#include "PhysicsServerCommandProcessor.h" #include "../CommonInterfaces/CommonRenderInterface.h" #include "plugins/b3PluginCollisionInterface.h" #include "../Importers/ImportURDFDemo/BulletUrdfImporter.h" #include "../Importers/ImportURDFDemo/MyMultiBodyCreator.h" #include "../Importers/ImportURDFDemo/URDF2Bullet.h" #include "../Importers/ImportURDFDemo/UrdfFindMeshFile.h" #include "../Extras/InverseDynamics/btMultiBodyTreeCreator.hpp" #include "BulletCollision/CollisionDispatch/btInternalEdgeUtility.h" #include "../Importers/ImportMeshUtility/b3ImportMeshUtility.h" #include "BulletDynamics/MLCPSolvers/btDantzigSolver.h" #include "BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h" #include "BulletDynamics/Featherstone/btMultiBodyMLCPConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodySphericalJointMotor.h" #include "../Utils/b3BulletDefaultFileIO.h" #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" #include "BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h" #include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h" #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h" #include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h" #include "BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodyGearConstraint.h" #include "../Importers/ImportURDFDemo/UrdfParser.h" #include "../Utils/b3ResourcePath.h" #include "Bullet3Common/b3FileUtils.h" #include "../OpenGLWindow/GLInstanceGraphicsShape.h" #include "BulletDynamics/Featherstone/btMultiBodySliderConstraint.h" #include "BulletDynamics/Featherstone/btMultiBodyPoint2Point.h" #include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" #include "Bullet3Common/b3HashMap.h" #include "../Utils/ChromeTraceUtil.h" #include "SharedMemoryPublic.h" #include "stb_image/stb_image.h" #include "BulletInverseDynamics/MultiBodyTree.hpp" #include "IKTrajectoryHelper.h" #include "btBulletDynamicsCommon.h" #include "../Utils/RobotLoggingUtil.h" #include "LinearMath/btTransform.h" #include "../Importers/ImportMJCFDemo/BulletMJCFImporter.h" #include "../Importers/ImportObjDemo/LoadMeshFromObj.h" #include "../Importers/ImportSTLDemo/LoadMeshFromSTL.h" #include "../Extras/Serialize/BulletWorldImporter/btMultiBodyWorldImporter.h" #include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h" #include "LinearMath/btSerializer.h" #include "Bullet3Common/b3Logging.h" #include "../CommonInterfaces/CommonGUIHelperInterface.h" #include "SharedMemoryCommands.h" #include "LinearMath/btRandom.h" #include "Bullet3Common/b3ResizablePool.h" #include "../Utils/b3Clock.h" #include "b3PluginManager.h" #include "../Extras/Serialize/BulletFileLoader/btBulletFile.h" #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h" #include "LinearMath/TaskScheduler/btThreadSupportInterface.h" #include "Wavefront/tiny_obj_loader.h" #ifndef SKIP_COLLISION_FILTER_PLUGIN #include "plugins/collisionFilterPlugin/collisionFilterPlugin.h" #endif #ifdef ENABLE_STATIC_GRPC_PLUGIN #include "plugins/grpcPlugin/grpcPlugin.h" #endif //ENABLE_STATIC_GRPC_PLUGIN #ifndef SKIP_STATIC_PD_CONTROL_PLUGIN #include "plugins/pdControlPlugin/pdControlPlugin.h" #endif //SKIP_STATIC_PD_CONTROL_PLUGIN #ifdef STATIC_LINK_SPD_PLUGIN #include "plugins/stablePDPlugin/BulletConversion.h" #include "plugins/stablePDPlugin/RBDModel.h" #include "plugins/stablePDPlugin/RBDUtil.h" #endif #ifdef STATIC_LINK_VR_PLUGIN #include "plugins/vrSyncPlugin/vrSyncPlugin.h" #endif #ifdef STATIC_EGLRENDERER_PLUGIN #include "plugins/eglPlugin/eglRendererPlugin.h" #endif //STATIC_EGLRENDERER_PLUGIN #ifndef SKIP_STATIC_TINYRENDERER_PLUGIN #include "plugins/tinyRendererPlugin/tinyRendererPlugin.h" #endif #ifdef B3_ENABLE_FILEIO_PLUGIN #include "plugins/fileIOPlugin/fileIOPlugin.h" #endif //B3_DISABLE_FILEIO_PLUGIN #ifdef B3_ENABLE_TINY_AUDIO #include "../TinyAudio/b3SoundEngine.h" #endif #ifdef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD #define SKIP_DEFORMABLE_BODY 1 #endif #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD #include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h" #include "BulletSoftBody/btSoftBodySolvers.h" #include "BulletSoftBody/btSoftBodyHelpers.h" #include "BulletSoftBody/btSoftMultiBodyDynamicsWorld.h" #include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h" #include "BulletSoftBody/btDeformableBodySolver.h" #include "BulletSoftBody/btDeformableMultiBodyConstraintSolver.h" #include "../SoftDemo/BunnyMesh.h" #endif//SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD #ifndef SKIP_DEFORMABLE_BODY #include "BulletSoftBody/btDeformableMultiBodyDynamicsWorld.h" #include "BulletSoftBody/btDeformableBodySolver.h" #include "BulletSoftBody/btDeformableMultiBodyConstraintSolver.h" #endif//SKIP_DEFORMABLE_BODY #include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h" int gInternalSimFlags = 0; bool gResetSimulation = 0; int gVRTrackingObjectUniqueId = -1; int gVRTrackingObjectFlag = VR_CAMERA_TRACK_OBJECT_ORIENTATION; btTransform gVRTrackingObjectTr = btTransform::getIdentity(); btVector3 gVRTeleportPos1(0, 0, 0); btQuaternion gVRTeleportOrn(0, 0, 0, 1); btScalar simTimeScalingFactor = 1; btScalar gRhsClamp = 1.f; #include "../CommonInterfaces/CommonFileIOInterface.h" class b3ThreadPool { public: b3ThreadPool(const char* name = "b3ThreadPool") { btThreadSupportInterface::ConstructionInfo info(name, threadFunction); m_threadSupportInterface = btThreadSupportInterface::create(info); } ~b3ThreadPool() { delete m_threadSupportInterface; } const int numWorkers() const { return m_threadSupportInterface->getNumWorkerThreads(); } void runTask(int threadIdx, btThreadSupportInterface::ThreadFunc func, void* arg) { FunctionContext& ctx = m_functionContexts[threadIdx]; ctx.func = func; ctx.arg = arg; m_threadSupportInterface->runTask(threadIdx, (void*)&ctx); } void waitForAllTasks() { BT_PROFILE("b3ThreadPool_waitForAllTasks"); m_threadSupportInterface->waitForAllTasks(); } private: struct FunctionContext { btThreadSupportInterface::ThreadFunc func; void* arg; }; static void threadFunction(void* userPtr) { BT_PROFILE("b3ThreadPool_threadFunction"); FunctionContext* ctx = (FunctionContext*)userPtr; ctx->func(ctx->arg); } btThreadSupportInterface* m_threadSupportInterface; FunctionContext m_functionContexts[BT_MAX_THREAD_COUNT]; }; struct SharedMemoryDebugDrawer : public btIDebugDraw { int m_debugMode; btAlignedObjectArray m_lines2; SharedMemoryDebugDrawer() : m_debugMode(0) { } virtual void drawContactPoint(const btVector3& PointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color) { } virtual void reportErrorWarning(const char* warningString) { } virtual void draw3dText(const btVector3& location, const char* textString) { } virtual void setDebugMode(int debugMode) { m_debugMode = debugMode; } virtual int getDebugMode() const { return m_debugMode; } virtual void drawLine(const btVector3& from, const btVector3& to, const btVector3& color) { SharedMemLines line; line.m_from = from; line.m_to = to; line.m_color = color; m_lines2.push_back(line); } }; struct InternalVisualShapeData { int m_tinyRendererVisualShapeIndex; int m_OpenGLGraphicsIndex; b3AlignedObjectArray m_visualShapes; b3AlignedObjectArray m_pathPrefixes; void clear() { m_tinyRendererVisualShapeIndex = -1; m_OpenGLGraphicsIndex = -1; m_visualShapes.clear(); m_pathPrefixes.clear(); } }; struct InternalCollisionShapeData { btCollisionShape* m_collisionShape; b3AlignedObjectArray m_urdfCollisionObjects; int m_used; InternalCollisionShapeData() : m_collisionShape(0), m_used(0) { } void clear() { m_collisionShape = 0; m_used = 0; } }; #include "SharedMemoryUserData.h" struct InternalBodyData { btMultiBody* m_multiBody; btRigidBody* m_rigidBody; #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD btSoftBody* m_softBody; #endif int m_testData; std::string m_bodyName; btTransform m_rootLocalInertialFrame; btAlignedObjectArray m_linkLocalInertialFrames; btAlignedObjectArray m_rigidBodyJoints; btAlignedObjectArray m_rigidBodyJointNames; btAlignedObjectArray m_rigidBodyLinkNames; btAlignedObjectArray m_userDataHandles; #ifdef B3_ENABLE_TINY_AUDIO b3HashMap m_audioSources; #endif //B3_ENABLE_TINY_AUDIO InternalBodyData() { clear(); } void clear() { m_multiBody = 0; m_rigidBody = 0; #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD m_softBody = 0; #endif m_testData = 0; m_bodyName = ""; m_rootLocalInertialFrame.setIdentity(); m_linkLocalInertialFrames.clear(); m_rigidBodyJoints.clear(); m_rigidBodyJointNames.clear(); m_rigidBodyLinkNames.clear(); m_userDataHandles.clear(); } }; struct InteralUserConstraintData { btTypedConstraint* m_rbConstraint; btMultiBodyConstraint* m_mbConstraint; b3UserConstraint m_userConstraintData; InteralUserConstraintData() : m_rbConstraint(0), m_mbConstraint(0) { } }; struct InternalTextureData { int m_tinyRendererTextureId; int m_openglTextureId; void clear() { m_tinyRendererTextureId = -1; m_openglTextureId = -1; } }; typedef b3PoolBodyHandle InternalTextureHandle; typedef b3PoolBodyHandle InternalBodyHandle; typedef b3PoolBodyHandle InternalCollisionShapeHandle; typedef b3PoolBodyHandle InternalVisualShapeHandle; class btCommandChunk { public: int m_chunkCode; int m_length; void* m_oldPtr; int m_dna_nr; int m_number; }; class bCommandChunkPtr4 { public: bCommandChunkPtr4() {} int code; int len; union { int m_uniqueInt; }; int dna_nr; int nr; }; // ----------------------------------------------------- // class bCommandChunkPtr8 { public: bCommandChunkPtr8() {} int code, len; union { int m_uniqueInts[2]; }; int dna_nr, nr; }; struct CommandLogger { FILE* m_file; void writeHeader(unsigned char* buffer) const { #ifdef BT_USE_DOUBLE_PRECISION memcpy(buffer, "BT3CMDd", 7); #else memcpy(buffer, "BT3CMDf", 7); #endif //BT_USE_DOUBLE_PRECISION int littleEndian = 1; littleEndian = ((char*)&littleEndian)[0]; if (sizeof(void*) == 8) { buffer[7] = '-'; } else { buffer[7] = '_'; } if (littleEndian) { buffer[8] = 'v'; } else { buffer[8] = 'V'; } buffer[9] = 0; buffer[10] = 0; buffer[11] = 0; int ver = btGetVersion(); if (ver >= 0 && ver < 999) { sprintf((char*)&buffer[9], "%d", ver); } } void logCommand(const SharedMemoryCommand& command) { if (m_file) { btCommandChunk chunk; chunk.m_chunkCode = command.m_type; chunk.m_oldPtr = 0; chunk.m_dna_nr = 0; chunk.m_length = sizeof(SharedMemoryCommand); chunk.m_number = 1; fwrite((const char*)&chunk, sizeof(btCommandChunk), 1, m_file); switch (command.m_type) { case CMD_LOAD_MJCF: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_mjcfArguments, sizeof(MjcfArgs), 1, m_file); break; } case CMD_REQUEST_BODY_INFO: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_sdfRequestInfoArgs, sizeof(SdfRequestInfoArgs), 1, m_file); break; } case CMD_REQUEST_VISUAL_SHAPE_INFO: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_requestVisualShapeDataArguments, sizeof(RequestVisualShapeDataArgs), 1, m_file); break; } case CMD_LOAD_URDF: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_urdfArguments, sizeof(UrdfArgs), 1, m_file); break; } case CMD_INIT_POSE: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_initPoseArgs, sizeof(InitPoseArgs), 1, m_file); break; }; case CMD_REQUEST_ACTUAL_STATE: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_requestActualStateInformationCommandArgument, sizeof(RequestActualStateArgs), 1, m_file); break; }; case CMD_SEND_DESIRED_STATE: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_sendDesiredStateCommandArgument, sizeof(SendDesiredStateArgs), 1, m_file); break; } case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_physSimParamArgs, sizeof(b3PhysicsSimulationParameters), 1, m_file); break; } case CMD_REQUEST_CONTACT_POINT_INFORMATION: { fwrite((const char*)&command.m_updateFlags, sizeof(int), 1, m_file); fwrite((const char*)&command.m_requestContactPointArguments, sizeof(RequestContactDataArgs), 1, m_file); break; } case CMD_STEP_FORWARD_SIMULATION: case CMD_RESET_SIMULATION: case CMD_REQUEST_INTERNAL_DATA: { break; }; default: { fwrite((const char*)&command, sizeof(SharedMemoryCommand), 1, m_file); } }; } } CommandLogger(const char* fileName) { m_file = fopen(fileName, "wb"); if (m_file) { unsigned char buf[15]; buf[12] = 12; buf[13] = 13; buf[14] = 14; writeHeader(buf); fwrite(buf, 12, 1, m_file); } } virtual ~CommandLogger() { if (m_file) { fclose(m_file); } } }; struct CommandLogPlayback { unsigned char m_header[12]; FILE* m_file; bool m_bitsVary; bool m_fileIs64bit; CommandLogPlayback(const char* fileName) { m_file = fopen(fileName, "rb"); if (m_file) { size_t bytesRead; bytesRead = fread(m_header, 12, 1, m_file); } unsigned char c = m_header[7]; m_fileIs64bit = (c == '-'); const bool VOID_IS_8 = ((sizeof(void*) == 8)); m_bitsVary = (VOID_IS_8 != m_fileIs64bit); } virtual ~CommandLogPlayback() { if (m_file) { fclose(m_file); m_file = 0; } } bool processNextCommand(SharedMemoryCommand* cmd) { //for a little while, keep this flag to be able to read 'old' log files //#define BACKWARD_COMPAT #if BACKWARD_COMPAT SharedMemoryCommand unused; #endif //BACKWARD_COMPAT bool result = false; size_t s = 0; if (m_file) { int commandType = -1; if (m_fileIs64bit) { bCommandChunkPtr8 chunk8; s = fread((void*)&chunk8, sizeof(bCommandChunkPtr8), 1, m_file); commandType = chunk8.code; } else { bCommandChunkPtr4 chunk4; s = fread((void*)&chunk4, sizeof(bCommandChunkPtr4), 1, m_file); commandType = chunk4.code; } if (s == 1) { memset(cmd, 0, sizeof(SharedMemoryCommand)); cmd->m_type = commandType; #ifdef BACKWARD_COMPAT s = fread(&unused, sizeof(SharedMemoryCommand), 1, m_file); cmd->m_updateFlags = unused.m_updateFlags; #endif switch (commandType) { case CMD_LOAD_MJCF: { #ifdef BACKWARD_COMPAT cmd->m_mjcfArguments = unused.m_mjcfArguments; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_mjcfArguments, sizeof(MjcfArgs), 1, m_file); #endif result = true; break; } case CMD_REQUEST_BODY_INFO: { #ifdef BACKWARD_COMPAT cmd->m_sdfRequestInfoArgs = unused.m_sdfRequestInfoArgs; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_sdfRequestInfoArgs, sizeof(SdfRequestInfoArgs), 1, m_file); #endif result = true; break; } case CMD_REQUEST_VISUAL_SHAPE_INFO: { #ifdef