusAll(DMA_MASK(1) | DMA_MASK(2));
@ -798,6 +796,7 @@ void handleCollisionPair(SpuCollisionPairInput& collisionPairInput, CollisionTas
}
spuContacts.flush();
}
@ -912,6 +911,7 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
#endif //DEBUG_SPU_COLLISION_DETECTION
/*
dmaSize = sizeof(btBroadphaseProxy);
dmaPpuAddress2 = (ppu_address_t)pair.m_pProxy0;
//stallingUnalignedDmaSmallGet(lsMem.gProxyPtr0, dmaPpuAddress2 , dmaSize);
@ -923,6 +923,8 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
tmpPtr = cellDmaSmallGetReadOnly(&lsMem.bufferProxy1, dmaPpuAddress2 , dmaSize,DMA_TAG(1), 0, 0);
lsMem.gProxyPtr1 = (btBroadphaseProxy*)tmpPtr;
*/
cellDmaWaitTagStatusAll(DMA_MASK(1));
@ -963,12 +965,81 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
// Get the collision objects
dmaAndSetupCollisionObjects(collisionPairInput, lsMem);
if (lsMem.getColObj0()->isActive() || lsMem.getColObj1()->isActive())
//if (lsMem.getColObj0()->isActive() || lsMem.getColObj1()->isActive())
{
bool boxbox = ((lsMem.gSpuContactManifoldAlgo.getShapeType0()==BOX_SHAPE_PROXYTYPE)&&
(lsMem.gSpuContactManifoldAlgo.getShapeType1()==BOX_SHAPE_PROXYTYPE));
if (boxbox && !gUseEpa)//for now use gUseEpa for this toggle
{
//getVmVector3
//getBtVector3
//getVmQuat
//getBtQuat
//getVmMatrix3
//getCollisionMargin0
btScalar margin0 = lsMem.gSpuContactManifoldAlgo.getCollisionMargin0();
btScalar margin1 = lsMem.gSpuContactManifoldAlgo.getCollisionMargin1();
btVector3 shapeDim0 = lsMem.gSpuContactManifoldAlgo.getShapeDimensions0()+btVector3(margin0,margin0,margin0);
btVector3 shapeDim1 = lsMem.gSpuContactManifoldAlgo.getShapeDimensions1()+btVector3(margin1,margin1,margin1);
Box boxA(shapeDim0.getX(),shapeDim0.getY(),shapeDim0.getZ());
Vector3 vmPos0 = getVmVector3(collisionPairInput.m_worldTransform0.getOrigin());
Vector3 vmPos1 = getVmVector3(collisionPairInput.m_worldTransform1.getOrigin());
Matrix3 vmMatrix0 = getVmMatrix3(collisionPairInput.m_worldTransform0.getBasis());
Matrix3 vmMatrix1 = getVmMatrix3(collisionPairInput.m_worldTransform1.getBasis());
Transform3 transformA(vmMatrix0,vmPos0);
Box boxB(shapeDim1.getX(),shapeDim1.getY(),shapeDim1.getZ());
Transform3 transformB(vmMatrix1,vmPos1);
BoxPoint resultClosestBoxPointA;
BoxPoint resultClosestBoxPointB;
Vector3 resultNormal;
float distanceThreshold = gContactBreakingThreshold;//0.0f;//FLT_MAX;//use epsilon?
float distance = boxBoxDistance(resultNormal,resultClosestBoxPointA,resultClosestBoxPointB,
boxA, transformA, boxB,transformB,distanceThreshold);
if(distance < distanceThreshold)
{
//spu_printf("boxbox dist = %f\n",distance);
btPersistentManifold* spuManifold=&lsMem.gPersistentManifold;
btPersistentManifold* manifold = (btPersistentManifold*)collisionPairInput.m_persistentManifoldPtr;
ppu_address_t manifoldAddress = (ppu_address_t)manifold;
//spuContacts.setContactInfo(spuManifold,manifoldAddress,wuInput->m_worldTransform0,wuInput->m_worldTransform1,wuInput->m_isSwapped);
spuContacts.setContactInfo(spuManifold,manifoldAddress,lsMem.getColObj0()->getWorldTransform(),
lsMem.getColObj1()->getWorldTransform(),
lsMem.getColObj0()->getRestitution(),lsMem.getColObj1()->getRestitution(),
lsMem.getColObj0()->getFriction(),lsMem.getColObj1()->getFriction(),
collisionPairInput.m_isSwapped);
btVector3 normalInB = -getBtVector3(resultNormal);
btVector3 pointOnB = collisionPairInput.m_worldTransform1(getBtVector3(resultClosestBoxPointB.localPoint));
//transform pointOnB to worldspace?
