/* Bullet Continuous Collision Detection and Physics Library Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ /// September 2006: VehicleDemo is work in progress, this file is mostly just a placeholder /// This VehicleDemo file is very early in development, please check it later /// One todo is a basic engine model: /// A function that maps user input (throttle) into torque/force applied on the wheels /// with gears etc. #include "btBulletDynamicsCommon.h" #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" // // By default, Bullet Vehicle uses Y as up axis. // You can override the up axis, for example Z-axis up. Enable this define to see how to: //#define FORCE_ZAXIS_UP 1 // #ifdef FORCE_ZAXIS_UP int rightIndex = 0; int upIndex = 2; int forwardIndex = 1; btVector3 wheelDirectionCS0(0,0,-1); btVector3 wheelAxleCS(1,0,0); #else int rightIndex = 0; int upIndex = 1; int forwardIndex = 2; btVector3 wheelDirectionCS0(0,-1,0); btVector3 wheelAxleCS(-1,0,0); #endif #include "GLDebugDrawer.h" #include //printf debugging #include "GL_ShapeDrawer.h" #include "GlutStuff.h" #include "VehicleDemo.h" const int maxProxies = 32766; const int maxOverlap = 65535; ///btRaycastVehicle is the interface for the constraint that implements the raycast vehicle ///notice that for higher-quality slow-moving vehicles, another approach might be better ///implementing explicit hinged-wheel constraints with cylinder collision, rather then raycasts float gEngineForce = 0.f; float gBreakingForce = 0.f; float maxEngineForce = 1000.f;//this should be engine/velocity dependent float maxBreakingForce = 100.f; float gVehicleSteering = 0.f; float steeringIncrement = 0.04f; float steeringClamp = 0.3f; float wheelRadius = 0.5f; float wheelWidth = 0.4f; float wheelFriction = 1000;//1e30f; float suspensionStiffness = 20.f; float suspensionDamping = 2.3f; float suspensionCompression = 4.4f; float rollInfluence = 0.1f;//1.0f; btScalar suspensionRestLength(0.6); #define CUBE_HALF_EXTENTS 1 //////////////////////////////////// VehicleDemo::VehicleDemo() : m_carChassis(0), m_cameraHeight(4.f), m_minCameraDistance(3.f), m_maxCameraDistance(10.f), m_indexVertexArrays(0), m_vertices(0) { m_vehicle = 0; m_cameraPosition = btVector3(30,30,30); } VehicleDemo::~VehicleDemo() { //cleanup in the reverse order of creation/initialization //remove the rigidbodies from the dynamics world and delete them int i; for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--) { btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_dynamicsWorld->removeCollisionObject( obj ); delete obj; } //delete collision shapes for (int j=0;jsetGravity(btVector3(0,0,-10)); #endif //m_dynamicsWorld->setGravity(btVector3(0,0,0)); btTransform tr; tr.setIdentity(); //either use heightfield or triangle mesh #define USE_TRIMESH_GROUND 1 #ifdef USE_TRIMESH_GROUND int i; const float TRIANGLE_SIZE=20.f; //create a triangle-mesh ground int vertStride = sizeof(btVector3); int indexStride = 3*sizeof(int); const int NUM_VERTS_X = 20; const int NUM_VERTS_Y = 20; const int totalVerts = NUM_VERTS_X*NUM_VERTS_Y; const int totalTriangles = 2*(NUM_VERTS_X-1)*(NUM_VERTS_Y-1); m_vertices = new btVector3[totalVerts]; int* gIndices = new int[totalTriangles*3]; for ( i=0;isetUseDiamondSubdivision(true); btVector3 localScaling(20,20,20); localScaling[upIndex]=1.f; groundShape->setLocalScaling(localScaling); tr.setOrigin(btVector3(0,-64.5f,0)); #endif // m_collisionShapes.push_back(groundShape); //create ground object localCreateRigidBody(0,tr,groundShape); #ifdef FORCE_ZAXIS_UP // indexRightAxis = 0; // indexUpAxis = 2; // indexForwardAxis = 1; btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,2.f, 0.5f)); btCompoundShape* compound = new btCompoundShape(); btTransform localTrans; localTrans.setIdentity(); //localTrans effectively shifts the center of mass