BACKWARD_COMPAT cmd->m_requestVisualShapeDataArguments = unused.m_requestVisualShapeDataArguments; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_requestVisualShapeDataArguments, sizeof(RequestVisualShapeDataArgs), 1, m_file); #endif result = true; break; } case CMD_LOAD_URDF: { #ifdef BACKWARD_COMPAT cmd->m_urdfArguments = unused.m_urdfArguments; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_urdfArguments, sizeof(UrdfArgs), 1, m_file); #endif result = true; break; } case CMD_INIT_POSE: { #ifdef BACKWARD_COMPAT cmd->m_initPoseArgs = unused.m_initPoseArgs; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_initPoseArgs, sizeof(InitPoseArgs), 1, m_file); #endif result = true; break; }; case CMD_REQUEST_ACTUAL_STATE: { #ifdef BACKWARD_COMPAT cmd->m_requestActualStateInformationCommandArgument = unused.m_requestActualStateInformationCommandArgument; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_requestActualStateInformationCommandArgument, sizeof(RequestActualStateArgs), 1, m_file); #endif result = true; break; }; case CMD_SEND_DESIRED_STATE: { #ifdef BACKWARD_COMPAT cmd->m_sendDesiredStateCommandArgument = unused.m_sendDesiredStateCommandArgument; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_sendDesiredStateCommandArgument, sizeof(SendDesiredStateArgs), 1, m_file); #endif result = true; break; } case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS: { #ifdef BACKWARD_COMPAT cmd->m_physSimParamArgs = unused.m_physSimParamArgs; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_physSimParamArgs, sizeof(b3PhysicsSimulationParameters), 1, m_file); #endif result = true; break; } case CMD_REQUEST_CONTACT_POINT_INFORMATION: { #ifdef BACKWARD_COMPAT cmd->m_requestContactPointArguments = unused.m_requestContactPointArguments; #else s = fread(&cmd->m_updateFlags, sizeof(int), 1, m_file); s = fread(&cmd->m_requestContactPointArguments, sizeof(RequestContactDataArgs), 1, m_file); #endif result = true; break; } case CMD_STEP_FORWARD_SIMULATION: case CMD_RESET_SIMULATION: case CMD_REQUEST_INTERNAL_DATA: { result = true; break; } default: { s = fread(cmd, sizeof(SharedMemoryCommand), 1, m_file); result = (s == 1); } }; } } return result; } }; struct SaveWorldObjectData { b3AlignedObjectArray m_bodyUniqueIds; std::string m_fileName; }; struct MyBroadphaseCallback : public btBroadphaseAabbCallback { b3AlignedObjectArray m_bodyUniqueIds; b3AlignedObjectArray m_links; MyBroadphaseCallback() { } virtual ~MyBroadphaseCallback() { } void clear() { m_bodyUniqueIds.clear(); m_links.clear(); } virtual bool process(const btBroadphaseProxy* proxy) { btCollisionObject* colObj = (btCollisionObject*)proxy->m_clientObject; btMultiBodyLinkCollider* mbl = btMultiBodyLinkCollider::upcast(colObj); if (mbl) { int bodyUniqueId = mbl->m_multiBody->getUserIndex2(); m_bodyUniqueIds.push_back(bodyUniqueId); m_links.push_back(mbl->m_link); return true; } int bodyUniqueId = colObj->getUserIndex2(); if (bodyUniqueId >= 0) { m_bodyUniqueIds.push_back(bodyUniqueId); //it is not a multibody, so use -1 otherwise m_links.push_back(-1); } return true; } }; struct MyOverlapFilterCallback : public btOverlapFilterCallback { int m_filterMode; b3PluginManager* m_pluginManager; MyOverlapFilterCallback(b3PluginManager* pluginManager) : m_filterMode(B3_FILTER_GROUPAMASKB_AND_GROUPBMASKA), m_pluginManager(pluginManager) { } virtual ~MyOverlapFilterCallback() { } // return true when pairs need collision virtual bool needBroadphaseCollision(btBroadphaseProxy* proxy0, btBroadphaseProxy* proxy1) const { b3PluginCollisionInterface* collisionInterface = m_pluginManager->getCollisionInterface(); if (collisionInterface && collisionInterface->getNumRules()) { int objectUniqueIdB = -1, linkIndexB = -1; btCollisionObject* colObjB = (btCollisionObject*)proxy1->m_clientObject; btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjB); if (mblB) { objectUniqueIdB = mblB->m_multiBody->getUserIndex2(); linkIndexB = mblB->m_link; } else { objectUniqueIdB = colObjB->getUserIndex2(); linkIndexB = -1; } int objectUniqueIdA = -1, linkIndexA = -1; btCollisionObject* colObjA = (btCollisionObject*)proxy0->m_clientObject; btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(colObjA); if (mblA) { objectUniqueIdA = mblA->m_multiBody->getUserIndex2(); linkIndexA = mblA->m_link; } else { objectUniqueIdA = colObjA->getUserIndex2(); linkIndexA = -1; } int collisionFilterGroupA = proxy0->m_collisionFilterGroup; int collisionFilterMaskA = proxy0->m_collisionFilterMask; int collisionFilterGroupB = proxy1->m_collisionFilterGroup; int collisionFilterMaskB = proxy1->m_collisionFilterMask; return collisionInterface->needsBroadphaseCollision(objectUniqueIdA, linkIndexA, collisionFilterGroupA, collisionFilterMaskA, objectUniqueIdB, linkIndexB, collisionFilterGroupB, collisionFilterMaskB, m_filterMode); } else { if (m_filterMode == B3_FILTER_GROUPAMASKB_AND_GROUPBMASKA) { bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0; collides = collides && (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask); return collides; } if (m_filterMode == B3_FILTER_GROUPAMASKB_OR_GROUPBMASKA) { bool collides = (proxy0->m_collisionFilterGroup & proxy1->m_collisionFilterMask) != 0; collides = collides || (proxy1->m_collisionFilterGroup & proxy0->m_collisionFilterMask); return collides; } return false; } } }; struct InternalStateLogger { int m_loggingUniqueId; int m_loggingType; InternalStateLogger() : m_loggingUniqueId(0), m_loggingType(0) { } virtual ~InternalStateLogger() {} virtual void stop() = 0; virtual void logState(btScalar timeStep) = 0; }; struct VideoMP4Loggger : public InternalStateLogger { struct GUIHelperInterface* m_guiHelper; std::string m_fileName; VideoMP4Loggger(int loggerUid, const char* fileName, GUIHelperInterface* guiHelper) : m_guiHelper(guiHelper) { m_fileName = fileName; m_loggingUniqueId = loggerUid; m_loggingType = STATE_LOGGING_VIDEO_MP4; m_guiHelper->dumpFramesToVideo(fileName); } virtual void stop() { m_guiHelper->dumpFramesToVideo(0); } virtual void logState(btScalar timeStep) { //dumping video frames happens in another thread //we could add some overlay of timestamp here, if needed/wanted } }; struct MinitaurStateLogger : public InternalStateLogger { int m_loggingTimeStamp; std::string m_fileName; int m_minitaurBodyUniqueId; FILE* m_logFileHandle; std::string m_structTypes; btMultiBody* m_minitaurMultiBody; btAlignedObjectArray m_motorIdList; MinitaurStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBody* minitaurMultiBody, btAlignedObjectArray& motorIdList) : m_loggingTimeStamp(0), m_logFileHandle(0), m_minitaurMultiBody(minitaurMultiBody) { m_loggingUniqueId = loggingUniqueId; m_loggingType = STATE_LOGGING_MINITAUR; m_motorIdList.resize(motorIdList.size()); for (int m = 0; m < motorIdList.size(); m++) { m_motorIdList[m] = motorIdList[m]; } btAlignedObjectArray structNames; //'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo' structNames.push_back("t"); structNames.push_back("r"); structNames.push_back("p"); structNames.push_back("y"); structNames.push_back("q0"); structNames.push_back("q1"); structNames.push_back("q2"); structNames.push_back("q3"); structNames.push_back("q4"); structNames.push_back("q5"); structNames.push_back("q6"); structNames.push_back("q7"); structNames.push_back("u0"); structNames.push_back("u1"); structNames.push_back("u2"); structNames.push_back("u3"); structNames.push_back("u4"); structNames.push_back("u5"); structNames.push_back("u6"); structNames.push_back("u7"); structNames.push_back("dx"); structNames.push_back("mo"); m_structTypes = "IffffffffffffffffffffB"; const char* fileNameC = fileName.c_str(); m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes); } virtual void stop() { if (m_logFileHandle) { closeMinitaurLogFile(m_logFileHandle); m_logFileHandle = 0; } } virtual void logState(btScalar timeStep) { if (m_logFileHandle) { //btVector3 pos = m_minitaurMultiBody->getBasePos(); MinitaurLogRecord logData; //'t', 'r', 'p', 'y', 'q0', 'q1', 'q2', 'q3', 'q4', 'q5', 'q6', 'q7', 'u0', 'u1', 'u2', 'u3', 'u4', 'u5', 'u6', 'u7', 'xd', 'mo' btScalar motorDir[8] = {1, 1, 1, 1, 1, 1, 1, 1}; btQuaternion orn = m_minitaurMultiBody->getBaseWorldTransform().getRotation(); btMatrix3x3 mat(orn); btScalar roll = 0; btScalar pitch = 0; btScalar yaw = 0; mat.getEulerZYX(yaw, pitch, roll); logData.m_values.push_back(m_loggingTimeStamp); logData.m_values.push_back((float)roll); logData.m_values.push_back((float)pitch); logData.m_values.push_back((float)yaw); for (int i = 0; i < 8; i++) { float jointAngle = (float)motorDir[i] * m_minitaurMultiBody->getJointPos(m_motorIdList[i]); logData.m_values.push_back(jointAngle); } for (int i = 0; i < 8; i++) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)m_minitaurMultiBody->getLink(m_motorIdList[i]).m_userPtr; if (motor && timeStep > btScalar(0)) { btScalar force = motor->getAppliedImpulse(0) / timeStep; logData.m_values.push_back((float)force); } } //x is forward component, estimated speed forward float xd_speed = m_minitaurMultiBody->getBaseVel()[0]; logData.m_values.push_back(xd_speed); char mode = 6; logData.m_values.push_back(mode); //at the moment, appendMinitaurLogData will directly write to disk (potential delay) //better to fill a huge memory buffer and once in a while write it to disk appendMinitaurLogData(m_logFileHandle, m_structTypes, logData); fflush(m_logFileHandle); m_loggingTimeStamp++; } } }; struct b3VRControllerEvents { b3VRControllerEvent m_vrEvents[MAX_VR_CONTROLLERS]; b3VRControllerEvents() { init(); } virtual ~b3VRControllerEvents() { } void init() { for (int i = 0; i < MAX_VR_CONTROLLERS; i++) { m_vrEvents[i].m_deviceType = 0; m_vrEvents[i].m_numButtonEvents = 0; m_vrEvents[i].m_numMoveEvents = 0; for (int b = 0; b < MAX_VR_BUTTONS; b++) { m_vrEvents[i].m_buttons[b] = 0; } } } void addNewVREvents(const struct b3VRControllerEvent* vrEvents, int numVREvents) { //update m_vrEvents for (int i = 0; i < numVREvents; i++) { int controlledId = vrEvents[i].m_controllerId; if (vrEvents[i].m_numMoveEvents) { m_vrEvents[controlledId].m_analogAxis = vrEvents[i].m_analogAxis; for (int a = 0; a < 10; a++) { m_vrEvents[controlledId].m_auxAnalogAxis[a] = vrEvents[i].m_auxAnalogAxis[a]; } } else { m_vrEvents[controlledId].m_analogAxis = 0; for (int a = 0; a < 10; a++) { m_vrEvents[controlledId].m_auxAnalogAxis[a] = 0; } } if (vrEvents[i].m_numMoveEvents + vrEvents[i].m_numButtonEvents) { m_vrEvents[controlledId].m_controllerId = vrEvents[i].m_controllerId; m_vrEvents[controlledId].m_deviceType = vrEvents[i].m_deviceType; m_vrEvents[controlledId].m_pos[0] = vrEvents[i].m_pos[0]; m_vrEvents[controlledId].m_pos[1] = vrEvents[i].m_pos[1]; m_vrEvents[controlledId].m_pos[2] = vrEvents[i].m_pos[2]; m_vrEvents[controlledId].m_orn[0] = vrEvents[i].m_orn[0]; m_vrEvents[controlledId].m_orn[1] = vrEvents[i].m_orn[1]; m_vrEvents[controlledId].m_orn[2] = vrEvents[i].m_orn[2]; m_vrEvents[controlledId].m_orn[3] = vrEvents[i].m_orn[3]; } m_vrEvents[controlledId].m_numButtonEvents += vrEvents[i].m_numButtonEvents; m_vrEvents[controlledId].m_numMoveEvents += vrEvents[i].m_numMoveEvents; for (int b = 0; b < MAX_VR_BUTTONS; b++) { m_vrEvents[controlledId].m_buttons[b] |= vrEvents[i].m_buttons[b]; if (vrEvents[i].m_buttons[b] & eButtonIsDown) { m_vrEvents[controlledId].m_buttons[b] |= eButtonIsDown; } else { m_vrEvents[controlledId].m_buttons[b] &= ~eButtonIsDown; } } } }; }; struct VRControllerStateLogger : public InternalStateLogger { b3VRControllerEvents m_vrEvents; int m_loggingTimeStamp; int m_deviceTypeFilter; std::string m_fileName; FILE* m_logFileHandle; std::string m_structTypes; VRControllerStateLogger(int loggingUniqueId, int deviceTypeFilter, const std::string& fileName) : m_loggingTimeStamp(0), m_deviceTypeFilter(deviceTypeFilter), m_fileName(fileName), m_logFileHandle(0) { m_loggingUniqueId = loggingUniqueId; m_loggingType = STATE_LOGGING_VR_CONTROLLERS; btAlignedObjectArray structNames; structNames.push_back("stepCount"); structNames.push_back("timeStamp"); structNames.push_back("controllerId"); structNames.push_back("numMoveEvents"); structNames.push_back("m_numButtonEvents"); structNames.push_back("posX"); structNames.push_back("posY"); structNames.push_back("posZ"); structNames.push_back("oriX"); structNames.push_back("oriY"); structNames.push_back("oriZ"); structNames.push_back("oriW"); structNames.push_back("analogAxis"); structNames.push_back("buttons0"); structNames.push_back("buttons1"); structNames.push_back("buttons2"); structNames.push_back("buttons3"); structNames.push_back("buttons4"); structNames.push_back("buttons5"); structNames.push_back("buttons6"); structNames.push_back("deviceType"); m_structTypes = "IfIIIffffffffIIIIIIII"; const char* fileNameC = fileName.c_str(); m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes); } virtual void stop() { if (m_logFileHandle) { closeMinitaurLogFile(m_logFileHandle); m_logFileHandle = 0; } } virtual void logState(btScalar timeStep) { if (m_logFileHandle) { int stepCount = m_loggingTimeStamp; float timeStamp = m_loggingTimeStamp * timeStep; for (int i = 0; i < MAX_VR_CONTROLLERS; i++) { b3VRControllerEvent& event = m_vrEvents.m_vrEvents[i]; if (m_deviceTypeFilter & event.m_deviceType) { if (event.m_numButtonEvents + event.m_numMoveEvents) { MinitaurLogRecord logData; //serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event; //log the event logData.m_values.push_back(stepCount); logData.m_values.push_back(timeStamp); logData.m_values.push_back(event.m_controllerId); logData.m_values.push_back(event.m_numMoveEvents); logData.m_values.push_back(event.m_numButtonEvents); logData.m_values.push_back(event.m_pos[0]); logData.m_values.push_back(event.m_pos[1]); logData.m_values.push_back(event.m_pos[2]); logData.m_values.push_back(event.m_orn[0]); logData.m_values.push_back(event.m_orn[1]); logData.m_values.push_back(event.m_orn[2]); logData.m_values.push_back(event.m_orn[3]); logData.m_values.push_back(event.m_analogAxis); int packedButtons[7] = {0, 0, 0, 0, 0, 0, 0}; int packedButtonIndex = 0; int packedButtonShift = 0; //encode the 64 