Bullet 2.83 Quickstart Guide

Erwin Coumans

April 29, 2015

=0
u

PHYSICS LIBRARY

Contents

Chapter 1

Introduction to Bullet

Bullet Physics is a professional open source collision detection, rigid body and soft body dynamics library. The library
is free for commercial use under the zlib license.

1.1 Main Features

e Open source C++ code under zlib license and free for any commercial use on all platforms including PLAYSTA-
TION 3, XBox 360, Wii, PC, Linux, Mac OSX, Android and iPhone

e Discrete and continuous collision detection including ray and convex sweep test. Collision shapes include con-
cave and convex meshes and all basic primitives

e Fast and stable rigid body dynamics constraint solver, vehicle dynamics, character controller and slider, hinge,
generic 6DOF and cone twist constraint for ragdolls

e Soft Body dynamics for cloth, rope and deformable volumes with two-way interaction with rigid bodies, including
constraint support

e Maya Dynamica plugin, Blender integration, COLLADA physics import/export support

1.2 Contact and Support

e Public forum for support and feedback is available at http://bulletphysics.org

1.3 What’s new

1.3.1 Preparing for Bullet 3.0 alpha

e The new Bullet 3.x version is making good progress, and the performance on high-end GPUs such as AMD 7970
and NVIDIA 680 is good. See the github repository at https://github.com/erwincoumans/bullet3

1.3.2 New in Bullet 2.82

e Featherstone articulated body algorithm implementation with integration in the Bullet constraint solver. See See
Demos/FeatherstoneMultiBodyDemo

e New MLCP constraint solver interface for higher quality direct solvers. Dantzig (OpenDE), PATH and Pro-
jected Gauss Seidel MLCP solvers, with fallback to the original Bullet sequential impulse solver. See src/
BulletDynamics/MLCPSolvers

e New btFixedConstraint as alternative to a btGeneric6DofConstraint with all DOFs locked. See Demos/
VoronoiFractureDemo

http://opensource.org/licenses/zlib-license.php
http://bulletphysics.org
https://github.com/erwincoumans/bullet3

1.3. WHAT’S NEW 3

Various bug fixes, related to force feedback and friction. Improved performance between btCompoundShape
using the new btCompoundCompoundCollisionAlgorithm. See the commit log at https://code.google.com/
p/bullet/source/list

1.3.3 New in Bullet 2.81

SIMD and Neon optimizations for iOS and Mac OSX, thanks to a contribution from Apple

Rolling Friction using a constraint, thanks to Erin Catto for the idea. See Demos/RollingFrictionDemo/
RollingFrictionDemo.cpp

XML serialization. See Bullet/Demos/BulletXmlImportDemo and Bullet/Demos/SerializeDemo
Gear constraint. See Bullet/Demos/ConstraintDemo.

Improved continuous collision response, feeding speculative contacts to the constraint solver. See Bullet/
Demos/CcdPhysicsDemo

Improved premake4 build system including support for Mac OSX, Linux and iOS

Refactoring of collision detection pipeline using stack allocation instead of modifying the collision object. This
will allow better future multithreading optimizations.

https://code.google.com/p/bullet/source/list
https://code.google.com/p/bullet/source/list

V]

N

Chapter 2

Building the Bullet SDK and demos

Windows developers can download the zipped sources of Bullet from http://bullet.googlecode.com. Mac OS X,
Linux and other developers should download the gzipped tar archive. Bullet provides several build systems.

2.1 Microsoft Visual Studio

After unzipping the source code you can open the Bullet/build/vs2010/0BulletSolution.sln, hit F5 and your first
Bullet demo will run. Note that by default Visual Studio uses an unoptimized Debug configuration that is very slow. It
is best to enable the Release configuration.

2.2 Using Premake

Premake is a meta build system based on the Lua scripting language that can generate project files for Microsoft
Visual Studio, Apple Xcode as well as Makefiles for GNU make and other build systems. Bullet comes with Premake
executables for Windows, Mac OSX and Linux.

2.2.1 Premake Visual Studio project generation

You can double-click on Bullet/build/vs2010.bat to generate Visual Studio 2010 project files and solution. This
batch file calls Premake. Just open Bullet/build/vs2010/0BulletSolution.sln

2.2.2 Premake Mac OSX Xcode project generation

On Mac OSX it is easiest to open a Terminal window and switch current directory to Bullet/build and use the following
command to generate XCode projects:

Source Code 2.1: Premake for Mac OSX

cd Bullet/build
./premake_osx xcode4d
open xcode4/0OBulletSolution.xcworkspace

2.2.3 Premake iOS Xcode project generation

XCode project generation for iOS, such as iPhone and iPad, is similar to Mac OSX. Just provide the —ios option to
premake and premake will automatically customize the project and append ios to the directory:

Source Code 2.2: Premake for iOS

cd Bullet/build
./premake_osx --ios =xcode4d
open xcoded4ios/OBulletSolution.xcworkspace

http://bullet.googlecode.com
http://industriousone.com/premake

N WN =

N =

2.3. USING CMAKE 5

Note that Bullet comes with a modified version of premake_osx that enables the iOS specific customizations that are
required by XCode.

