renamed solverbody, more work will be committed soon, please stay tuned.

This commit is contained in:
ejcoumans 2007-03-20 06:15:12 +00:00
parent 3835e5296b
commit f8fe7e8f2d

View File

@ -0,0 +1,80 @@
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef BT_SOLVER_BODY_H
#define BT_SOLVER_BODY_H
class btRigidBody;
#include "LinearMath/btVector3.h"
#include "LinearMath/btMatrix3x3.h"
ATTRIBUTE_ALIGNED16 (struct btSolverBody)
{
btVector3 m_centerOfMassPosition;
btVector3 m_linearVelocity;
btVector3 m_angularVelocity;
btRigidBody* m_originalBody;
float m_invMass;
float m_friction;
float m_unused;
inline void getVelocityInLocalPoint(const btVector3& rel_pos, btVector3& velocity ) const
{
velocity = m_linearVelocity + m_angularVelocity.cross(rel_pos);
}
//Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position
inline void internalApplyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude)
{
m_linearVelocity += linearComponent*impulseMagnitude;
m_angularVelocity += angularComponent*impulseMagnitude;
}
void writebackVelocity()
{
if (m_invMass)
{
m_originalBody->setLinearVelocity(m_linearVelocity);
m_originalBody->setAngularVelocity(m_angularVelocity);
}
}
void readVelocity()
{
if (m_invMass)
{
m_linearVelocity = m_originalBody->getLinearVelocity();
m_angularVelocity = m_originalBody->getAngularVelocity();
}
}
inline void applyImpulse(const btVector3& impulse,const btVector3& rel_pos)
{
if (m_invMass)
{
m_linearVelocity += impulse * m_invMass;
btVector3 torqueImpulse = rel_pos.cross(impulse);
// m_angularVelocity += m_invInertiaWorld * torqueImpulse;
}
}
};
#endif //BT_SOLVER_BODY_H