buttons into 7 int (3 bits each), each int stores 10 buttons for (int b = 0; b < MAX_VR_BUTTONS; b++) { int buttonMask = event.m_buttons[b]; buttonMask = buttonMask << (packedButtonShift * 3); packedButtons[packedButtonIndex] |= buttonMask; packedButtonShift++; if (packedButtonShift >= 10) { packedButtonShift = 0; packedButtonIndex++; if (packedButtonIndex >= 7) { btAssert(0); break; } } } for (int b = 0; b < 7; b++) { logData.m_values.push_back(packedButtons[b]); } logData.m_values.push_back(event.m_deviceType); appendMinitaurLogData(m_logFileHandle, m_structTypes, logData); event.m_numButtonEvents = 0; event.m_numMoveEvents = 0; for (int b = 0; b < MAX_VR_BUTTONS; b++) { event.m_buttons[b] = 0; } } } } fflush(m_logFileHandle); m_loggingTimeStamp++; } } }; struct GenericRobotStateLogger : public InternalStateLogger { float m_loggingTimeStamp; std::string m_fileName; FILE* m_logFileHandle; std::string m_structTypes; const btMultiBodyDynamicsWorld* m_dynamicsWorld; btAlignedObjectArray m_bodyIdList; bool m_filterObjectUniqueId; int m_maxLogDof; int m_logFlags; GenericRobotStateLogger(int loggingUniqueId, const std::string& fileName, const btMultiBodyDynamicsWorld* dynamicsWorld, int maxLogDof, int logFlags) : m_loggingTimeStamp(0), m_logFileHandle(0), m_dynamicsWorld(dynamicsWorld), m_filterObjectUniqueId(false), m_maxLogDof(maxLogDof), m_logFlags(logFlags) { m_loggingUniqueId = loggingUniqueId; m_loggingType = STATE_LOGGING_GENERIC_ROBOT; btAlignedObjectArray structNames; structNames.push_back("stepCount"); structNames.push_back("timeStamp"); structNames.push_back("objectId"); structNames.push_back("posX"); structNames.push_back("posY"); structNames.push_back("posZ"); structNames.push_back("oriX"); structNames.push_back("oriY"); structNames.push_back("oriZ"); structNames.push_back("oriW"); structNames.push_back("velX"); structNames.push_back("velY"); structNames.push_back("velZ"); structNames.push_back("omegaX"); structNames.push_back("omegaY"); structNames.push_back("omegaZ"); structNames.push_back("qNum"); m_structTypes = "IfifffffffffffffI"; for (int i = 0; i < m_maxLogDof; i++) { m_structTypes.append("f"); char jointName[256]; sprintf(jointName, "q%d", i); structNames.push_back(jointName); } for (int i = 0; i < m_maxLogDof; i++) { m_structTypes.append("f"); char jointName[256]; sprintf(jointName, "u%d", i); structNames.push_back(jointName); } if (m_logFlags & STATE_LOG_JOINT_TORQUES) { for (int i = 0; i < m_maxLogDof; i++) { m_structTypes.append("f"); char jointName[256]; sprintf(jointName, "t%d", i); structNames.push_back(jointName); } } const char* fileNameC = fileName.c_str(); m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes); } virtual void stop() { if (m_logFileHandle) { closeMinitaurLogFile(m_logFileHandle); m_logFileHandle = 0; } } virtual void logState(btScalar timeStep) { if (m_logFileHandle) { for (int i = 0; i < m_dynamicsWorld->getNumMultibodies(); i++) { const btMultiBody* mb = m_dynamicsWorld->getMultiBody(i); int objectUniqueId = mb->getUserIndex2(); if (m_filterObjectUniqueId && m_bodyIdList.findLinearSearch2(objectUniqueId) < 0) { continue; } MinitaurLogRecord logData; int stepCount = m_loggingTimeStamp; float timeStamp = m_loggingTimeStamp * m_dynamicsWorld->getSolverInfo().m_timeStep; logData.m_values.push_back(stepCount); logData.m_values.push_back(timeStamp); btVector3 pos = mb->getBasePos(); btQuaternion ori = mb->getWorldToBaseRot().inverse(); btVector3 vel = mb->getBaseVel(); btVector3 omega = mb->getBaseOmega(); float posX = pos[0]; float posY = pos[1]; float posZ = pos[2]; float oriX = ori.x(); float oriY = ori.y(); float oriZ = ori.z(); float oriW = ori.w(); float velX = vel[0]; float velY = vel[1]; float velZ = vel[2]; float omegaX = omega[0]; float omegaY = omega[1]; float omegaZ = omega[2]; logData.m_values.push_back(objectUniqueId); logData.m_values.push_back(posX); logData.m_values.push_back(posY); logData.m_values.push_back(posZ); logData.m_values.push_back(oriX); logData.m_values.push_back(oriY); logData.m_values.push_back(oriZ); logData.m_values.push_back(oriW); logData.m_values.push_back(velX); logData.m_values.push_back(velY); logData.m_values.push_back(velZ); logData.m_values.push_back(omegaX); logData.m_values.push_back(omegaY); logData.m_values.push_back(omegaZ); int numDofs = mb->getNumDofs(); logData.m_values.push_back(numDofs); int numJoints = mb->getNumLinks(); for (int j = 0; j < numJoints; ++j) { if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1) { float q = mb->getJointPos(j); logData.m_values.push_back(q); } } for (int j = numDofs; j < m_maxLogDof; ++j) { float q = 0.0; logData.m_values.push_back(q); } for (int j = 0; j < numJoints; ++j) { if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1) { float v = mb->getJointVel(j); logData.m_values.push_back(v); } } for (int j = numDofs; j < m_maxLogDof; ++j) { float v = 0.0; logData.m_values.push_back(v); } if (m_logFlags & STATE_LOG_JOINT_TORQUES) { for (int j = 0; j < numJoints; ++j) { if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1) { float jointTorque = 0; if (m_logFlags & STATE_LOG_JOINT_MOTOR_TORQUES) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(j).m_userPtr; if (motor) { jointTorque += motor->getAppliedImpulse(0) / timeStep; } } if (m_logFlags & STATE_LOG_JOINT_USER_TORQUES) { if (mb->getLink(j).m_jointType == 0 || mb->getLink(j).m_jointType == 1) { jointTorque += mb->getJointTorque(j); //these are the 'user' applied external torques } } logData.m_values.push_back(jointTorque); } } for (int j = numDofs; j < m_maxLogDof; ++j) { float u = 0.0; logData.m_values.push_back(u); } } //at the moment, appendMinitaurLogData will directly write to disk (potential delay) //better to fill a huge memory buffer and once in a while write it to disk appendMinitaurLogData(m_logFileHandle, m_structTypes, logData); fflush(m_logFileHandle); } m_loggingTimeStamp++; } } }; struct ContactPointsStateLogger : public InternalStateLogger { int m_loggingTimeStamp; std::string m_fileName; FILE* m_logFileHandle; std::string m_structTypes; btMultiBodyDynamicsWorld* m_dynamicsWorld; bool m_filterLinkA; bool m_filterLinkB; int m_linkIndexA; int m_linkIndexB; int m_bodyUniqueIdA; int m_bodyUniqueIdB; ContactPointsStateLogger(int loggingUniqueId, const std::string& fileName, btMultiBodyDynamicsWorld* dynamicsWorld) : m_loggingTimeStamp(0), m_fileName(fileName), m_logFileHandle(0), m_dynamicsWorld(dynamicsWorld), m_filterLinkA(false), m_filterLinkB(false), m_linkIndexA(-2), m_linkIndexB(-2), m_bodyUniqueIdA(-1), m_bodyUniqueIdB(-1) { m_loggingUniqueId = loggingUniqueId; m_loggingType = STATE_LOGGING_CONTACT_POINTS; btAlignedObjectArray structNames; structNames.push_back("stepCount"); structNames.push_back("timeStamp"); structNames.push_back("contactFlag"); structNames.push_back("bodyUniqueIdA"); structNames.push_back("bodyUniqueIdB"); structNames.push_back("linkIndexA"); structNames.push_back("linkIndexB"); structNames.push_back("positionOnAX"); structNames.push_back("positionOnAY"); structNames.push_back("positionOnAZ"); structNames.push_back("positionOnBX"); structNames.push_back("positionOnBY"); structNames.push_back("positionOnBZ"); structNames.push_back("contactNormalOnBX"); structNames.push_back("contactNormalOnBY"); structNames.push_back("contactNormalOnBZ"); structNames.push_back("contactDistance"); structNames.push_back("normalForce"); m_structTypes = "IfIiiiifffffffffff"; const char* fileNameC = fileName.c_str(); m_logFileHandle = createMinitaurLogFile(fileNameC, structNames, m_structTypes); } virtual void stop() { if (m_logFileHandle) { closeMinitaurLogFile(m_logFileHandle); m_logFileHandle = 0; } } virtual void logState(btScalar timeStep) { if (m_logFileHandle) { int numContactManifolds = m_dynamicsWorld->getDispatcher()->getNumManifolds(); for (int i = 0; i < numContactManifolds; i++) { const btPersistentManifold* manifold = m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i]; int linkIndexA = -1; int linkIndexB = -1; int objectIndexB = -1; const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1()); if (bodyB) { objectIndexB = bodyB->getUserIndex2(); } const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1()); if (mblB && mblB->m_multiBody) { linkIndexB = mblB->m_link; objectIndexB = mblB->m_multiBody->getUserIndex2(); if (m_filterLinkB && (m_linkIndexB != linkIndexB)) { continue; } } int objectIndexA = -1; const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0()); if (bodyA) { objectIndexA = bodyA->getUserIndex2(); } const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0()); if (mblA && mblA->m_multiBody) { linkIndexA = mblA->m_link; objectIndexA = mblA->m_multiBody->getUserIndex2(); if (m_filterLinkA && (m_linkIndexA != linkIndexA)) { continue; } } btAssert(bodyA || mblA); //apply the filter, if the user provides it if (m_bodyUniqueIdA >= 0) { if ((m_bodyUniqueIdA != objectIndexA) && (m_bodyUniqueIdA != objectIndexB)) continue; } //apply the second object filter, if the user provides it if (m_bodyUniqueIdB >= 0) { if ((m_bodyUniqueIdB != objectIndexA) && (m_bodyUniqueIdB != objectIndexB)) continue; } for (int p = 0; p < manifold->getNumContacts(); p++) { MinitaurLogRecord logData; int stepCount = m_loggingTimeStamp; float timeStamp = m_loggingTimeStamp * timeStep; logData.m_values.push_back(stepCount); logData.m_values.push_back(timeStamp); const btManifoldPoint& srcPt = manifold->getContactPoint(p); logData.m_values.push_back(0); // reserved contact flag logData.m_values.push_back(objectIndexA); logData.m_values.push_back(objectIndexB); logData.m_values.push_back(linkIndexA); logData.m_values.push_back(linkIndexB); logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[0])); logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[1])); logData.m_values.push_back((float)(srcPt.getPositionWorldOnA()[2])); logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[0])); logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[1])); logData.m_values.push_back((float)(srcPt.getPositionWorldOnB()[2])); logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[0])); logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[1])); logData.m_values.push_back((float)(srcPt.m_normalWorldOnB[2])); logData.m_values.push_back((float)(srcPt.getDistance())); logData.m_values.push_back((float)(srcPt.getAppliedImpulse() / timeStep)); appendMinitaurLogData(m_logFileHandle, m_structTypes, logData); fflush(m_logFileHandle); } } m_loggingTimeStamp++; } } }; struct SaveStateData { bParse::btBulletFile* m_bulletFile; btSerializer* m_serializer; }; struct PhysicsServerCommandProcessorInternalData { ///handle management b3ResizablePool m_textureHandles; b3ResizablePool m_bodyHandles; b3ResizablePool m_userCollisionShapeHandles; b3ResizablePool m_userVisualShapeHandles; b3ResizablePool > m_userDataHandles; btHashMap m_userDataHandleLookup; b3PluginManager m_pluginManager; bool m_useRealTimeSimulation; b3VRControllerEvents m_vrControllerEvents; btAlignedObjectArray m_savedStates; btAlignedObjectArray m_keyboardEvents; btAlignedObjectArray m_mouseEvents; CommandLogger* m_commandLogger; int m_commandLoggingUid; CommandLogPlayback* m_logPlayback; int m_logPlaybackUid; btScalar m_physicsDeltaTime; btScalar m_numSimulationSubSteps; btScalar m_simulationTimestamp; btAlignedObjectArray m_multiBodyJointFeedbacks; b3HashMap m_inverseDynamicsBodies; b3HashMap m_inverseKinematicsHelpers; int m_userConstraintUIDGenerator; b3HashMap m_userConstraints; b3AlignedObjectArray m_saveWorldBodyData; btAlignedObjectArray m_worldImporters; btAlignedObjectArray m_strings; btAlignedObjectArray m_collisionShapes; btAlignedObjectArray m_heightfieldDatas; btAlignedObjectArray m_allocatedTextures; btHashMap m_bulletCollisionShape2UrdfCollision; btAlignedObjectArray m_meshInterfaces; MyOverlapFilterCallback* m_broadphaseCollisionFilterCallback; btHashedOverlappingPairCache* m_pairCache; btBroadphaseInterface* m_broadphase; btCollisionDispatcher* m_dispatcher; btMultiBodyConstraintSolver* m_solver; btDefaultCollisionConfiguration* m_collisionConfiguration; #ifndef SKIP_DEFORMABLE_BODY btDeformableBodySolver* m_deformablebodySolver; btAlignedObjectArray m_lf; #endif btMultiBodyDynamicsWorld* m_dynamicsWorld; int m_constraintSolverType; SharedMemoryDebugDrawer* m_remoteDebugDrawer; btAlignedObjectArray m_cachedContactPoints; MyBroadphaseCallback m_cachedOverlappingObjects; btAlignedObjectArray m_sdfRecentLoadedBodies; btAlignedObjectArray m_graphicsIndexToSegmentationMask; btAlignedObjectArray m_stateLoggers; int m_stateLoggersUniqueId; int m_profileTimingLoggingUid; std::string m_profileTimingFileName; struct GUIHelperInterface* m_guiHelper; int m_sharedMemoryKey; bool m_enableTinyRenderer; bool m_verboseOutput; //data for picking objects class btRigidBody* m_pickedBody; int m_savedActivationState; class btTypedConstraint* m_pickedConstraint; class btMultiBodyPoint2Point* m_pickingMultiBodyPoint2Point; btVector3 m_oldPickingPos; btVector3 m_hitPos; btScalar m_oldPickingDist; bool m_prevCanSleep; int m_pdControlPlugin; int m_collisionFilterPlugin; int m_grpcPlugin; #ifdef B3_ENABLE_TINY_AUDIO b3SoundEngine m_soundEngine; #endif b3HashMap m_profileEvents; b3HashMap m_cachedVUrdfisualShapes; b3ThreadPool* m_threadPool; btScalar m_defaultCollisionMargin; double m_remoteSyncTransformTime; double m_remoteSyncTransformInterval; PhysicsServerCommandProcessorInternalData(PhysicsCommandProcessorInterface* proc) : m_pluginManager(proc), m_useRealTimeSimulation(false), m_commandLogger(0), m_commandLoggingUid(-1), m_logPlayback(0), m_logPlaybackUid(-1), m_physicsDeltaTime(1. / 240.), m_numSimulationSubSteps(0), m_simulationTimestamp(0), m_userConstraintUIDGenerator(1), m_broadphaseCollisionFilterCallback(0), m_pairCache(0), m_broadphase(0), m_dispatcher(0), m_solver(0), m_collisionConfiguration(0), #ifndef SKIP_DEFORMABLE_BODY m_deformablebodySolver(0), #endif