add btAdjustInternalEdgeContacts options for BT_TRIANGLE_CONVEX_BACKFACE_MODE (defaults to front facing) and BT_TRIANGLE_CONCAVE_SINGLE_SIDED

This commit is contained in:
erwin.coumans 2010-01-30 10:21:40 +00:00
parent 01b66a6799
commit fbc4089e3f
3 changed files with 56 additions and 30 deletions

View File

@ -26,13 +26,13 @@ IF (USE_GLUT)
IF (WIN32)
IF (CMAKE_CL_64)
ADD_CUSTOM_COMMAND(
TARGET InternalEdgeDemo
TARGET AppInternalEdgeDemo
POST_BUILD
COMMAND ${CMAKE_COMMAND} ARGS -E copy_if_different ${BULLET_PHYSICS_SOURCE_DIR}/glut64.dll ${CMAKE_CURRENT_BINARY_DIR}
)
ELSE(CMAKE_CL_64)
ADD_CUSTOM_COMMAND(
TARGET InternalEdgeDemo
TARGET AppInternalEdgeDemo
POST_BUILD
COMMAND ${CMAKE_COMMAND} ARGS -E copy_if_different ${BULLET_PHYSICS_SOURCE_DIR}/GLUT32.DLL ${CMAKE_CURRENT_BINARY_DIR}
)

View File

@ -6,15 +6,16 @@
#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
#include "LinearMath/btIDebugDraw.h"
//#define DEBUG_INTERNAL_EDGE
#ifdef DEBUG_INTERNAL_EDGE
#include <stdio.h>
#endif //DEBUG_INTERNAL_EDGE
#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
//quick hack for debug drawing
static btIDebugDraw* gDebugDrawer = 0;
void btSetDebugDrawer(btIDebugDraw* debugDrawer)
@ -432,10 +433,9 @@ bool btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const b
/// Changes a btManifoldPoint collision normal to the normal from the mesh.
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* colObj0,const btCollisionObject* colObj1, int partId0, int index0)
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* colObj0,const btCollisionObject* colObj1, int partId0, int index0, int normalAdjustFlags)
{
btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
//btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
if (colObj0->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE)
return;
@ -450,6 +450,8 @@ void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject*
if (!info)
return;
btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f;
const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0->getCollisionShape());
btVector3 v0,v1,v2;
tri_shape->getVertex(0,v0);
@ -536,12 +538,16 @@ void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject*
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal);
if (isClamped)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal. (what about cp.m_distance1?)
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
if (clampedLocalNormal.dot(frontFacing*tri_normal)>0)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal. (what about cp.m_distance1?)
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
@ -615,12 +621,15 @@ void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject*
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal);
if (isClamped)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
if (clampedLocalNormal.dot(frontFacing*tri_normal)>0)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
@ -693,12 +702,15 @@ void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject*
bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal);
if (isClamped)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
if (clampedLocalNormal.dot(frontFacing*tri_normal)>0)
{
btVector3 newNormal = colObj0->getWorldTransform().getBasis() * clampedLocalNormal;
// cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
cp.m_normalWorldOnB = newNormal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);
}
}
}
}
@ -719,13 +731,22 @@ void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject*
if (numConcaveEdgeHits>0)
{
//fix tri_normal so it pointing the same direction as the current local contact normal
if (tri_normal.dot(localContactNormalOnB) < 0)
if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_SINGLE_SIDED)!=0)
{
tri_normal *= -1;
//modify the normal to be the triangle normal (or backfacing normal)
cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis() *(tri_normal *frontFacing);
} else
{
//fix tri_normal so it pointing the same direction as the current local contact normal
if (tri_normal.dot(localContactNormalOnB) < 0)
{
tri_normal *= -1;
}
cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis()*tri_normal;
}
//for concave edge hits, just modify the normal to be the triangle normal
cp.m_normalWorldOnB = colObj0->getWorldTransform().getBasis() * tri_normal;
// Reproject collision point along normal.
cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
cp.m_localPointB = colObj0->getWorldTransform().invXform(cp.m_positionWorldOnB);

View File

@ -63,6 +63,11 @@ struct btTriangleInfoMap : public btInternalTriangleInfoMap
}
};
enum btInternalEdgeAdjustFlags
{
BT_TRIANGLE_CONVEX_BACKFACE_MODE = 1,
BT_TRIANGLE_CONCAVE_SINGLE_SIDED = 2
};
///Call btGenerateInternalEdgeInfo to create triangle info, store in the shape 'userInfo'
@ -71,7 +76,7 @@ void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangle
///Call the btFixMeshNormal to adjust the collision normal, using the triangle info map (generated using btGenerateInternalEdgeInfo)
///If this info map is missing, or the triangle is not store in this map, nothing will be done
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* trimeshColObj0,const btCollisionObject* otherColObj1, int partId0, int index0);
void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObject* trimeshColObj0,const btCollisionObject* otherColObj1, int partId0, int index0, int normalAdjustFlags = 0);
///Enable the BT_INTERNAL_EDGE_DEBUG_DRAW define and call btSetDebugDrawer, to get visual info to see if the internal edge utility works properly.
///If the utility doesn't work properly, you might have to adjust the threshold values in btTriangleInfoMap