#!/usr/bin/env python import argparse # parse input arguments import numpy as np # arithmetic library import time import gym from agents import agent_register import pybullet as p import kerasrl_utils np.set_printoptions(precision=3, suppress=True, linewidth=10000) def add_opts(parser): parser.add_argument('--agent', type=str, default="KerasDQNAgent", help="Agent to be trained with.") parser.add_argument('--env', type=str, default="2DDetachedCartPolev0Env", help="Environment to be trained in.") parser.add_argument('--use-latest', action='store_true', help="Should the trainer retrain/show with the most recent save?") parser.add_argument('--train-for', type=int, default=100, help="The number of epochs to train for.") parser.add_argument('--test-for', type=int, default=0, help="The number of epoch to test for.") parser.add_argument('--load-file', type=str, default=None, help="The weight file to load for training.") parser.add_argument('--save-file', type=str, default=None, help="The weight file to save after training.") class Trainer: ''' The trainer class helps to easily set up a gym training session using an agent(representing the learning algorithm and the gym (being the environment) ''' # TODO: Make training fail-safe by catching "not connected to server" and save the current state to disk (see primitive examples, they can do it) def __init__(self): # initialize random seed np.random.seed(int(time.time())) cid = p.connect(p.SHARED_MEMORY) # only show graphics if the browser is already running.... self.visualize = (cid >= 0) if cid < 0: cid = p.connect(p.DIRECT) # If no shared memory browser is active, we switch to headless mode (DIRECT is much faster) def setup_exercise(self, opts): # setup agent agent = agent_register.make(opts.agent, opts=opts) # setup environment env = gym.make(opts.env) if self.visualize: mode = "human" else: mode = "none" env.render(mode=mode) # configurations env.seed(int(time.time())) #env.configureActions(agent.metadata['discrete_actions']) # configure environment to accepts discrete actions if agent.metadata['discrete_actions']: agent.configure(env.observation_space.shape, env.action_space.n) # configure agent to use the environment properties else: agent.configure(env.observation_space.shape, env.action_space.shape[0]) # configure agent to use the environment properties if opts.use_latest: properties = kerasrl_utils.get_latest_save("checkpoints/", opts.agent, opts.env, 0) if properties == []: print("No previous weight saves found for %s-%s" % (opts.agent, opts.env)) else: opts.load_file = "checkpoints/%s-%s-%s.h5" % (properties[0], properties[1], properties[2]) print("Continue from [%s] " % opts.load_file) if opts.load_file is not None: print("loading weights from [%s]" % opts.load_file) agent.load_weights(opts.load_file) # Okay, now it's time to learn something! We visualize the training here for show, but this # slows down training quite a lot. You can always safely abort the training prematurely using # Ctrl + C. agent.train(env, nb_steps=opts.train_for, visualize=self.visualize, verbosity=1) # After training is done, we save the final weights. if opts.save_file is not None: print("saving weights to [%s]" % opts.save_file) agent.save_weights(opts.save_file, overwrite=True) # Finally, evaluate our algorithm. agent.test(env, nb_episodes=opts.test_for, visualize=self.visualize) if __name__ == "__main__": """ You can also run the trainer as a main class if you want to start your own agent/environment combination. If you know your precise arguments, just run this as your main. """ trainer = Trainer.Trainer() parser = argparse.ArgumentParser() # add all parsing options Trainer.add_opts(parser) opts, unknown = parser.parse_known_args() # parse agent and environment to add their opts exec("from agents import %s" % opts.agent) # import agent type exec("from envs import %s" % opts.env) # import env type exec("%s.add_opts(parser)" % opts.agent) exec("%s.add_opts(parser)" % opts.env) # parse arguments opts, unknown = parser.parse_known_args() print("OPTS", opts) print("UNKNOWN", unknown) trainer.setup_exercise(opts)