m_dynamicsWorld(0), m_constraintSolverType(-1), m_remoteDebugDrawer(0), m_stateLoggersUniqueId(0), m_profileTimingLoggingUid(-1), m_guiHelper(0), m_sharedMemoryKey(SHARED_MEMORY_KEY), m_enableTinyRenderer(true), m_verboseOutput(false), m_pickedBody(0), m_pickedConstraint(0), m_pickingMultiBodyPoint2Point(0), m_pdControlPlugin(-1), m_collisionFilterPlugin(-1), m_grpcPlugin(-1), m_threadPool(0), m_defaultCollisionMargin(0.001), m_remoteSyncTransformTime(1. / 30.), m_remoteSyncTransformInterval(1. / 30.) { { //register static plugins: #ifdef STATIC_LINK_VR_PLUGIN b3PluginFunctions funcs(initPlugin_vrSyncPlugin, exitPlugin_vrSyncPlugin, executePluginCommand_vrSyncPlugin); funcs.m_preTickFunc = preTickPluginCallback_vrSyncPlugin; m_pluginManager.registerStaticLinkedPlugin("vrSyncPlugin", funcs); #endif //STATIC_LINK_VR_PLUGIN } #ifndef SKIP_STATIC_PD_CONTROL_PLUGIN { //int b3PluginManager::registerStaticLinkedPlugin(const char* pluginPath, PFN_INIT initFunc, PFN_EXIT exitFunc, PFN_EXECUTE executeCommandFunc, PFN_TICK preTickFunc, PFN_TICK postTickFunc, PFN_GET_RENDER_INTERFACE getRendererFunc, PFN_TICK processClientCommandsFunc, PFN_GET_COLLISION_INTERFACE getCollisionFunc, bool initPlugin) b3PluginFunctions funcs(initPlugin_pdControlPlugin, exitPlugin_pdControlPlugin, executePluginCommand_pdControlPlugin); funcs.m_preTickFunc = preTickPluginCallback_pdControlPlugin; m_pdControlPlugin = m_pluginManager.registerStaticLinkedPlugin("pdControlPlugin", funcs); } #endif //SKIP_STATIC_PD_CONTROL_PLUGIN #ifndef SKIP_COLLISION_FILTER_PLUGIN { b3PluginFunctions funcs(initPlugin_collisionFilterPlugin, exitPlugin_collisionFilterPlugin, executePluginCommand_collisionFilterPlugin); funcs.m_getCollisionFunc = getCollisionInterface_collisionFilterPlugin; m_collisionFilterPlugin = m_pluginManager.registerStaticLinkedPlugin("collisionFilterPlugin", funcs); m_pluginManager.selectCollisionPlugin(m_collisionFilterPlugin); } #endif #ifdef ENABLE_STATIC_GRPC_PLUGIN { b3PluginFunctions funcs(initPlugin_grpcPlugin, exitPlugin_grpcPlugin, executePluginCommand_grpcPlugin); funcs.m_processClientCommandsFunc = processClientCommands_grpcPlugin; m_grpcPlugin = m_pluginManager.registerStaticLinkedPlugin("grpcPlugin", funcs); } #endif //ENABLE_STATIC_GRPC_PLUGIN #ifdef STATIC_EGLRENDERER_PLUGIN { bool initPlugin = false; b3PluginFunctions funcs(initPlugin_eglRendererPlugin, exitPlugin_eglRendererPlugin, executePluginCommand_eglRendererPlugin); funcs.m_getRendererFunc = getRenderInterface_eglRendererPlugin; int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("eglRendererPlugin", funcs, initPlugin); m_pluginManager.selectPluginRenderer(renderPluginId); } #endif //STATIC_EGLRENDERER_PLUGIN #ifndef SKIP_STATIC_TINYRENDERER_PLUGIN { b3PluginFunctions funcs(initPlugin_tinyRendererPlugin, exitPlugin_tinyRendererPlugin, executePluginCommand_tinyRendererPlugin); funcs.m_getRendererFunc = getRenderInterface_tinyRendererPlugin; int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("tinyRendererPlugin", funcs); m_pluginManager.selectPluginRenderer(renderPluginId); } #endif #ifdef B3_ENABLE_FILEIO_PLUGIN { b3PluginFunctions funcs(initPlugin_fileIOPlugin, exitPlugin_fileIOPlugin, executePluginCommand_fileIOPlugin); funcs.m_fileIoFunc = getFileIOFunc_fileIOPlugin; int renderPluginId = m_pluginManager.registerStaticLinkedPlugin("fileIOPlugin", funcs); m_pluginManager.selectFileIOPlugin(renderPluginId); } #endif m_vrControllerEvents.init(); m_bodyHandles.exitHandles(); m_bodyHandles.initHandles(); m_userCollisionShapeHandles.exitHandles(); m_userCollisionShapeHandles.initHandles(); m_userVisualShapeHandles.exitHandles(); m_userVisualShapeHandles.initHandles(); } #ifdef STATIC_LINK_SPD_PLUGIN b3HashMap m_rbdModels; static void convertPose(const btMultiBody* multiBody, const double* jointPositionsQ, const double* jointVelocitiesQdot, Eigen::VectorXd& pose, Eigen::VectorXd& vel) { int baseDofQ = multiBody->hasFixedBase() ? 0 : 7; int baseDofQdot = multiBody->hasFixedBase() ? 0 : 6; pose.resize(7 + multiBody->getNumPosVars()); vel.resize(7 + multiBody->getNumPosVars()); //?? btTransform tr = multiBody->getBaseWorldTransform(); int dofsrc = 0; int velsrcdof = 0; if (baseDofQ == 7) { pose[0] = jointPositionsQ[dofsrc++]; pose[1] = jointPositionsQ[dofsrc++]; pose[2] = jointPositionsQ[dofsrc++]; double quatXYZW[4]; quatXYZW[0] = jointPositionsQ[dofsrc++]; quatXYZW[1] = jointPositionsQ[dofsrc++]; quatXYZW[2] = jointPositionsQ[dofsrc++]; quatXYZW[3] = jointPositionsQ[dofsrc++]; pose[3] = quatXYZW[3]; pose[4] = quatXYZW[0]; pose[5] = quatXYZW[1]; pose[6] = quatXYZW[2]; } else { pose[0] = tr.getOrigin()[0]; pose[1] = tr.getOrigin()[1]; pose[2] = tr.getOrigin()[2]; pose[3] = tr.getRotation()[3]; pose[4] = tr.getRotation()[0]; pose[5] = tr.getRotation()[1]; pose[6] = tr.getRotation()[2]; } if (baseDofQdot == 6) { vel[0] = jointVelocitiesQdot[velsrcdof++]; vel[1] = jointVelocitiesQdot[velsrcdof++]; vel[2] = jointVelocitiesQdot[velsrcdof++]; vel[3] = jointVelocitiesQdot[velsrcdof++]; vel[4] = jointVelocitiesQdot[velsrcdof++]; vel[5] = jointVelocitiesQdot[velsrcdof++]; vel[6] = jointVelocitiesQdot[velsrcdof++]; vel[6] = 0; } else { vel[0] = multiBody->getBaseVel()[0]; vel[1] = multiBody->getBaseVel()[1]; vel[2] = multiBody->getBaseVel()[2]; vel[3] = multiBody->getBaseOmega()[0]; vel[4] = multiBody->getBaseOmega()[1]; vel[5] = multiBody->getBaseOmega()[2]; vel[6] = 0; } int dof = 7; int veldof = 7; for (int l = 0; l < multiBody->getNumLinks(); l++) { switch (multiBody->getLink(l).m_jointType) { case btMultibodyLink::eRevolute: case btMultibodyLink::ePrismatic: { pose[dof++] = jointPositionsQ[dofsrc++]; vel[veldof++] = jointVelocitiesQdot[velsrcdof++]; break; } case btMultibodyLink::eSpherical: { double quatXYZW[4]; quatXYZW[0] = jointPositionsQ[dofsrc++]; quatXYZW[1] = jointPositionsQ[dofsrc++]; quatXYZW[2] = jointPositionsQ[dofsrc++]; quatXYZW[3] = jointPositionsQ[dofsrc++]; pose[dof++] = quatXYZW[3]; pose[dof++] = quatXYZW[0]; pose[dof++] = quatXYZW[1]; pose[dof++] = quatXYZW[2]; vel[veldof++] = jointVelocitiesQdot[velsrcdof++]; vel[veldof++] = jointVelocitiesQdot[velsrcdof++]; vel[veldof++] = jointVelocitiesQdot[velsrcdof++]; vel[veldof++] = jointVelocitiesQdot[velsrcdof++]; break; } case btMultibodyLink::eFixed: { break; } default: { assert(0); } } } } cRBDModel* findOrCreateRBDModel(btMultiBody* multiBody, const double* jointPositionsQ, const double* jointVelocitiesQdot) { cRBDModel* rbdModel = 0; cRBDModel** rbdModelPtr = m_rbdModels.find(multiBody); if (rbdModelPtr) { rbdModel = *rbdModelPtr; } else { rbdModel = new cRBDModel(); Eigen::MatrixXd bodyDefs; Eigen::MatrixXd jointMat; btExtractJointBodyFromBullet(multiBody, bodyDefs, jointMat); btVector3 grav = m_dynamicsWorld->getGravity(); tVector3 gravity(grav[0], grav[1], grav[2], 0); rbdModel->Init(jointMat, bodyDefs, gravity); m_rbdModels.insert(multiBody, rbdModel); } //sync pose and vel Eigen::VectorXd pose, vel; PhysicsServerCommandProcessorInternalData::convertPose(multiBody, jointPositionsQ, jointVelocitiesQdot, pose, vel); btVector3 gravOrg = m_dynamicsWorld->getGravity(); tVector grav(gravOrg[0], gravOrg[1], gravOrg[2], 0); rbdModel->SetGravity(grav); { BT_PROFILE("rbdModel::Update"); rbdModel->Update(pose, vel); } return rbdModel; } #endif btInverseDynamics::MultiBodyTree* findOrCreateTree(btMultiBody* multiBody) { btInverseDynamics::MultiBodyTree* tree = 0; btInverseDynamics::MultiBodyTree** treePtrPtr = m_inverseDynamicsBodies.find(multiBody); if (treePtrPtr) { tree = *treePtrPtr; } else { btInverseDynamics::btMultiBodyTreeCreator id_creator; if (-1 == id_creator.createFromBtMultiBody(multiBody, false)) { } else { tree = btInverseDynamics::CreateMultiBodyTree(id_creator); m_inverseDynamicsBodies.insert(multiBody, tree); } } return tree; } }; void PhysicsServerCommandProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper) { if (guiHelper) { guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld); } else { //state loggers use guiHelper, so remove them before the guiHelper is deleted deleteStateLoggers(); if (m_data->m_guiHelper && m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getDebugDrawer()) { m_data->m_dynamicsWorld->setDebugDrawer(0); } } m_data->m_guiHelper = guiHelper; } PhysicsServerCommandProcessor::PhysicsServerCommandProcessor() : m_data(0) { m_data = new PhysicsServerCommandProcessorInternalData(this); createEmptyDynamicsWorld(); } PhysicsServerCommandProcessor::~PhysicsServerCommandProcessor() { deleteDynamicsWorld(); if (m_data->m_commandLogger) { delete m_data->m_commandLogger; m_data->m_commandLogger = 0; } for (int i = 0; i < m_data->m_profileEvents.size(); i++) { char* event = *m_data->m_profileEvents.getAtIndex(i); delete[] event; } if (m_data->m_threadPool) delete m_data->m_threadPool; delete m_data; } void preTickCallback(btDynamicsWorld* world, btScalar timeStep) { PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*)world->getWorldUserInfo(); proc->tickPlugins(timeStep, true); } void logCallback(btDynamicsWorld* world, btScalar timeStep) { //handle the logging and playing sounds PhysicsServerCommandProcessor* proc = (PhysicsServerCommandProcessor*)world->getWorldUserInfo(); proc->processCollisionForces(timeStep); proc->logObjectStates(timeStep); proc->tickPlugins(timeStep, false); } bool MyContactAddedCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1) { btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1); return true; } bool MyContactDestroyedCallback(void* userPersistentData) { //printf("destroyed\n"); return false; } bool MyContactProcessedCallback(btManifoldPoint& cp, void* body0, void* body1) { //printf("processed\n"); return false; } void MyContactStartedCallback(btPersistentManifold* const& manifold) { //printf("started\n"); } void MyContactEndedCallback(btPersistentManifold* const& manifold) { // printf("ended\n"); } void PhysicsServerCommandProcessor::processCollisionForces(btScalar timeStep) { #ifdef B3_ENABLE_TINY_AUDIO //this is experimental at the moment: impulse thresholds, sound parameters will be exposed in C-API/pybullet. //audio will go into a wav file, as well as real-time output to speakers/headphones using RtAudio/DAC. int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds(); for (int i = 0; i < numContactManifolds; i++) { const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i]; bool objHasSound[2]; objHasSound[0] = (0 != (manifold->getBody0()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER)); objHasSound[1] = (0 != (manifold->getBody1()->getCollisionFlags() & btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER)); const btCollisionObject* colObjs[2] = {manifold->getBody0(), manifold->getBody1()}; for (int ob = 0; ob < 2; ob++) { if (objHasSound[ob]) { int uid0 = -1; int linkIndex = -2; const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(colObjs[ob]); if (mblB && mblB->m_multiBody) { linkIndex = mblB->m_link; uid0 = mblB->m_multiBody->getUserIndex2(); } const btRigidBody* bodyB = btRigidBody::upcast(colObjs[ob]); if (bodyB) { uid0 = bodyB->getUserIndex2(); linkIndex = -1; } if ((uid0 < 0) || (linkIndex < -1)) continue; InternalBodyHandle* bodyHandle0 = m_data->m_bodyHandles.getHandle(uid0); SDFAudioSource* audioSrc = bodyHandle0->m_audioSources[linkIndex]; if (audioSrc == 0) continue; for (int p = 0; p < manifold->getNumContacts(); p++) { double imp = manifold->getContactPoint(p).getAppliedImpulse(); //printf ("manifold %d, contact %d, lifeTime:%d, appliedImpulse:%f\n",i,p, manifold->getContactPoint(p).getLifeTime(),imp); if (imp > audioSrc->m_collisionForceThreshold && manifold->getContactPoint(p).getLifeTime() == 1) { int soundSourceIndex = m_data->m_soundEngine.getAvailableSoundSource(); if (soundSourceIndex >= 0) { b3SoundMessage msg; msg.m_attackRate = audioSrc->m_attackRate; msg.m_decayRate = audioSrc->m_decayRate; msg.m_sustainLevel = audioSrc->m_sustainLevel; msg.m_releaseRate = audioSrc->m_releaseRate; msg.m_amplitude = audioSrc->m_gain; msg.m_frequency = audioSrc->m_pitch; msg.m_type = B3_SOUND_SOURCE_WAV_FILE; msg.m_wavId = audioSrc->m_userIndex; msg.m_autoKeyOff = true; m_data->m_soundEngine.startSound(soundSourceIndex, msg); } } } } } } #endif //B3_ENABLE_TINY_AUDIO } void PhysicsServerCommandProcessor::processClientCommands() { m_data->m_pluginManager.tickPlugins(0, B3_PROCESS_CLIENT_COMMANDS_TICK); } void PhysicsServerCommandProcessor::reportNotifications() { m_data->m_pluginManager.reportNotifications(); } void PhysicsServerCommandProcessor::tickPlugins(btScalar timeStep, bool isPreTick) { b3PluginManagerTickMode tickMode = isPreTick ? B3_PRE_TICK_MODE : B3_POST_TICK_MODE; m_data->m_pluginManager.tickPlugins(timeStep, tickMode); if (!isPreTick) { //clear events after each postTick, so we don't receive events multiple ticks m_data->m_pluginManager.clearEvents(); } } void PhysicsServerCommandProcessor::logObjectStates(btScalar timeStep) { for (int i = 0; i < m_data->m_stateLoggers.size(); i++) { m_data->m_stateLoggers[i]->logState(timeStep); } } struct ProgrammaticUrdfInterface : public URDFImporterInterface { int m_bodyUniqueId; const b3CreateMultiBodyArgs& m_createBodyArgs; mutable b3AlignedObjectArray m_allocatedCollisionShapes; PhysicsServerCommandProcessorInternalData* m_data; int m_flags; ProgrammaticUrdfInterface(const b3CreateMultiBodyArgs& bodyArgs, PhysicsServerCommandProcessorInternalData* data, int flags) : m_bodyUniqueId(-1), m_createBodyArgs(bodyArgs), m_data(data), m_flags(flags) { } virtual ~ProgrammaticUrdfInterface() { } virtual bool loadURDF(const char* fileName, bool forceFixedBase = false) { b3Assert(0); return false; } virtual const char* getPathPrefix() { return ""; } ///return >=0 for the root link index, -1 if there is no root link virtual int getRootLinkIndex() const { return m_createBodyArgs.m_baseLinkIndex; } ///pure virtual interfaces, precondition is a valid linkIndex (you can assert/terminate if the linkIndex is out of range) virtual std::string getLinkName(int linkIndex) const { std::string linkName = "link"; char numstr[21]; // enough to hold all numbers up to 64-bits sprintf(numstr, "%d", linkIndex); linkName = linkName + numstr; return linkName; } //various derived class in internal source code break with new pure virtual methods, so provide some default implementation virtual