with respect to the chassis localTrans.setOrigin(btVector3(0,0,1)); #else btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f)); m_collisionShapes.push_back(chassisShape); btCompoundShape* compound = new btCompoundShape(); m_collisionShapes.push_back(compound); btTransform localTrans; localTrans.setIdentity(); //localTrans effectively shifts the center of mass with respect to the chassis localTrans.setOrigin(btVector3(0,1,0)); #endif compound->addChildShape(localTrans,chassisShape); tr.setOrigin(btVector3(0,0.f,0)); m_carChassis = localCreateRigidBody(800,tr,compound);//chassisShape); //m_carChassis->setDamping(0.2,0.2); clientResetScene(); /// create vehicle { m_vehicleRayCaster = new btDefaultVehicleRaycaster(m_dynamicsWorld); m_vehicle = new btRaycastVehicle(m_tuning,m_carChassis,m_vehicleRayCaster); ///never deactivate the vehicle m_carChassis->setActivationState(DISABLE_DEACTIVATION); m_dynamicsWorld->addVehicle(m_vehicle); float connectionHeight = 1.2f; bool isFrontWheel=true; //choose coordinate system m_vehicle->setCoordinateSystem(rightIndex,upIndex,forwardIndex); #ifdef FORCE_ZAXIS_UP btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight); #else btVector3 connectionPointCS0(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius); #endif m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel); #ifdef FORCE_ZAXIS_UP connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),2*CUBE_HALF_EXTENTS-wheelRadius, connectionHeight); #else connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,2*CUBE_HALF_EXTENTS-wheelRadius); #endif m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel); #ifdef FORCE_ZAXIS_UP connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight); #else connectionPointCS0 = btVector3(-CUBE_HALF_EXTENTS+(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius); #endif //FORCE_ZAXIS_UP isFrontWheel = false; m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel); #ifdef FORCE_ZAXIS_UP connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),-2*CUBE_HALF_EXTENTS+wheelRadius, connectionHeight); #else connectionPointCS0 = btVector3(CUBE_HALF_EXTENTS-(0.3*wheelWidth),connectionHeight,-2*CUBE_HALF_EXTENTS+wheelRadius); #endif m_vehicle->addWheel(connectionPointCS0,wheelDirectionCS0,wheelAxleCS,suspensionRestLength,wheelRadius,m_tuning,isFrontWheel); for (int i=0;igetNumWheels();i++) { btWheelInfo& wheel = m_vehicle->getWheelInfo(i); wheel.m_suspensionStiffness = suspensionStiffness; wheel.m_wheelsDampingRelaxation = suspensionDamping; wheel.m_wheelsDampingCompression = suspensionCompression; wheel.m_frictionSlip = wheelFriction; wheel.m_rollInfluence = rollInfluence; } } setCameraDistance(26.f); } //to be implemented by the demo void VehicleDemo::renderme() { updateCamera(); btScalar m[16]; int i; btCylinderShapeX wheelShape(btVector3(wheelWidth,wheelRadius,wheelRadius)); btVector3 wheelColor(1,0,0); for (i=0;igetNumWheels();i++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicle->updateWheelTransform(i,true); //draw wheels (cylinders) m_vehicle->getWheelInfo(i).m_worldTransform.getOpenGLMatrix(m); GL_ShapeDrawer::drawOpenGL(m,&wheelShape,wheelColor,getDebugMode()); } DemoApplication::renderme(); } void VehicleDemo::clientMoveAndDisplay() { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); { int wheelIndex = 2; m_vehicle->applyEngineForce(gEngineForce,wheelIndex); m_vehicle->setBrake(gBreakingForce,wheelIndex); wheelIndex = 3; m_vehicle->applyEngineForce(gEngineForce,wheelIndex); m_vehicle->setBrake(gBreakingForce,wheelIndex); wheelIndex = 0; m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex); wheelIndex = 1; m_vehicle->setSteeringValue(gVehicleSteering,wheelIndex); } float dt = m_clock.getTimeMicroseconds() * 0.000001f; m_clock.reset(); if (m_dynamicsWorld) { //during idle mode, just run 1 simulation step maximum int maxSimSubSteps = m_idle ? 