PyBullet Allow OpenGL/EGL hardware to render segmentation mask. Use pybullet.ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX or pybullet.ER_SEGMENTATION_MASK
PyBullet.removeBody fix indexing bug (use foundIndex, not i)
PyBullet bump up version to 2.2.3
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
allow to perform a getClosestPoints query with a collisionShape and world transform (position, orientation) that isn't part of the world.
(use createCollisionShape to create it)
add optional removeCollisionShape, for collision shapes only used in a query (and not used to create a body)
allow to perform a getClosestPoints query with a collisionShape and world transform (position, orientation) that isn't part of the world.
(use createCollisionShape to create it)
while (1):
stepSimulation()
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_SINGLE_STEP_RENDERING, 1)
disable single step using
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_SINGLE_STEP_RENDERING, 0)
Implement collisionFilterPlugin, use setCollisionFilterPair to enable or disable collision detection between specific pairs of objects.
Also, expose setCollisionFilterGroupMask as PyBullet API and in urdf using the tag <collision group="1" mask="2"/>.
See examples/pybullet/examples/collisionFilter.py for an example.
PyBullet default: Lower the warmstarting factor, for maximal coordinates rigid bodies for more stable simulation.
Add btCollisionWorld::refreshBroadphaseProxy to easier recreate the broadphase proxy without adding/removing objects to the world.
just use pybullet.loadPlugin("eglRendererPlugin") before loading/creating any objects.
use end/startRendering (swap buffers) before the rendering in the eglPlugin
add grpcPlugin, it can work in GUI, SHARED_MEMORY_SERVER, DIRECT and other modes.
example script to start server from pybullet:
import pybullet as p
p.connect(p.GUI)
#if statically linked plugin
id = p.loadPlugin("grpcPlugin")
#dynamics loading the plugin
#id = p.loadPlugin("E:/develop/bullet3/bin/pybullet_grpcPlugin_vs2010_x64_debug.dll", postFix="_grpcPlugin")
#start the GRPC server at hostname, port
if (id>=0):
p.executePluginCommand(id, "localhost:1234")
Only in DIRECT mode, since there is no 'ping' you need to call to handle RCPs:
numRPC = 10
while (1):
p.executePluginCommand(id, intArgs=[numRPC])
This removes the need to specify the body id/link index when retrieving a user data entry.
Additionally, user data can now optionally be set to visual shapes as well.
The following public pybullet APIs have changed (backwards incompatible)
addUserData and getUserDataId
Makes linkIndex parameter optional (default value is -1)
Adds optional visualShapeIndex parameter (default value is -1)
getUserData and removeUserData
Removes required parameters bodyUniqueId and linkIndex
getNumUserData
Removes required bodyUniqueId parameter
getUserDataInfo
Removes required linkIndex parameter
Changes returned tuple from (userDataId, key) to (userDataId, key, bodyUniqueId, linkIndex, visualShapeIndex)
use b3RaycastBatchAddRays API to enable MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING num rays.
Old API (b3RaycastBatchAddRay) sticks to 256 rays, MAX_RAY_INTERSECTION_BATCH_SIZE.
reduce 'm_cooldownTime' from 1000 microseconds to 100 microseconds (overhead in raycast is too large)
If needed, we can expose this cooldown time.
Replace malloc by btAlignedObjectArray (going through Bullet's memory allocator)
To enable the feature, enable the BULLET2_MULTITHREADING option.
Increases the number of rays that can go in a batch request by storing
them in the shared memory stream instead of the shared memory command.
Adds the API b3RaycastBatchSetNumThreads to specify the number of
threads to use for the raycast batch, also adds the argument numThreads
to the pybullet function rayTestBatch.
Rays are distributed among the threads in a greedy fashion there's a shared
queue of work, once a thread finishes its task, it picks the next
available ray from the task. This works better than pre-distributing the
rays among threads, since there's a large variance in computation time per ray.
Some controversial changes:
- Added a pointer to PhysicsClient to the SharedMemoryCommand struct, this
was necessary to keep the C-API the same for b3RaycastBatchAddRay, while
adding the ray to the shared memory stream instead of the command
struct. I think this may be useful to simplify other APIs as well, that
take both a client handle and a command handle.
- Moved #define SHARED_MEMORY_MAX_STREAM_CHUNK_SIZE to
SharedMemoryPublic. This was necessary for the definition of
MAX_RAY_INTERSECTION_BATCH_SIZE.
Extract faces directly from btConvexHullComputer (in initializePolyhedralFeatures), instead of reconstructing them, thanks to Josh Klint in #1654
PyBullet: use initializePolyhedralFeatures for convex hulls and boxes (to allow SAT)
PyBullet: expose setPhysicsEngineParameter(enableSAT=0 or 1) to enable Separating Axis Test based collision detection for convex vs convex/box and convex versus concave triangles (in a triangle mesh).
return Py_None if no user data found, to pass the test.
enable m_deterministicOverlappingPairs by default.
if m_deterministicOverlappingPairs, sort the collision pairs.