std::string getBodyName() const { return m_createBodyArgs.m_bodyName; } /// optional method to provide the link color. return true if the color is available and copied into colorRGBA, return false otherwise virtual bool getLinkColor(int linkIndex, btVector4& colorRGBA) const { b3Assert(0); return false; } mutable btHashMap m_linkColors; virtual bool getLinkColor2(int linkIndex, struct UrdfMaterialColor& matCol) const { if (m_flags & URDF_USE_MATERIAL_COLORS_FROM_MTL) { const UrdfMaterialColor* matColPtr = m_linkColors[linkIndex]; if (matColPtr) { matCol = *matColPtr; if ((m_flags & CUF_USE_MATERIAL_TRANSPARANCY_FROM_MTL) == 0) { matCol.m_rgbaColor[3] = 1; } return true; } } else { if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] >= 0) { const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]); if (visHandle) { for (int i = 0; i < visHandle->m_visualShapes.size(); i++) { if (visHandle->m_visualShapes[i].m_geometry.m_hasLocalMaterial) { matCol = visHandle->m_visualShapes[i].m_geometry.m_localMaterial.m_matColor; return true; } } } } } return false; } virtual int getCollisionGroupAndMask(int linkIndex, int& colGroup, int& colMask) const { return 0; } ///this API will likely change, don't override it! virtual bool getLinkContactInfo(int linkIndex, URDFLinkContactInfo& contactInfo) const { return false; } virtual bool getLinkAudioSource(int linkIndex, SDFAudioSource& audioSource) const { b3Assert(0); return false; } virtual std::string getJointName(int linkIndex) const { std::string jointName = "joint"; char numstr[21]; // enough to hold all numbers up to 64-bits sprintf(numstr, "%d", linkIndex); jointName = jointName + numstr; return jointName; } //fill mass and inertial data. If inertial data is missing, please initialize mass, inertia to sensitive values, and inertialFrame to identity. virtual void getMassAndInertia(int urdfLinkIndex, btScalar& mass, btVector3& localInertiaDiagonal, btTransform& inertialFrame) const { if (urdfLinkIndex >= 0 && urdfLinkIndex < m_createBodyArgs.m_numLinks) { mass = m_createBodyArgs.m_linkMasses[urdfLinkIndex]; localInertiaDiagonal.setValue( m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 0], m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 1], m_createBodyArgs.m_linkInertias[urdfLinkIndex * 3 + 2]); inertialFrame.setOrigin(btVector3( m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 0], m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 1], m_createBodyArgs.m_linkInertialFramePositions[urdfLinkIndex * 3 + 2])); inertialFrame.setRotation(btQuaternion( m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 0], m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 1], m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 2], m_createBodyArgs.m_linkInertialFrameOrientations[urdfLinkIndex * 4 + 3])); } else { mass = 0; localInertiaDiagonal.setValue(0, 0, 0); inertialFrame.setIdentity(); } } ///fill an array of child link indices for this link, btAlignedObjectArray behaves like a std::vector so just use push_back and resize(0) if needed virtual void getLinkChildIndices(int urdfLinkIndex, btAlignedObjectArray& childLinkIndices) const { for (int i = 0; i < m_createBodyArgs.m_numLinks; i++) { if (m_createBodyArgs.m_linkParentIndices[i] == urdfLinkIndex) { childLinkIndices.push_back(i); } } } virtual bool getJointInfo(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction) const { return false; }; virtual bool getJointInfo2(int urdfLinkIndex, btTransform& parent2joint, btTransform& linkTransformInWorld, btVector3& jointAxisInJointSpace, int& jointType, btScalar& jointLowerLimit, btScalar& jointUpperLimit, btScalar& jointDamping, btScalar& jointFriction, btScalar& jointMaxForce, btScalar& jointMaxVelocity) const { bool isValid = false; int jointTypeOrg = m_createBodyArgs.m_linkJointTypes[urdfLinkIndex]; switch (jointTypeOrg) { case eRevoluteType: { isValid = true; jointType = URDFRevoluteJoint; break; } case ePrismaticType: { isValid = true; jointType = URDFPrismaticJoint; break; } case eFixedType: { isValid = true; jointType = URDFFixedJoint; break; } case eSphericalType: { isValid = true; jointType = URDFSphericalJoint; break; } //case ePlanarType: //case eFixedType: //case ePoint2PointType: //case eGearType: default: { } }; if (isValid) { //backwards compatibility for custom file importers jointMaxForce = 0; jointMaxVelocity = 0; jointFriction = 0; jointDamping = 0; jointLowerLimit = 1; jointUpperLimit = -1; parent2joint.setOrigin(btVector3( m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 0], m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 1], m_createBodyArgs.m_linkPositions[urdfLinkIndex * 3 + 2])); parent2joint.setRotation(btQuaternion( m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 0], m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 1], m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 2], m_createBodyArgs.m_linkOrientations[urdfLinkIndex * 4 + 3])); linkTransformInWorld.setIdentity(); jointAxisInJointSpace.setValue( m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 0], m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 1], m_createBodyArgs.m_linkJointAxis[3 * urdfLinkIndex + 2]); } return isValid; }; virtual bool getRootTransformInWorld(btTransform& rootTransformInWorld) const { int baseLinkIndex = m_createBodyArgs.m_baseLinkIndex; rootTransformInWorld.setOrigin(btVector3( m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 0], m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 1], m_createBodyArgs.m_linkPositions[baseLinkIndex * 3 + 2])); rootTransformInWorld.setRotation(btQuaternion( m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 0], m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 1], m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 2], m_createBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 3])); return true; } virtual void setRootTransformInWorld(const btTransform& rootTransformInWorld) { b3Assert(0); } virtual int convertLinkVisualShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const { int graphicsIndex = -1; double globalScaling = 1.f; //todo! int flags = 0; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags); u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer); btAlignedObjectArray vertices; btAlignedObjectArray indices; btTransform startTrans; startTrans.setIdentity(); btAlignedObjectArray textures; if (m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] >= 0) { InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[linkIndex]); if (visHandle) { if (visHandle->m_OpenGLGraphicsIndex >= 0) { //instancing. assume the inertial frame is identical graphicsIndex = visHandle->m_OpenGLGraphicsIndex; } else { for (int v = 0; v < visHandle->m_visualShapes.size(); v++) { b3ImportMeshData meshData; u2b.convertURDFToVisualShapeInternal(&visHandle->m_visualShapes[v], pathPrefix, localInertiaFrame.inverse() * visHandle->m_visualShapes[v].m_linkLocalFrame, vertices, indices, textures, meshData); if ((meshData.m_flags & B3_IMPORT_MESH_HAS_RGBA_COLOR) && (meshData.m_flags & B3_IMPORT_MESH_HAS_SPECULAR_COLOR)) { UrdfMaterialColor matCol; matCol.m_rgbaColor.setValue(meshData.m_rgbaColor[0], meshData.m_rgbaColor[1], meshData.m_rgbaColor[2], meshData.m_rgbaColor[3]); matCol.m_specularColor.setValue(meshData.m_specularColor[0], meshData.m_specularColor[1], meshData.m_specularColor[2]); m_linkColors.insert(linkIndex, matCol); } } if (vertices.size() && indices.size()) { if (1) { int textureIndex = -1; if (textures.size()) { textureIndex = m_data->m_guiHelper->registerTexture(textures[0].textureData1, textures[0].m_width, textures[0].m_height); } { B3_PROFILE("registerGraphicsShape"); graphicsIndex = m_data->m_guiHelper->registerGraphicsShape(&vertices[0].xyzw[0], vertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, textureIndex); visHandle->m_OpenGLGraphicsIndex = graphicsIndex; } } } } } } return graphicsIndex; } virtual void convertLinkVisualShapes2(int linkIndex, int urdfIndex, const char* pathPrefix, const btTransform& localInertiaFrame, class btCollisionObject* colObj, int bodyUniqueId) const { //if there is a visual, use it, otherwise convert collision shape back into UrdfCollision... UrdfModel model; // = m_data->m_urdfParser.getModel(); UrdfLink link; if (m_createBodyArgs.m_linkVisualShapeUniqueIds[urdfIndex] >= 0) { const InternalVisualShapeHandle* visHandle = m_data->m_userVisualShapeHandles.getHandle(m_createBodyArgs.m_linkVisualShapeUniqueIds[urdfIndex]); if (visHandle) { for (int i = 0; i < visHandle->m_visualShapes.size(); i++) { link.m_visualArray.push_back(visHandle->m_visualShapes[i]); } } } if (link.m_visualArray.size() == 0) { int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[urdfIndex]; if (colShapeUniqueId >= 0) { InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId); if (handle) { for (int i = 0; i < handle->m_urdfCollisionObjects.size(); i++) { link.m_collisionArray.push_back(handle->m_urdfCollisionObjects[i]); } } } } //UrdfVisual vis; //link.m_visualArray.push_back(vis); //UrdfLink*const* linkPtr = model.m_links.getAtIndex(urdfIndex); if (m_data->m_pluginManager.getRenderInterface()) { CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); int visualShapeUniqueid = m_data->m_pluginManager.getRenderInterface()->convertVisualShapes(linkIndex, pathPrefix, localInertiaFrame, &link, &model, colObj->getBroadphaseHandle()->getUid(), bodyUniqueId, fileIO); colObj->setUserIndex3(visualShapeUniqueid); } } virtual void setBodyUniqueId(int bodyId) { m_bodyUniqueId = bodyId; } virtual int getBodyUniqueId() const { return m_bodyUniqueId; } //default implementation for backward compatibility virtual class btCompoundShape* convertLinkCollisionShapes(int linkIndex, const char* pathPrefix, const btTransform& localInertiaFrame) const { btCompoundShape* compound = new btCompoundShape(); int colShapeUniqueId = m_createBodyArgs.m_linkCollisionShapeUniqueIds[linkIndex]; if (colShapeUniqueId >= 0) { InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(colShapeUniqueId); if (handle && handle->m_collisionShape) { handle->m_used++; if (handle->m_collisionShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { btCompoundShape* childCompound = (btCompoundShape*)handle->m_collisionShape; for (int c = 0; c < childCompound->getNumChildShapes(); c++) { btTransform childTrans = childCompound->getChildTransform(c); btCollisionShape* childShape = childCompound->getChildShape(c); btTransform tr = localInertiaFrame.inverse() * childTrans; compound->addChildShape(tr, childShape); } } else { btTransform childTrans; childTrans.setIdentity(); compound->addChildShape(localInertiaFrame.inverse() * childTrans, handle->m_collisionShape); } } } m_allocatedCollisionShapes.push_back(compound); return compound; } virtual int getNumAllocatedCollisionShapes() const { return m_allocatedCollisionShapes.size(); } virtual class btCollisionShape* getAllocatedCollisionShape(int index) { return m_allocatedCollisionShapes[index]; } virtual int getNumModels() const { return 1; } virtual void activateModel(int /*modelIndex*/) { } }; btDeformableMultiBodyDynamicsWorld* PhysicsServerCommandProcessor::getDeformableWorld() { btDeformableMultiBodyDynamicsWorld* world = 0; if (m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getWorldType()== BT_DEFORMABLE_MULTIBODY_DYNAMICS_WORLD) { world = (btDeformableMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld; } return world; } btSoftMultiBodyDynamicsWorld* PhysicsServerCommandProcessor::getSoftWorld() { btSoftMultiBodyDynamicsWorld* world = 0; if (m_data->m_dynamicsWorld && m_data->m_dynamicsWorld->getWorldType()== BT_SOFT_MULTIBODY_DYNAMICS_WORLD) { world = (btSoftMultiBodyDynamicsWorld*) m_data->m_dynamicsWorld; } return world; } void PhysicsServerCommandProcessor::createEmptyDynamicsWorld(int flags) { m_data->m_constraintSolverType = eConstraintSolverLCP_SI; ///collision configuration contains default setup for memory, collision setup //m_collisionConfiguration->setConvexConvexMultipointIterations(); #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD m_data->m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration(); #else m_data->m_collisionConfiguration = new btDefaultCollisionConfiguration(); #endif ///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_data->m_dispatcher = new btCollisionDispatcher(m_data->m_collisionConfiguration); m_data->m_broadphaseCollisionFilterCallback = new MyOverlapFilterCallback(&m_data->m_pluginManager); m_data->m_broadphaseCollisionFilterCallback->m_filterMode = B3_FILTER_GROUPAMASKB_OR_GROUPBMASKA; m_data->m_pairCache = new btHashedOverlappingPairCache(); m_data->m_pairCache->setOverlapFilterCallback(m_data->m_broadphaseCollisionFilterCallback); //int maxProxies = 32768; if (flags&RESET_USE_SIMPLE_BROADPHASE) { m_data->m_broadphase = new btSimpleBroadphase(65536, m_data->m_pairCache); } else { btDbvtBroadphase* bv = new btDbvtBroadphase(m_data->m_pairCache); bv->setVelocityPrediction(0); m_data->m_broadphase = bv; } if (flags & RESET_USE_DEFORMABLE_WORLD) { #ifndef SKIP_DEFORMABLE_BODY m_data->m_deformablebodySolver = new btDeformableBodySolver(); btDeformableMultiBodyConstraintSolver* solver = new btDeformableMultiBodyConstraintSolver; m_data->m_solver = solver; solver->setDeformableSolver(m_data->m_deformablebodySolver); m_data->m_dynamicsWorld = new btDeformableMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, solver, m_data->m_collisionConfiguration, m_data->m_deformablebodySolver); #endif } if ((0==m_data->m_dynamicsWorld) && (0==(flags&RESET_USE_DISCRETE_DYNAMICS_WORLD))) { m_data->m_solver = new btMultiBodyConstraintSolver; #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD m_data->m_dynamicsWorld = new btSoftMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration); #else m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration); #endif } if (0==m_data->m_dynamicsWorld) { m_data->m_solver = new btMultiBodyConstraintSolver; m_data->m_dynamicsWorld = new btMultiBodyDynamicsWorld(m_data->m_dispatcher, m_data->m_broadphase, m_data->m_solver, m_data->m_collisionConfiguration); } //Workaround: in a VR application, where we avoid synchronizing between GFX/Physics threads, we don't want to resize this array, so pre-allocate it m_data->m_dynamicsWorld->getCollisionObjectArray().reserve(128 * 1024); m_data->m_remoteDebugDrawer = new SharedMemoryDebugDrawer(); m_data->m_dynamicsWorld->setGravity(btVector3(0, 0, 0)); m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = 0.08; m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = 0.2; //need to check if there are artifacts with frictionERP m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = 0.00001; m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = 50; m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = 0; m_data->m_dynamicsWorld->getSolverInfo().m_warmstartingFactor = 0.1; gDbvtMargin = btScalar(0); m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = 1e-7; if (m_data->m_guiHelper) { m_data->m_guiHelper->createPhysicsDebugDrawer(m_data->m_dynamicsWorld); } bool isPreTick = false; m_data->m_dynamicsWorld->setInternalTickCallback(logCallback, this, isPreTick); isPreTick = true; m_data->m_dynamicsWorld->setInternalTickCallback(preTickCallback, this, isPreTick); gContactAddedCallback = MyContactAddedCallback; #ifdef B3_ENABLE_TINY_AUDIO m_data->m_soundEngine.init(16, true); //we don't use those callbacks (yet), experimental // gContactDestroyedCallback = MyContactDestroyedCallback; // gContactProcessedCallback = MyContactProcessedCallback; // gContactStartedCallback = MyContactStartedCallback; // gContactEndedCallback = MyContactEndedCallback; #endif } void PhysicsServerCommandProcessor::deleteStateLoggers() { for (int i = 0; i < m_data->m_stateLoggers.size(); i++) { m_data->m_stateLoggers[i]->stop(); delete m_data->m_stateLoggers[i]; } m_data->m_stateLoggers.clear(); } void PhysicsServerCommandProcessor::deleteCachedInverseKinematicsBodies() { for (int i = 0; i < m_data->m_inverseKinematicsHelpers.size(); i++) { IKTrajectoryHelper** ikHelperPtr = m_data->m_inverseKinematicsHelpers.getAtIndex(i); if (ikHelperPtr) { IKTrajectoryHelper* ikHelper = *ikHelperPtr; delete ikHelper; } } m_data->m_inverseKinematicsHelpers.clear(); } void PhysicsServerCommandProcessor::deleteCachedInverseDynamicsBodies() { for (int i = 0; i < m_data->m_inverseDynamicsBodies.size(); i++) { btInverseDynamics::MultiBodyTree** treePtrPtr = m_data->m_inverseDynamicsBodies.getAtIndex(i); if (treePtrPtr) { btInverseDynamics::MultiBodyTree* tree = *treePtrPtr; delete tree; } } m_data->m_inverseDynamicsBodies.clear(); } void PhysicsServerCommandProcessor::deleteDynamicsWorld() { #ifdef B3_ENABLE_TINY_AUDIO m_data->m_soundEngine.exit(); //gContactDestroyedCallback = 0; //gContactProcessedCallback = 0; //gContactStartedCallback = 0; //gContactEndedCallback = 0; #endif deleteCachedInverseDynamicsBodies(); deleteCachedInverseKinematicsBodies(); deleteStateLoggers(); m_data->m_userConstraints.clear(); m_data->m_saveWorldBodyData.clear(); for (int i = 0; i < m_data->m_multiBodyJointFeedbacks.size(); i++) { delete m_data->m_multiBodyJointFeedbacks[i]; } m_data->m_multiBodyJointFeedbacks.clear(); for (int i = 0; i < m_data->m_worldImporters.size(); i++) { m_data->m_worldImporters[i]->deleteAllData(); delete m_data->m_worldImporters[i]; } m_data->m_worldImporters.clear(); #ifdef ENABLE_LINK_MAPPER for (int i = 0; i < m_data->m_urdfLinkNameMapper.size(); i++) { delete m_data->m_urdfLinkNameMapper[i]; } m_data->m_urdfLinkNameMapper.clear(); #endif //ENABLE_LINK_MAPPER for (int i = 0; i < m_data->m_strings.size(); i++) { delete m_data->m_strings[i]; } m_data->m_strings.clear(); btAlignedObjectArray constraints; btAlignedObjectArray mbconstraints; if (m_data->m_dynamicsWorld) { int i; for (i = m_data->m_dynamicsWorld->getNumConstraints() - 1; i >= 0; i--) { btTypedConstraint* constraint = m_data->m_dynamicsWorld->getConstraint(i); constraints.push_back(constraint); m_data->m_dynamicsWorld->removeConstraint(constraint); } for (i = m_data->m_dynamicsWorld->getNumMultiBodyConstraints() - 1; i >= 0; i--) { btMultiBodyConstraint* mbconstraint = m_data->m_dynamicsWorld->getMultiBodyConstraint(i); mbconstraints.push_back(mbconstraint); m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbconstraint); } for (i = m_data->m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--) { btCollisionObject* obj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) { delete body->getMotionState(); } m_data->m_dynamicsWorld->removeCollisionObject(obj); delete obj; } for (i = m_data->m_dynamicsWorld->getNumMultibodies() - 1; i >= 0; i--) { btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i); m_data->m_dynamicsWorld->removeMultiBody(mb); delete mb; } #ifndef SKIP_DEFORMABLE_BODY for (int j = 0; j < m_data->m_lf.size(); j++) { btDeformableLagrangianForce* force = m_data->m_lf[j]; delete force; } m_data->m_lf.clear(); #endif #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { for (i =softWorld->getSoftBodyArray().size() - 1; i >= 0; i--) { btSoftBody* sb =softWorld->getSoftBodyArray()[i]; softWorld->removeSoftBody(sb); delete sb; } } } #endif//SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD #ifndef SKIP_DEFORMABLE_BODY { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { for (i =deformWorld->getSoftBodyArray().size() - 1; i >= 0; i--) { btSoftBody* sb =deformWorld->getSoftBodyArray()[i]; deformWorld->removeSoftBody(sb); delete sb; } } } #endif } for (int i = 0; i < constraints.size(); i++) { delete constraints[i]; } constraints.clear(); for (int i = 0; i < mbconstraints.size(); i++) { delete mbconstraints[i]; } mbconstraints.clear(); //delete collision shapes for (int j = 0; j < m_data->m_collisionShapes.size(); j++) { btCollisionShape* shape = m_data->m_collisionShapes[j]; //check for internal edge utility, delete memory if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE) { btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape; if (trimesh->getTriangleInfoMap()) { delete trimesh->getTriangleInfoMap(); } } if (shape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE) { btHeightfieldTerrainShape* terrain = (btHeightfieldTerrainShape*)shape; if (terrain->getTriangleInfoMap()) { delete terrain->getTriangleInfoMap(); } } delete shape; } for (int j = 0; j < m_data->m_heightfieldDatas.size(); j++) { delete[] m_data->m_heightfieldDatas[j]; } for (int j = 0; j < m_data->m_meshInterfaces.size(); j++) { delete m_data->m_meshInterfaces[j]; } if (m_data->m_guiHelper) { for (int j = 0; j < m_data->m_allocatedTextures.size(); j++) { int texId = m_data->m_allocatedTextures[j]; m_data->m_guiHelper->removeTexture(texId); } } m_data->m_heightfieldDatas.clear(); m_data->m_allocatedTextures.clear(); m_data->m_meshInterfaces.clear(); m_data->m_collisionShapes.clear(); m_data->m_bulletCollisionShape2UrdfCollision.clear(); m_data->m_graphicsIndexToSegmentationMask.clear(); delete m_data->m_dynamicsWorld; m_data->m_dynamicsWorld = 0; delete m_data->m_remoteDebugDrawer; m_data->m_remoteDebugDrawer = 0; #if !defined(SKIP_DEFORMABLE_BODY) && !defined(SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD) delete m_data->m_deformablebodySolver; m_data->m_deformablebodySolver = 0; #endif delete m_data->m_solver; m_data->m_solver = 0; delete m_data->m_broadphase; m_data->m_broadphase = 0; delete m_data->m_pairCache; m_data->m_pairCache = 0; delete m_data->m_broadphaseCollisionFilterCallback; m_data->m_broadphaseCollisionFilterCallback = 0; delete m_data->m_dispatcher; m_data->m_dispatcher = 0; delete m_data->m_collisionConfiguration; m_data->m_collisionConfiguration = 0; m_data->m_userConstraintUIDGenerator = 1; #ifdef STATIC_LINK_SPD_PLUGIN for (int i = 0; i < m_data->m_rbdModels.size(); i++) { delete *(m_data->m_rbdModels.getAtIndex(i)); } m_data->m_rbdModels.clear(); #endif //STATIC_LINK_SPD_PLUGIN } bool PhysicsServerCommandProcessor::supportsJointMotor(btMultiBody* mb, int mbLinkIndex) { bool canHaveMotor = (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eRevolute || mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::ePrismatic); return canHaveMotor; } //for testing, create joint motors for revolute and prismatic joints void PhysicsServerCommandProcessor::createJointMotors(btMultiBody* mb) { int numLinks = mb->getNumLinks(); for (int i = 0; i < numLinks; i++) { int mbLinkIndex = i; float maxMotorImpulse = 1.f; if (supportsJointMotor(mb, mbLinkIndex)) { int dof = 0; btScalar desiredVelocity = 0.f; btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb, mbLinkIndex, dof, desiredVelocity, maxMotorImpulse); motor->setPositionTarget(0, 0); motor->setVelocityTarget(0, 1); //motor->setRhsClamp(gRhsClamp); //motor->setMaxAppliedImpulse(0); mb->getLink(mbLinkIndex).m_userPtr = motor; m_data->m_dynamicsWorld->addMultiBodyConstraint(motor); motor->finalizeMultiDof(); } if (mb->getLink(mbLinkIndex).m_jointType == btMultibodyLink::eSpherical) { btMultiBodySphericalJointMotor* motor = new btMultiBodySphericalJointMotor(mb, mbLinkIndex, 1000 * maxMotorImpulse); mb->getLink(mbLinkIndex).m_userPtr = motor; m_data->m_dynamicsWorld->addMultiBodyConstraint(motor); motor->finalizeMultiDof(); } } } int PhysicsServerCommandProcessor::addUserData(int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key, const char* valueBytes, int valueLength, int valueType) { InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (!body) { return -1; } SharedMemoryUserDataHashKey userDataIdentifier(key, bodyUniqueId, linkIndex, visualShapeIndex); int* userDataHandlePtr = m_data->m_userDataHandleLookup.find(userDataIdentifier); int userDataHandle = userDataHandlePtr ? *userDataHandlePtr : m_data->m_userDataHandles.allocHandle(); SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(userDataHandle); if (!userData) { return -1; } if (!userDataHandlePtr) { userData->m_key = key; userData->m_bodyUniqueId = bodyUniqueId; userData->m_linkIndex = linkIndex; userData->m_visualShapeIndex = visualShapeIndex; m_data->m_userDataHandleLookup.insert(userDataIdentifier, userDataHandle); body->m_userDataHandles.push_back(userDataHandle); } userData->replaceValue(valueBytes, valueLength, valueType); return userDataHandle; } void PhysicsServerCommandProcessor::addUserData(const btHashMap& user_data_entries, int bodyUniqueId, int linkIndex, int visualShapeIndex) { for (int i = 0; i < user_data_entries.size(); ++i) { const std::string key = user_data_entries.getKeyAtIndex(i).m_string1; const std::string* value = user_data_entries.getAtIndex(i); if (value) { addUserData(bodyUniqueId, linkIndex, visualShapeIndex, key.c_str(), value->c_str(), value->size()+1, USER_DATA_VALUE_TYPE_STRING); } } } bool PhysicsServerCommandProcessor::processImportedObjects(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, URDFImporterInterface& u2b) { bool loadOk = true; btTransform rootTrans; rootTrans.setIdentity(); if (m_data->m_verboseOutput) { b3Printf("loaded %s OK!", fileName); } SaveWorldObjectData sd; sd.m_fileName = fileName; for (int m = 0; m < u2b.getNumModels(); m++) { u2b.activateModel(m); btMultiBody* mb = 0; btRigidBody* rb = 0; //get a body index int bodyUniqueId = m_data->m_bodyHandles.allocHandle(); InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); sd.m_bodyUniqueIds.push_back(bodyUniqueId); u2b.setBodyUniqueId(bodyUniqueId); { btScalar mass = 0; bodyHandle->m_rootLocalInertialFrame.setIdentity(); bodyHandle->m_bodyName = u2b.getBodyName(); btVector3 localInertiaDiagonal(0, 0, 0); int urdfLinkIndex = u2b.getRootLinkIndex(); u2b.getMassAndInertia2(urdfLinkIndex, mass, localInertiaDiagonal, bodyHandle->m_rootLocalInertialFrame, flags); } //todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user //int rootLinkIndex = u2b.getRootLinkIndex(); //b3Printf("urdf root link index = %d\n",rootLinkIndex); MyMultiBodyCreator creation(m_data->m_guiHelper); u2b.getRootTransformInWorld(rootTrans); //CUF_RESERVED is a temporary flag, for backward compatibility purposes flags |= CUF_RESERVED; if (flags & CUF_ENABLE_CACHED_GRAPHICS_SHAPES) { { UrdfVisualShapeCache* tmpPtr = m_data->m_cachedVUrdfisualShapes[fileName]; if (tmpPtr == 0) { m_data->m_cachedVUrdfisualShapes.insert(fileName, UrdfVisualShapeCache()); } } UrdfVisualShapeCache* cachedVisualShapesPtr = m_data->m_cachedVUrdfisualShapes[fileName]; ConvertURDF2Bullet(u2b, creation, rootTrans, m_data->m_dynamicsWorld, useMultiBody, u2b.getPathPrefix(), flags, cachedVisualShapesPtr); } else { ConvertURDF2Bullet(u2b, creation, rootTrans, m_data->m_dynamicsWorld, useMultiBody, u2b.getPathPrefix(), flags); } mb = creation.getBulletMultiBody(); rb = creation.getRigidBody(); if (rb) rb->setUserIndex2(bodyUniqueId); if (mb) mb->setUserIndex2(bodyUniqueId); if (mb) { bodyHandle->m_multiBody = mb; m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId); int segmentationMask = bodyUniqueId; { int graphicsIndex = -1; if (mb->getBaseCollider()) { graphicsIndex = mb->getBaseCollider()->getUserIndex(); } if (graphicsIndex >= 0) { if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1)) { m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1); } m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask; } } createJointMotors(mb); #ifdef B3_ENABLE_TINY_AUDIO { SDFAudioSource audioSource; int urdfRootLink = u2b.getRootLinkIndex(); //LinkIndex = creation.m_mb2urdfLink[-1]; if (u2b.getLinkAudioSource(urdfRootLink, audioSource)) { int flags = mb->getBaseCollider()->getCollisionFlags(); mb->getBaseCollider()->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER); audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str()); if (audioSource.m_userIndex >= 0) { bodyHandle->m_audioSources.insert(-1, audioSource); } } } #endif //disable serialization of the collision objects (they are too big, and the client likely doesn't need them); bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks()); for (int i = 0; i < mb->getNumLinks(); i++) { //disable serialization of the collision objects int urdfLinkIndex = creation.m_mb2urdfLink[i]; btScalar mass; btVector3 localInertiaDiagonal(0, 0, 0); btTransform