spuContacts.addContactPoint(
normalInB,
pointOnB,
distance);
//normalInB,
//pointOnB+positionOffset,
//distance);
//SET_CONTACT_POINT(cp[0],distance,-testNormal,
// boxPointA,relTransformA,primIndexA,
// boxPointB,relTransformB,primIndexB);
spuContacts.flush();
}
} else
{
handleCollisionPair(collisionPairInput, lsMem, spuContacts,
(ppu_address_t)lsMem.getColObj0()->getCollisionShape(), &lsMem.gCollisionShapes[0].collisionShape,
(ppu_address_t)lsMem.getColObj1()->getCollisionShape(), &lsMem.gCollisionShapes[1].collisionShape);
}
}
}
}
@ -981,5 +1052,6 @@ void processCollisionTask(void* userPtr, void* lsMemPtr)
}// for
return;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,66 @@
/*
Copyright (C) 2006, 2008 Sony Computer Entertainment Inc.
All rights reserved.
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef __BOXBOXDISTANCE_H__
#define __BOXBOXDISTANCE_H__
#include "Box.h"
using namespace Vectormath::Aos;
//---------------------------------------------------------------------------
// boxBoxDistance:
//
// description:
// this computes info that can be used for the collision response of two boxes. when the boxes
// do not overlap, the points are set to the closest points of the boxes, and a positive
// distance between them is returned. if the boxes do overlap, a negative distance is returned
// and the points are set to two points that would touch after the boxes are translated apart.
// the contact normal gives the direction to repel or separate the boxes when they touch or
// overlap (it's being approximated here as one of the 15 "separating axis" directions).
//
// returns:
// positive or negative distance between two boxes.
//
// args:
// Vector3& normal: set to a unit contact normal pointing from box A to box B.
//
// BoxPoint& boxPointA, BoxPoint& boxPointB:
// set to a closest point or point of penetration on each box.
//
// Box boxA, Box boxB:
// boxes, represented as 3 half-widths
//
// const Transform3& transformA, const Transform3& transformB:
// box transformations, in world coordinates
//
// float distanceThreshold:
// the algorithm will exit early if it finds that the boxes are more distant than this
// threshold, and not compute a contact normal or points. if this distance returned
// exceeds the threshold, all the other output data may not have been computed. by
// default, this is set to MAX_FLOAT so it will have no effect.
//
//---------------------------------------------------------------------------
float
boxBoxDistance(Vector3& normal, BoxPoint& boxPointA, BoxPoint& boxPointB,
Box boxA, const Transform3 & transformA, Box boxB,
const Transform3 & transformB,
float distanceThreshold = FLT_MAX );
#endif /* __BOXBOXDISTANCE_H__ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,432 @@
/*
Copyright (C) 2006, 2007 Sony Computer Entertainment Inc.
All rights reserved.
Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Sony Computer Entertainment Inc nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _VECTORMATH_QUAT_AOS_CPP_H
#define _VECTORMATH_QUAT_AOS_CPP_H
//-----------------------------------------------------------------------------
// Definitions
#ifndef _VECTORMATH_INTERNAL_FUNCTIONS
#define _VECTORMATH_INTERNAL_FUNCTIONS
#endif
namespace Vectormath {
namespace Aos {
inline Quat::Quat( const Quat & quat )
{
mX = quat.mX;
mY = quat.mY;
mZ = quat.mZ;
mW = quat.mW;
}
inline Quat::Quat( float _x, float _y, float _z, float _w )
{
mX = _x;
mY = _y;
mZ = _z;
mW = _w;
}
inline Quat::Quat( const Vector3 & xyz, float _w )
{
this->setXYZ( xyz );
this->setW( _w );
}
inline Quat::Quat( const Vector4 & vec )
{
mX = vec.getX();
mY = vec.getY();
mZ = vec.getZ();
mW = vec.getW();
}
inline Quat::Quat( float scalar )
{
mX = scalar;
mY = scalar;
mZ = scalar;
mW = scalar;
}
inline const Quat Quat::identity( )
{
return Quat( 0.0f, 0.0f, 0.0f, 1.0f );
}
inline const Quat lerp( float t, const Quat & quat0, const Quat & quat1 )
{
return ( quat0 + ( ( quat1 - quat0 ) * t ) );
}
inline const Quat slerp( float t, const Quat & unitQuat0, const Quat & unitQuat1 )
{
Quat start;
float recipSinAngle, scale0, scale1, cosAngle, angle;
cosAngle = dot( unitQuat0, unitQuat1 );
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
start = ( -unitQuat0 );
} else {
start = unitQuat0;
}
if ( cosAngle < _VECTORMATH_SLERP_TOL ) {
angle = acosf( cosAngle );
recipSinAngle = ( 1.0f / sinf( angle ) );
scale0 = ( sinf( ( ( 1.0f - t ) * angle ) ) * recipSinAngle );
scale1 = ( sinf( ( t * angle ) ) * recipSinAngle );
} else {
scale0 = ( 1.0f - t );
scale1 = t;
}
return ( ( start * scale0 ) + ( unitQuat1 * scale1 ) );
}
inline const Quat squad( float t, const Quat & unitQuat0, const Quat & unitQuat1, const Quat & unitQuat2, const Quat & unitQuat3 )
{
Quat tmp0, tmp1;
tmp0 = slerp( t, unitQuat0, unitQuat3 );
tmp1 = slerp( t, unitQuat1, unitQuat2 );
return slerp( ( ( 2.0f * t ) * ( 1.0f - t ) ), tmp0, tmp1 );
}
inline Quat & Quat::operator =( const Quat & quat )
{
mX = quat.mX;
mY = quat.mY;
mZ = quat.mZ;
mW = quat.mW;
return *this;
}
inline Quat & Quat::setXYZ( const Vector3 & vec )
{
mX = vec.getX();
mY = vec.getY();
mZ = vec.getZ();
return *this;
}
inline const Vector3 Quat::getXYZ( ) const
{
return Vector3( mX, mY, mZ );
}
inline Quat & Quat::setX( float _x )
{
mX = _x;
return *this;
}
inline float Quat::getX( ) const
{
return mX;
}
inline Quat & Quat::setY( float _y )
{
mY = _y;
return *this;
}
inline float Quat::getY( ) const
{
return mY;
}
inline Quat & Quat::setZ( float _z )
{
mZ = _z;
return *this;
}
inline float Quat::getZ( ) const
{
return mZ;
}
inline Quat & Quat::setW( float _w )
{
mW = _w;
return *this;
}
inline float Quat::getW( ) const
{
return mW;
}
inline Quat & Quat::setElem( int idx, float value )
{
*(&mX + idx) = value;
return *this;
}
inline float Quat::getElem( int idx ) const
{
return *(&mX + idx);
}
inline float & Quat::operator []( int idx )
{
return *(&mX + idx);
}
inline float Quat::operator []( int idx ) const
{
return *(&mX + idx);
}
inline const Quat Quat::operator +( const Quat & quat ) const
{
return Quat(
( mX + quat.mX ),
( mY + quat.mY ),
( mZ + quat.mZ ),
( mW + quat.mW )
);
}
inline const Quat Quat::operator -( const Quat & quat ) const
{
return Quat(
( mX - quat.mX ),
( mY - quat.mY ),
( mZ - quat.mZ ),
( mW - quat.mW )
);
}
inline const Quat Quat::operator *( float scalar ) const