1 : 2; if (m_idle) dt = 1.0/420.f; int numSimSteps = m_dynamicsWorld->stepSimulation(dt,maxSimSubSteps); //optional but useful: debug drawing m_dynamicsWorld->debugDrawWorld(); //#define VERBOSE_FEEDBACK #ifdef VERBOSE_FEEDBACK if (!numSimSteps) printf("Interpolated transforms\n"); else { if (numSimSteps > maxSimSubSteps) { //detect dropping frames printf("Dropped (%i) simulation steps out of %i\n",numSimSteps - maxSimSubSteps,numSimSteps); } else { printf("Simulated (%i) steps\n",numSimSteps); } } #endif //VERBOSE_FEEDBACK } #ifdef USE_QUICKPROF btProfiler::beginBlock("render"); #endif //USE_QUICKPROF renderme(); #ifdef USE_QUICKPROF btProfiler::endBlock("render"); #endif glFlush(); glutSwapBuffers(); } void VehicleDemo::displayCallback(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); renderme(); glFlush(); glutSwapBuffers(); } void VehicleDemo::clientResetScene() { gVehicleSteering = 0.f; m_carChassis->setCenterOfMassTransform(btTransform::getIdentity()); m_carChassis->setLinearVelocity(btVector3(0,0,0)); m_carChassis->setAngularVelocity(btVector3(0,0,0)); m_dynamicsWorld->getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(m_carChassis->getBroadphaseHandle(),getDynamicsWorld()->getDispatcher()); if (m_vehicle) { m_vehicle->resetSuspension(); for (int i=0;igetNumWheels();i++) { //synchronize the wheels with the (interpolated) chassis worldtransform m_vehicle->updateWheelTransform(i,true); } } } void VehicleDemo::specialKeyboardUp(int key, int x, int y) { switch (key) { case GLUT_KEY_UP : { gEngineForce = 0.f; break; } case GLUT_KEY_DOWN : { gBreakingForce = 0.f; break; } default: DemoApplication::specialKeyboardUp(key,x,y); break; } } void VehicleDemo::specialKeyboard(int key, int x, int y) { // printf("key = %i x=%i y=%i\n",key,x,y); switch (key) { case GLUT_KEY_LEFT : { gVehicleSteering += steeringIncrement; if ( gVehicleSteering > steeringClamp) gVehicleSteering = steeringClamp; break; } case GLUT_KEY_RIGHT : { gVehicleSteering -= steeringIncrement; if ( gVehicleSteering < -steeringClamp) gVehicleSteering = -steeringClamp; break; } case GLUT_KEY_UP : { gEngineForce = maxEngineForce; gBreakingForce = 0.f; break; } case GLUT_KEY_DOWN : { gBreakingForce = maxBreakingForce; gEngineForce = 0.f; break; } default: DemoApplication::specialKeyboard(key,x,y); break; } // glutPostRedisplay(); } void VehicleDemo::updateCamera() { //#define DISABLE_CAMERA 1 #ifdef DISABLE_CAMERA DemoApplication::updateCamera(); return; #endif //DISABLE_CAMERA glMatrixMode(GL_PROJECTION); glLoadIdentity(); btTransform chassisWorldTrans; //look at the vehicle m_carChassis->getMotionState()->getWorldTransform(chassisWorldTrans); m_cameraTargetPosition = chassisWorldTrans.getOrigin(); //interpolate the camera height #ifdef FORCE_ZAXIS_UP m_cameraPosition[2] = (15.0*m_cameraPosition[2] + m_cameraTargetPosition[2] + m_cameraHeight)/16.0; #else m_cameraPosition[1] = (15.0*m_cameraPosition[1] + m_cameraTargetPosition[1] + m_cameraHeight)/16.0; #endif btVector3 camToObject = m_cameraTargetPosition - m_cameraPosition; //keep distance between min and max distance float cameraDistance = camToObject.length(); float correctionFactor = 0.f; if (cameraDistance < m_minCameraDistance) { correctionFactor = 0.15*(m_minCameraDistance-cameraDistance)/cameraDistance; } if (cameraDistance > m_maxCameraDistance) { correctionFactor = 0.15*(m_maxCameraDistance-cameraDistance)/cameraDistance; } m_cameraPosition -= correctionFactor*camToObject; //update OpenGL camera settings glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 10000.0); gluLookAt(m_cameraPosition[0],m_cameraPosition[1],m_cameraPosition[2], m_cameraTargetPosition[0],m_cameraTargetPosition[1], m_cameraTargetPosition[2], m_cameraUp.getX(),m_cameraUp.getY(),m_cameraUp.getZ()); glMatrixMode(GL_MODELVIEW); }