localInertialFrame; u2b.getMassAndInertia2(urdfLinkIndex, mass, localInertiaDiagonal, localInertialFrame, flags); bodyHandle->m_linkLocalInertialFrames.push_back(localInertialFrame); std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str()); m_data->m_strings.push_back(linkName); mb->getLink(i).m_linkName = linkName->c_str(); { int graphicsIndex = -1; if (mb->getLinkCollider(i)) { graphicsIndex = mb->getLinkCollider(i)->getUserIndex(); } if (graphicsIndex >= 0) { int linkIndex = i; if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1)) { m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1); } int segmentationMask = bodyUniqueId + ((linkIndex + 1) << 24); m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask; } } std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str()); m_data->m_strings.push_back(jointName); mb->getLink(i).m_jointName = jointName->c_str(); #ifdef B3_ENABLE_TINY_AUDIO { SDFAudioSource audioSource; int urdfLinkIndex = creation.m_mb2urdfLink[link]; if (u2b.getLinkAudioSource(urdfLinkIndex, audioSource)) { int flags = mb->getLink(link).m_collider->getCollisionFlags(); mb->getLink(i).m_collider->setCollisionFlags(flags | btCollisionObject::CF_HAS_COLLISION_SOUND_TRIGGER); audioSource.m_userIndex = m_data->m_soundEngine.loadWavFile(audioSource.m_uri.c_str()); if (audioSource.m_userIndex >= 0) { bodyHandle->m_audioSources.insert(link, audioSource); } } } #endif } std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex())); m_data->m_strings.push_back(baseName); mb->setBaseName(baseName->c_str()); #if 0 btAlignedObjectArray urdf; mb->dumpUrdf(urdf); FILE* f = fopen("e:/pybullet.urdf", "w"); if (f) { fwrite(&urdf[0], urdf.size(), 1, f); fclose(f); } #endif } else { int segmentationMask = bodyUniqueId; if (rb) { int graphicsIndex = -1; { graphicsIndex = rb->getUserIndex(); } if (graphicsIndex >= 0) { if (m_data->m_graphicsIndexToSegmentationMask.size() < (graphicsIndex + 1)) { m_data->m_graphicsIndexToSegmentationMask.resize(graphicsIndex + 1); } m_data->m_graphicsIndexToSegmentationMask[graphicsIndex] = segmentationMask; } } //b3Warning("No multibody loaded from URDF. Could add btRigidBody+btTypedConstraint solution later."); bodyHandle->m_rigidBody = rb; rb->setUserIndex2(bodyUniqueId); m_data->m_sdfRecentLoadedBodies.push_back(bodyUniqueId); std::string* baseName = new std::string(u2b.getLinkName(u2b.getRootLinkIndex())); m_data->m_strings.push_back(baseName); bodyHandle->m_bodyName = *baseName; int numJoints = creation.getNum6DofConstraints(); bodyHandle->m_rigidBodyJoints.reserve(numJoints); bodyHandle->m_rigidBodyJointNames.reserve(numJoints); bodyHandle->m_rigidBodyLinkNames.reserve(numJoints); for (int i = 0; i < numJoints; i++) { int urdfLinkIndex = creation.m_mb2urdfLink[i]; btGeneric6DofSpring2Constraint* con = creation.get6DofConstraint(i); std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str()); m_data->m_strings.push_back(linkName); std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex).c_str()); m_data->m_strings.push_back(jointName); bodyHandle->m_rigidBodyJointNames.push_back(*jointName); bodyHandle->m_rigidBodyLinkNames.push_back(*linkName); bodyHandle->m_rigidBodyJoints.push_back(con); } } { if (m_data->m_pluginManager.getRenderInterface()) { int currentOpenGLTextureIndex = 0; int totalNumVisualShapes = m_data->m_pluginManager.getRenderInterface()->getNumVisualShapes(bodyUniqueId); for (int shapeIndex = 0; shapeIndex < totalNumVisualShapes; shapeIndex++) { b3VisualShapeData tmpShape; int success = m_data->m_pluginManager.getRenderInterface()->getVisualShapesData(bodyUniqueId, shapeIndex, &tmpShape); if (success) { if (tmpShape.m_tinyRendererTextureId >= 0) { int openglTextureUniqueId = -1; //find companion opengl texture unique id and create a 'textureUid' if (currentOpenGLTextureIndex < u2b.getNumAllocatedTextures()) { openglTextureUniqueId = u2b.getAllocatedTexture(currentOpenGLTextureIndex++); } //if (openglTextureUniqueId>=0) { int texHandle = m_data->m_textureHandles.allocHandle(); InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle); if (texH) { texH->m_tinyRendererTextureId = tmpShape.m_tinyRendererTextureId; texH->m_openglTextureId = openglTextureUniqueId; } } } } } } } const UrdfModel* urdfModel = u2b.getUrdfModel(); if (urdfModel) { addUserData(urdfModel->m_userData, bodyUniqueId); for (int linkIndex = 0; linkIndex < urdfModel->m_links.size(); ++linkIndex) { const UrdfLink* link = *urdfModel->m_links.getAtIndex(linkIndex); addUserData(link->m_userData, bodyUniqueId, linkIndex - 1); for (int visualShapeIndex = 0; visualShapeIndex < link->m_visualArray.size(); ++visualShapeIndex) { addUserData(link->m_visualArray.at(visualShapeIndex).m_userData, bodyUniqueId, linkIndex - 1, visualShapeIndex); } } } b3Notification notification; notification.m_notificationType = BODY_ADDED; notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId; m_data->m_pluginManager.addNotification(notification); } for (int i = 0; i < u2b.getNumAllocatedTextures(); i++) { int texId = u2b.getAllocatedTexture(i); m_data->m_allocatedTextures.push_back(texId); } /* int texHandle = m_data->m_textureHandles.allocHandle(); InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle); if(texH) { texH->m_tinyRendererTextureId = -1; texH->m_openglTextureId = -1; */ for (int i = 0; i < u2b.getNumAllocatedMeshInterfaces(); i++) { m_data->m_meshInterfaces.push_back(u2b.getAllocatedMeshInterface(i)); } for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++) { btCollisionShape* shape = u2b.getAllocatedCollisionShape(i); m_data->m_collisionShapes.push_back(shape); UrdfCollision urdfCollision; if (u2b.getUrdfFromCollisionShape(shape, urdfCollision)) { m_data->m_bulletCollisionShape2UrdfCollision.insert(shape, urdfCollision); } if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE) { btCompoundShape* compound = (btCompoundShape*)shape; for (int c = 0; c < compound->getNumChildShapes(); c++) { btCollisionShape* childShape = compound->getChildShape(c); if (u2b.getUrdfFromCollisionShape(childShape, urdfCollision)) { m_data->m_bulletCollisionShape2UrdfCollision.insert(childShape, urdfCollision); } } } } m_data->m_saveWorldBodyData.push_back(sd); syncPhysicsToGraphics2(); return loadOk; } struct MyMJCFLogger2 : public MJCFErrorLogger { virtual void reportError(const char* error) { b3Error(error); } virtual void reportWarning(const char* warning) { b3Warning(warning); } virtual void printMessage(const char* msg) { b3Printf(msg); } }; bool PhysicsServerCommandProcessor::loadMjcf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags) { btAssert(m_data->m_dynamicsWorld); if (!m_data->m_dynamicsWorld) { b3Error("loadSdf: No valid m_dynamicsWorld"); return false; } m_data->m_sdfRecentLoadedBodies.clear(); CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); BulletMJCFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, flags); bool useFixedBase = false; MyMJCFLogger2 logger; bool loadOk = u2b.loadMJCF(fileName, &logger, useFixedBase); if (loadOk) { processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b); } return loadOk; } bool PhysicsServerCommandProcessor::loadSdf(const char* fileName, char* bufferServerToClient, int bufferSizeInBytes, bool useMultiBody, int flags, btScalar globalScaling) { btAssert(m_data->m_dynamicsWorld); if (!m_data->m_dynamicsWorld) { b3Error("loadSdf: No valid m_dynamicsWorld"); return false; } m_data->m_sdfRecentLoadedBodies.clear(); CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags); u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer); bool forceFixedBase = false; bool loadOk = u2b.loadSDF(fileName, forceFixedBase); if (loadOk) { processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b); } return loadOk; } bool PhysicsServerCommandProcessor::loadUrdf(const char* fileName, const btVector3& pos, const btQuaternion& orn, bool useMultiBody, bool useFixedBase, int* bodyUniqueIdPtr, char* bufferServerToClient, int bufferSizeInBytes, int orgFlags, btScalar globalScaling) { //clear the LOAD_SDF_FILE=1 bit, which is reserved for internal use of loadSDF command. int flags = orgFlags & ~1; m_data->m_sdfRecentLoadedBodies.clear(); *bodyUniqueIdPtr = -1; BT_PROFILE("loadURDF"); btAssert(m_data->m_dynamicsWorld); if (!m_data->m_dynamicsWorld) { b3Error("loadUrdf: No valid m_dynamicsWorld"); return false; } CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags); u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer); bool loadOk = u2b.loadURDF(fileName, useFixedBase); if (loadOk) { btTransform rootTrans; rootTrans.setOrigin(pos); rootTrans.setRotation(orn); u2b.setRootTransformInWorld(rootTrans); if (!(u2b.getDeformableModel().m_visualFileName.empty())) { bool use_self_collision = false; use_self_collision = (flags & CUF_USE_SELF_COLLISION); return processDeformable(u2b.getDeformableModel(), pos, orn, bodyUniqueIdPtr, bufferServerToClient, bufferSizeInBytes, globalScaling, use_self_collision); } bool ok = processImportedObjects(fileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b); if (ok) { if (m_data->m_sdfRecentLoadedBodies.size() == 1) { *bodyUniqueIdPtr = m_data->m_sdfRecentLoadedBodies[0]; } m_data->m_sdfRecentLoadedBodies.clear(); } return ok; } return false; } void PhysicsServerCommandProcessor::replayLogCommand(char* bufferServerToClient, int bufferSizeInBytes) { if (m_data->m_logPlayback) { SharedMemoryCommand clientCmd; SharedMemoryStatus serverStatus; bool hasCommand = m_data->m_logPlayback->processNextCommand(&clientCmd); if (hasCommand) { processCommand(clientCmd, serverStatus, bufferServerToClient, bufferSizeInBytes); } } } int PhysicsServerCommandProcessor::createBodyInfoStream(int bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes) { int streamSizeInBytes = 0; //serialize the btMultiBody and send the data to the client. This is one way to get the link/joint names across the (shared memory) wire InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (!bodyHandle) return 0; if (bodyHandle->m_multiBody) { btMultiBody* mb = bodyHandle->m_multiBody; btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient); ser.startSerialization(); //disable serialization of the collision objects (they are too big, and the client likely doesn't need them); ser.m_skipPointers.insert(mb->getBaseCollider(), 0); if (mb->getBaseName()) { ser.registerNameForPointer(mb->getBaseName(), mb->getBaseName()); } bodyHandle->m_linkLocalInertialFrames.reserve(mb->getNumLinks()); for (int i = 0; i < mb->getNumLinks(); i++) { //disable serialization of the collision objects ser.m_skipPointers.insert(mb->getLink(i).m_collider, 0); ser.registerNameForPointer(mb->getLink(i).m_linkName, mb->getLink(i).m_linkName); ser.registerNameForPointer(mb->getLink(i).m_jointName, mb->getLink(i).m_jointName); } ser.registerNameForPointer(mb->getBaseName(), mb->getBaseName()); int len = mb->calculateSerializeBufferSize(); btChunk* chunk = ser.allocate(len, 1); const char* structType = mb->serialize(chunk->m_oldPtr, &ser); ser.finalizeChunk(chunk, structType, BT_MULTIBODY_CODE, mb); streamSizeInBytes = ser.getCurrentBufferSize(); } else if (bodyHandle->m_rigidBody) { btRigidBody* rb = bodyHandle->m_rigidBody; btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient); ser.startSerialization(); ser.registerNameForPointer(bodyHandle->m_rigidBody, bodyHandle->m_bodyName.c_str()); //disable serialization of the collision objects (they are too big, and the client likely doesn't need them); for (int i = 0; i < bodyHandle->m_rigidBodyJoints.size(); i++) { const btGeneric6DofSpring2Constraint* con = bodyHandle->m_rigidBodyJoints.at(i); ser.registerNameForPointer(con, bodyHandle->m_rigidBodyJointNames[i].c_str()); ser.registerNameForPointer(&con->getRigidBodyB(), bodyHandle->m_rigidBodyLinkNames[i].c_str()); const btRigidBody& bodyA = con->getRigidBodyA(); int len = con->calculateSerializeBufferSize(); btChunk* chunk = ser.allocate(len, 1); const char* structType = con->serialize(chunk->m_oldPtr, &ser); ser.finalizeChunk(chunk, structType, BT_CONSTRAINT_CODE, (void*)con); } streamSizeInBytes = ser.getCurrentBufferSize(); } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD else if (bodyHandle->m_softBody) { //minimum serialization, registerNameForPointer btSoftBody* sb = bodyHandle->m_softBody; btDefaultSerializer ser(bufferSizeInBytes, (unsigned char*)bufferServerToClient); ser.startSerialization(); int len = sb->calculateSerializeBufferSize(); btChunk* chunk = ser.allocate(len, 1); const char* structType = sb->serialize(chunk->m_oldPtr, &ser); ser.finalizeChunk(chunk, structType, BT_SOFTBODY_CODE, sb); streamSizeInBytes = ser.getCurrentBufferSize(); } #endif return streamSizeInBytes; } bool PhysicsServerCommandProcessor::processStateLoggingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("CMD_STATE_LOGGING"); serverStatusOut.m_type = CMD_STATE_LOGGING_FAILED; bool hasStatus = true; if (clientCmd.m_updateFlags & STATE_LOGGING_START_LOG) { if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_ALL_COMMANDS) { if (m_data->m_commandLogger == 0) { enableCommandLogging(true, clientCmd.m_stateLoggingArguments.m_fileName); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; int loggerUid = m_data->m_stateLoggersUniqueId++; m_data->m_commandLoggingUid = loggerUid; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_REPLAY_ALL_COMMANDS) { if (m_data->m_logPlayback == 0) { replayFromLogFile(clientCmd.m_stateLoggingArguments.m_fileName); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; int loggerUid = m_data->m_stateLoggersUniqueId++; m_data->m_logPlaybackUid = loggerUid; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_PROFILE_TIMINGS) { if (m_data->m_profileTimingLoggingUid < 0) { b3ChromeUtilsStartTimings(); m_data->m_profileTimingFileName = clientCmd.m_stateLoggingArguments.m_fileName; int loggerUid = m_data->m_stateLoggersUniqueId++; serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; m_data->m_profileTimingLoggingUid = loggerUid; } } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VIDEO_MP4) { //if (clientCmd.m_stateLoggingArguments.m_fileName) { int loggerUid = m_data->m_stateLoggersUniqueId++; VideoMP4Loggger* logger = new