{
return Quat(
( mX * scalar ),
( mY * scalar ),
( mZ * scalar ),
( mW * scalar )
);
}
inline Quat & Quat::operator +=( const Quat & quat )
{
*this = *this + quat;
return *this;
}
inline Quat & Quat::operator -=( const Quat & quat )
{
*this = *this - quat;
return *this;
}
inline Quat & Quat::operator *=( float scalar )
{
*this = *this * scalar;
return *this;
}
inline const Quat Quat::operator /( float scalar ) const
{
return Quat(
( mX / scalar ),
( mY / scalar ),
( mZ / scalar ),
( mW / scalar )
);
}
inline Quat & Quat::operator /=( float scalar )
{
*this = *this / scalar;
return *this;
}
inline const Quat Quat::operator -( ) const
{
return Quat(
-mX,
-mY,
-mZ,
-mW
);
}
inline const Quat operator *( float scalar, const Quat & quat )
{
return quat * scalar;
}
inline float dot( const Quat & quat0, const Quat & quat1 )
{
float result;
result = ( quat0.getX() * quat1.getX() );
result = ( result + ( quat0.getY() * quat1.getY() ) );
result = ( result + ( quat0.getZ() * quat1.getZ() ) );
result = ( result + ( quat0.getW() * quat1.getW() ) );
return result;
}
inline float norm( const Quat & quat )
{
float result;
result = ( quat.getX() * quat.getX() );
result = ( result + ( quat.getY() * quat.getY() ) );
result = ( result + ( quat.getZ() * quat.getZ() ) );
result = ( result + ( quat.getW() * quat.getW() ) );
return result;
}
inline float length( const Quat & quat )
{
return sqrtf( norm( quat ) );
}
inline const Quat normalize( const Quat & quat )
{
float lenSqr, lenInv;
lenSqr = norm( quat );
lenInv = ( 1.0f / sqrtf( lenSqr ) );
return Quat(
( quat.getX() * lenInv ),
( quat.getY() * lenInv ),
( quat.getZ() * lenInv ),
( quat.getW() * lenInv )
);
}
inline const Quat Quat::rotation( const Vector3 & unitVec0, const Vector3 & unitVec1 )
{
float cosHalfAngleX2, recipCosHalfAngleX2;
cosHalfAngleX2 = sqrtf( ( 2.0f * ( 1.0f + dot( unitVec0, unitVec1 ) ) ) );
recipCosHalfAngleX2 = ( 1.0f / cosHalfAngleX2 );
return Quat( ( cross( unitVec0, unitVec1 ) * recipCosHalfAngleX2 ), ( cosHalfAngleX2 * 0.5f ) );
}
inline const Quat Quat::rotation( float radians, const Vector3 & unitVec )
{
float s, c, angle;
angle = ( radians * 0.5f );
s = sinf( angle );
c = cosf( angle );
return Quat( ( unitVec * s ), c );
}
inline const Quat Quat::rotationX( float radians )
{
float s, c, angle;
angle = ( radians * 0.5f );
s = sinf( angle );
c = cosf( angle );
return Quat( s, 0.0f, 0.0f, c );
}
inline const Quat Quat::rotationY( float radians )
{
float s, c, angle;
angle = ( radians * 0.5f );
s = sinf( angle );
c = cosf( angle );
return Quat( 0.0f, s, 0.0f, c );
}
inline const Quat Quat::rotationZ( float radians )
{
float s, c, angle;
angle = ( radians * 0.5f );
s = sinf( angle );
c = cosf( angle );
return Quat( 0.0f, 0.0f, s, c );
}
inline const Quat Quat::operator *( const Quat & quat ) const
{
return Quat(
( ( ( ( mW * quat.mX ) + ( mX * quat.mW ) ) + ( mY * quat.mZ ) ) - ( mZ * quat.mY ) ),
( ( ( ( mW * quat.mY ) + ( mY * quat.mW ) ) + ( mZ * quat.mX ) ) - ( mX * quat.mZ ) ),
( ( ( ( mW * quat.mZ ) + ( mZ * quat.mW ) ) + ( mX * quat.mY ) ) - ( mY * quat.mX ) ),
( ( ( ( mW * quat.mW ) - ( mX * quat.mX ) ) - ( mY * quat.mY ) ) - ( mZ * quat.mZ ) )
);
}
inline Quat & Quat::operator *=( const Quat & quat )
{
*this = *this * quat;
return *this;
}
inline const Vector3 rotate( const Quat & quat, const Vector3 & vec )
{
float tmpX, tmpY, tmpZ, tmpW;
tmpX = ( ( ( quat.getW() * vec.getX() ) + ( quat.getY() * vec.getZ() ) ) - ( quat.getZ() * vec.getY() ) );