2.2.4 Premake GNU Makefile generation

You can also generate GNU Makefiles for Mac OSX or Linux using premake:

Source Code 2.3: Premake to GNU Makefile

cd Bullet/build
./premake_osx gmake
cd gmake

make config=release64

2.3 Using cmake

Similar to premake, CMake adds support for many other build environments and platforms, including Microsoft Visual
Studio, XCode for Mac OSX, KDevelop for Linux and Unix Makefiles. Download and install CMake from http://
cmake . org and use the CMake cmake-gui tool.

2.4 Using autotools

Open a shell terminal and go to the Bullet root directory. Then execute

Source Code 2.4: autotools to Makefile

./autogen.sh
./configure
make

The autogen. sh step is optional and not needed for downloaded packages.

http://cmake.org
http://cmake.org

16
17
18
19
20
21
22

27
28

29

30
31

32
33
34

35
36
37

38
39
40

41
42

Chapter 3

Hello World

3.1 C++ console program

Let’s discuss the creation of a basic Bullet simulation from the beginning to the end. For simplicity we print the state
of the simulation to console using printf, instead of using 3D graphics to display the objects. The source code of this
tutorial is located in examples/HelloWorld/HelloWorld. cpp.

It is a good idea to try to compile, link and run this HelloWorld.cpp program first.

As you can see in ?? you can include a convenience header file btBulletDynamicsCommon. h.

Source Code 3.1: HelloWorld.cpp include header

#include "btBulletDynamicsCommon.h"
#include <stdio.h>

/// This is a Hello World program for running a basic Bullet physics simulation

int main(int argc, char*x argv)

{

Now we create the dynamics world:

Source Code 3.2: HelloWorld.cpp initialize world

///collision configuration contains default setup for memory, collision setup. Advanced
users can create their own configuration.

btDefaultCollisionConfiguration* collisionConfiguration = new
btDefaultCollisionConfiguration () ;

///use the default collision dispatcher. For parallel processing you can use a diffent
dispatcher (see Extras/BulletMultiThreaded)
btCollisionDispatcher* dispatcher = new btCollisionDispatcher(collisionConfiguration);

///btDbvtBroadphase is a good general purpose broadphase. You can also try out
btAxis3Sweep.
btBroadphaseInterface* overlappingPairCache = new btDbvtBroadphase();

///the default constraint solver. For parallel processing you can use a different solver
(see Extras/BulletMultiThreaded)

btSequentiallmpulseConstraintSolver* solver = new btSequentiallmpulseConstraintSolver;

btDiscreteDynamicsWorld* dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher,
overlappingPairCache ,solver ,collisionConfiguration);

dynamicsWorld->setGravity (btVector3(0,-10,0));

Once the world is created you can step the simulation as follows:

6

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

134
135

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

3.1. C++ CONSOLE PROGRAM

Source Code 3.3: HelloWorld.cpp step simulation

for (i=0;i<100;i++)
{
dynamicsWorld->stepSimulation(1.£/60.£,10);

//print positions of all objects
for (int j=dynamicsWorld->getNumCollisionObjects()-1; j>=0 ;j--)

{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray () [j];
btRigidBody* body = btRigidBody::upcast(obj);
btTransform trans;
if (body && body->getMotionState ())
{
body->getMotionState () ->getWorldTransform(trans) ;
} else
{
trans = obj->getWorldTransform() ;
}
printf ("world,posyobjecty%d,=u%t,%hf,%f\n",j,float (trans.getOrigin().getX()) ,float(
trans.getOrigin() .getY()),float (trans.getOrigin().getZ()));
}

}

At the end of the program you delete all objects in the reverse order of creation. Here is the cleanup listing of our

HelloWorld.cpp program.

Source Code 3.4: HelloWorld.cpp cleanup

//remove the rigidbodies from the dynamics world and delete them
for (i=dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = dynamicsWorld->getCollisionObjectArray () [i];
btRigidBody* body = btRigidBody::upcast (obj);
if (body && body->getMotionState ())
{
delete body->getMotionState () ;
}
dynamicsWorld->removeCollisionObject (obj);
delete obj;
}

//delete collision shapes

for (int j=0;j<collisionShapes.size();j++)

{
btCollisionShape* shape = collisionShapes[j];
collisionShapes[j] = 0;
delete shape;

}

//delete dynamics world
delete dynamicsWorld;

//delete solver
delete solver;

//delete broadphase
delete overlappingPairCache;

//delete dispatcher
delete dispatcher;

176
177
178

179

CHAPTER 3. HELLO WORLD

delete collisionConfiguration;

//next line is optional:
scope
collisionShapes.clear();

it will be cleared by the destructor when the array goes out of

Chapter 4

Frequently asked questions

Here is a placeholder for a future FAQ. For more information it is best to visit the Bullet Physics forums and wiki at
http://bulletphysics.org.

http://bulletphysics.org

Source Code Listings

10