tmpY = ( ( ( quat.getW() * vec.getY() ) + ( quat.getZ() * vec.getX() ) ) - ( quat.getX() * vec.getZ() ) );
tmpZ = ( ( ( quat.getW() * vec.getZ() ) + ( quat.getX() * vec.getY() ) ) - ( quat.getY() * vec.getX() ) );
tmpW = ( ( ( quat.getX() * vec.getX() ) + ( quat.getY() * vec.getY() ) ) + ( quat.getZ() * vec.getZ() ) );
return Vector3(
( ( ( ( tmpW * quat.getX() ) + ( tmpX * quat.getW() ) ) - ( tmpY * quat.getZ() ) ) + ( tmpZ * quat.getY() ) ),
( ( ( ( tmpW * quat.getY() ) + ( tmpY * quat.getW() ) ) - ( tmpZ * quat.getX() ) ) + ( tmpX * quat.getZ() ) ),
( ( ( ( tmpW * quat.getZ() ) + ( tmpZ * quat.getW() ) ) - ( tmpX * quat.getY() ) ) + ( tmpY * quat.getX() ) )
);
}
inline const Quat conj( const Quat & quat )
{
return Quat( -quat.getX(), -quat.getY(), -quat.getZ(), quat.getW() );
}
inline const Quat select( const Quat & quat0, const Quat & quat1, bool select1 )
{
return Quat(
( select1 )? quat1.getX() : quat0.getX(),
( select1 )? quat1.getY() : quat0.getY(),
( select1 )? quat1.getZ() : quat0.getZ(),
( select1 )? quat1.getW() : quat0.getW()
);
}
#ifdef _VECTORMATH_DEBUG
inline void print( const Quat & quat )
{
printf( "( %f %f %f %f )\n", quat.getX(), quat.getY(), quat.getZ(), quat.getW() );
}
inline void print( const Quat & quat, const char * name )
{
printf( "%s: ( %f %f %f %f )\n", name, quat.getX(), quat.getY(), quat.getZ(), quat.getW() );
}
#endif
} // namespace Aos
} // namespace Vectormath
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -140,5 +140,71 @@ public:
};
///The btConvexSeparatingDistanceUtil can help speed up convex collision detection
///by conservatively updating a cached separating distance/vector instead of re-calculating the closest distance
class btConvexSeparatingDistanceUtil
{
btTransform m_cachedTransformA;
btTransform m_cachedTransformB;
btScalar m_boundingRadiusA;
btScalar m_boundingRadiusB;
btVector3 m_separatingNormal;
btScalar m_separatingDistance;
public:
btConvexSeparatingDistanceUtil(btScalar boundingRadiusA,btScalar boundingRadiusB)
:m_boundingRadiusA(boundingRadiusA),
m_boundingRadiusB(boundingRadiusB),
m_separatingDistance(0.f)
{
}
btScalar getConservativeSeparatingDistance()
{
return m_separatingDistance;
}
void updateSeparatingDistance(const btTransform& transA,const btTransform& transB)
{
if (m_separatingDistance>0.f)
{
const btTransform& fromA = m_cachedTransformA;
const btTransform& fromB = m_cachedTransformB;
const btTransform& toA = transA;
const btTransform& toB = transB;
btVector3 linVelA,angVelA,linVelB,angVelB;
btTransformUtil::calculateVelocity(fromA,toA,btScalar(1.),linVelA,angVelA);
btTransformUtil::calculateVelocity(fromB,toB,btScalar(1.),linVelB,angVelB);
btScalar maxAngularProjectedVelocity = angVelA.length() * m_boundingRadiusA + angVelB.length() * m_boundingRadiusB;
btVector3 relLinVel = (linVelB-linVelA);
btScalar relLinVelocLength = (linVelB-linVelA).dot(m_separatingNormal);
if (relLinVelocLength<0.f)
{
relLinVelocLength = 0.f;
}
btScalar projectedMotion = maxAngularProjectedVelocity +relLinVelocLength;
m_separatingDistance -= projectedMotion;
}
m_cachedTransformA = transA;
m_cachedTransformB = transB;
}
void initSeparatingDistance(const btVector3& separatingVector,btScalar separatingDistance,const btTransform& transA,const btTransform& transB)
{
m_separatingNormal = separatingVector;
m_separatingDistance = separatingDistance;
m_cachedTransformA = transA;
m_cachedTransformB = transB;
}
};
#endif //SIMD_TRANSFORM_UTIL_H