VideoMP4Loggger(loggerUid, clientCmd.m_stateLoggingArguments.m_fileName, this->m_data->m_guiHelper); m_data->m_stateLoggers.push_back(logger); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_MINITAUR) { std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName; //either provide the minitaur by object unique Id, or search for first multibody with 8 motors... if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds > 0)) { int bodyUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[0]; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body) { if (body->m_multiBody) { btAlignedObjectArray motorNames; motorNames.push_back("motor_front_leftR_joint"); motorNames.push_back("motor_front_leftL_joint"); motorNames.push_back("motor_back_leftR_joint"); motorNames.push_back("motor_back_leftL_joint"); motorNames.push_back("motor_front_rightL_joint"); motorNames.push_back("motor_front_rightR_joint"); motorNames.push_back("motor_back_rightL_joint"); motorNames.push_back("motor_back_rightR_joint"); btAlignedObjectArray motorIdList; for (int m = 0; m < motorNames.size(); m++) { for (int i = 0; i < body->m_multiBody->getNumLinks(); i++) { std::string jointName; if (body->m_multiBody->getLink(i).m_jointName) { jointName = body->m_multiBody->getLink(i).m_jointName; } if (motorNames[m] == jointName) { motorIdList.push_back(i); } } } if (motorIdList.size() == 8) { int loggerUid = m_data->m_stateLoggersUniqueId++; MinitaurStateLogger* logger = new MinitaurStateLogger(loggerUid, fileName, body->m_multiBody, motorIdList); m_data->m_stateLoggers.push_back(logger); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } } } } } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_GENERIC_ROBOT) { std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName; int loggerUid = m_data->m_stateLoggersUniqueId++; int maxLogDof = 12; if ((clientCmd.m_updateFlags & STATE_LOGGING_MAX_LOG_DOF)) { maxLogDof = clientCmd.m_stateLoggingArguments.m_maxLogDof; } int logFlags = 0; if (clientCmd.m_updateFlags & STATE_LOGGING_LOG_FLAGS) { logFlags = clientCmd.m_stateLoggingArguments.m_logFlags; } GenericRobotStateLogger* logger = new GenericRobotStateLogger(loggerUid, fileName, m_data->m_dynamicsWorld, maxLogDof, logFlags); if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID) && (clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds > 0)) { logger->m_filterObjectUniqueId = true; for (int i = 0; i < clientCmd.m_stateLoggingArguments.m_numBodyUniqueIds; ++i) { int objectUniqueId = clientCmd.m_stateLoggingArguments.m_bodyUniqueIds[i]; logger->m_bodyIdList.push_back(objectUniqueId); } } m_data->m_stateLoggers.push_back(logger); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_CONTACT_POINTS) { std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName; int loggerUid = m_data->m_stateLoggersUniqueId++; ContactPointsStateLogger* logger = new ContactPointsStateLogger(loggerUid, fileName, m_data->m_dynamicsWorld); if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_A) && clientCmd.m_stateLoggingArguments.m_linkIndexA >= -1) { logger->m_filterLinkA = true; logger->m_linkIndexA = clientCmd.m_stateLoggingArguments.m_linkIndexA; } if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_LINK_INDEX_B) && clientCmd.m_stateLoggingArguments.m_linkIndexB >= -1) { logger->m_filterLinkB = true; logger->m_linkIndexB = clientCmd.m_stateLoggingArguments.m_linkIndexB; } if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA > -1) { logger->m_bodyUniqueIdA = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdA; } if ((clientCmd.m_updateFlags & STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B) && clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB > -1) { logger->m_bodyUniqueIdB = clientCmd.m_stateLoggingArguments.m_bodyUniqueIdB; } m_data->m_stateLoggers.push_back(logger); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } if (clientCmd.m_stateLoggingArguments.m_logType == STATE_LOGGING_VR_CONTROLLERS) { std::string fileName = clientCmd.m_stateLoggingArguments.m_fileName; int loggerUid = m_data->m_stateLoggersUniqueId++; int deviceFilterType = VR_DEVICE_CONTROLLER; if (clientCmd.m_updateFlags & STATE_LOGGING_FILTER_DEVICE_TYPE) { deviceFilterType = clientCmd.m_stateLoggingArguments.m_deviceFilterType; } VRControllerStateLogger* logger = new VRControllerStateLogger(loggerUid, deviceFilterType, fileName); m_data->m_stateLoggers.push_back(logger); serverStatusOut.m_type = CMD_STATE_LOGGING_START_COMPLETED; serverStatusOut.m_stateLoggingResultArgs.m_loggingUniqueId = loggerUid; } } if ((clientCmd.m_updateFlags & STATE_LOGGING_STOP_LOG) && clientCmd.m_stateLoggingArguments.m_loggingUniqueId >= 0) { if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_logPlaybackUid) { if (m_data->m_logPlayback) { delete m_data->m_logPlayback; m_data->m_logPlayback = 0; m_data->m_logPlaybackUid = -1; } } if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_commandLoggingUid) { if (m_data->m_commandLogger) { enableCommandLogging(false, 0); serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED; m_data->m_commandLoggingUid = -1; } } if (clientCmd.m_stateLoggingArguments.m_loggingUniqueId == m_data->m_profileTimingLoggingUid) { serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED; b3ChromeUtilsStopTimingsAndWriteJsonFile(m_data->m_profileTimingFileName.c_str()); m_data->m_profileTimingLoggingUid = -1; } else { serverStatusOut.m_type = CMD_STATE_LOGGING_COMPLETED; for (int i = 0; i < m_data->m_stateLoggers.size(); i++) { if (m_data->m_stateLoggers[i]->m_loggingUniqueId == clientCmd.m_stateLoggingArguments.m_loggingUniqueId) { m_data->m_stateLoggers[i]->stop(); delete m_data->m_stateLoggers[i]; m_data->m_stateLoggers.removeAtIndex(i); } } } } return hasStatus; } bool PhysicsServerCommandProcessor::processRequestCameraImageCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_CAMERA_IMAGE_DATA"); int startPixelIndex = clientCmd.m_requestPixelDataArguments.m_startPixelIndex; int width = clientCmd.m_requestPixelDataArguments.m_pixelWidth; int height = clientCmd.m_requestPixelDataArguments.m_pixelHeight; int numPixelsCopied = 0; if ((clientCmd.m_requestPixelDataArguments.m_startPixelIndex == 0) && (clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT) != 0) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->setWidthAndHeight(clientCmd.m_requestPixelDataArguments.m_pixelWidth, clientCmd.m_requestPixelDataArguments.m_pixelHeight); } } int flags = 0; if (clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_FLAGS) { flags = clientCmd.m_requestPixelDataArguments.m_flags; } if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->setFlags(flags); } int numTotalPixels = width * height; int numRemainingPixels = numTotalPixels - startPixelIndex; if (numRemainingPixels > 0) { int totalBytesPerPixel = 4 + 4 + 4; //4 for rgb, 4 for depth, 4 for segmentation mask int maxNumPixels = bufferSizeInBytes / totalBytesPerPixel - 1; unsigned char* pixelRGBA = (unsigned char*)bufferServerToClient; int numRequestedPixels = btMin(maxNumPixels, numRemainingPixels); float* depthBuffer = (float*)(bufferServerToClient + numRequestedPixels * 4); int* segmentationMaskBuffer = (int*)(bufferServerToClient + numRequestedPixels * 8); serverStatusOut.m_numDataStreamBytes = numRequestedPixels * totalBytesPerPixel; float viewMat[16]; float projMat[16]; float projTextureViewMat[16]; float projTextureProjMat[16]; for (int i = 0; i < 16; i++) { viewMat[i] = clientCmd.m_requestPixelDataArguments.m_viewMatrix[i]; projMat[i] = clientCmd.m_requestPixelDataArguments.m_projectionMatrix[i]; } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES) == 0) { b3OpenGLVisualizerCameraInfo tmpCamResult; bool result = this->m_data->m_guiHelper->getCameraInfo( &tmpCamResult.m_width, &tmpCamResult.m_height, tmpCamResult.m_viewMatrix, tmpCamResult.m_projectionMatrix, tmpCamResult.m_camUp, tmpCamResult.m_camForward, tmpCamResult.m_horizontal, tmpCamResult.m_vertical, &tmpCamResult.m_yaw, &tmpCamResult.m_pitch, &tmpCamResult.m_dist, tmpCamResult.m_target); if (result) { for (int i = 0; i < 16; i++) { viewMat[i] = tmpCamResult.m_viewMatrix[i]; projMat[i] = tmpCamResult.m_projectionMatrix[i]; } } } bool handled = false; if ((clientCmd.m_updateFlags & ER_BULLET_HARDWARE_OPENGL) != 0) { if ((flags & ER_USE_PROJECTIVE_TEXTURE) != 0) { this->m_data->m_guiHelper->setProjectiveTexture(true); if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES) != 0) { for (int i = 0; i < 16; i++) { projTextureViewMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i]; projTextureProjMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i]; } } else // If no specified matrices for projective texture, then use the camera matrices. { for (int i = 0; i < 16; i++) { projTextureViewMat[i] = viewMat[i]; projTextureProjMat[i] = projMat[i]; } } this->m_data->m_guiHelper->setProjectiveTextureMatrices(projTextureViewMat, projTextureProjMat); } else { this->m_data->m_guiHelper->setProjectiveTexture(false); } if ((flags & ER_NO_SEGMENTATION_MASK) != 0) { segmentationMaskBuffer = 0; } m_data->m_guiHelper->copyCameraImageData(viewMat, projMat, pixelRGBA, numRequestedPixels, depthBuffer, numRequestedPixels, segmentationMaskBuffer, numRequestedPixels, startPixelIndex, width, height, &numPixelsCopied); if (numPixelsCopied > 0) { //convert segmentation mask if (segmentationMaskBuffer) { for (int i = 0; i < numPixelsCopied; i++) { int graphicsSegMask = segmentationMaskBuffer[i]; int segMask = -1; if ((graphicsSegMask >= 0) && (graphicsSegMask < m_data->m_graphicsIndexToSegmentationMask.size())) { segMask = m_data->m_graphicsIndexToSegmentationMask[graphicsSegMask]; } if ((flags & ER_SEGMENTATION_MASK_OBJECT_AND_LINKINDEX) == 0) { if (segMask >= 0) { segMask &= ((1 << 24) - 1); } } segmentationMaskBuffer[i] = segMask; } } handled = true; m_data->m_guiHelper->debugDisplayCameraImageData(viewMat, projMat, pixelRGBA, numRequestedPixels, depthBuffer, numRequestedPixels, segmentationMaskBuffer, numRequestedPixels, startPixelIndex, width, height, &numPixelsCopied); } } if (!handled) { if (m_data->m_pluginManager.getRenderInterface()) { if (clientCmd.m_requestPixelDataArguments.m_startPixelIndex == 0) { // printf("-------------------------------\nRendering\n"); if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightDirection(clientCmd.m_requestPixelDataArguments.m_lightDirection[0], clientCmd.m_requestPixelDataArguments.m_lightDirection[1], clientCmd.m_requestPixelDataArguments.m_lightDirection[2]); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightColor(clientCmd.m_requestPixelDataArguments.m_lightColor[0], clientCmd.m_requestPixelDataArguments.m_lightColor[1], clientCmd.m_requestPixelDataArguments.m_lightColor[2]); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightDistance(clientCmd.m_requestPixelDataArguments.m_lightDistance); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SHADOW) != 0) { m_data->m_pluginManager.getRenderInterface()->setShadow((clientCmd.m_requestPixelDataArguments.m_hasShadow != 0)); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightAmbientCoeff(clientCmd.m_requestPixelDataArguments.m_lightAmbientCoeff); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightDiffuseCoeff(clientCmd.m_requestPixelDataArguments.m_lightDiffuseCoeff); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF) != 0) { m_data->m_pluginManager.getRenderInterface()->setLightSpecularCoeff(clientCmd.m_requestPixelDataArguments.m_lightSpecularCoeff); } for (int i = 0; i < m_data->m_dynamicsWorld->getNumCollisionObjects(); i++) { const btCollisionObject* colObj = m_data->m_dynamicsWorld->getCollisionObjectArray()[i]; m_data->m_pluginManager.getRenderInterface()->syncTransform(colObj->getUserIndex3(), colObj->getWorldTransform(), colObj->getCollisionShape()->getLocalScaling()); } if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES) != 0) { m_data->m_pluginManager.getRenderInterface()->render( clientCmd.m_requestPixelDataArguments.m_viewMatrix, clientCmd.m_requestPixelDataArguments.m_projectionMatrix); } else { b3OpenGLVisualizerCameraInfo tmpCamResult; bool result = this->m_data->m_guiHelper->getCameraInfo( &tmpCamResult.m_width, &tmpCamResult.m_height, tmpCamResult.m_viewMatrix, tmpCamResult.m_projectionMatrix, tmpCamResult.m_camUp, tmpCamResult.m_camForward, tmpCamResult.m_horizontal, tmpCamResult.m_vertical, &tmpCamResult.m_yaw, &tmpCamResult.m_pitch, &tmpCamResult.m_dist, tmpCamResult.m_target); if (result) { m_data->m_pluginManager.getRenderInterface()->render(tmpCamResult.m_viewMatrix, tmpCamResult.m_projectionMatrix); } else { m_data->m_pluginManager.getRenderInterface()->render(); } } } } if (m_data->m_pluginManager.getRenderInterface()) { if ((flags & ER_USE_PROJECTIVE_TEXTURE) != 0) { m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(true); if ((clientCmd.m_updateFlags & REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES) != 0) { for (int i = 0; i < 16; i++) { projTextureViewMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i]; projTextureProjMat[i] = clientCmd.m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i]; } } else // If no specified matrices for projective texture, then use the camera matrices. { for (int i = 0; i < 16; i++) { projTextureViewMat[i] = viewMat[i]; projTextureProjMat[i] = projMat[i]; } } m_data->m_pluginManager.getRenderInterface()->setProjectiveTextureMatrices(projTextureViewMat, projTextureProjMat); } else { m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(false); } if ((flags & ER_NO_SEGMENTATION_MASK) != 0) { segmentationMaskBuffer = 0; } m_data->m_pluginManager.getRenderInterface()->copyCameraImageData(pixelRGBA, numRequestedPixels, depthBuffer, numRequestedPixels, segmentationMaskBuffer, numRequestedPixels, startPixelIndex, &width, &height, &numPixelsCopied); m_data->m_pluginManager.getRenderInterface()->setProjectiveTexture(false); } m_data->m_guiHelper->debugDisplayCameraImageData(clientCmd.m_requestPixelDataArguments.m_viewMatrix, clientCmd.m_requestPixelDataArguments.m_projectionMatrix, pixelRGBA, numRequestedPixels, depthBuffer, numRequestedPixels, segmentationMaskBuffer, numRequestedPixels, startPixelIndex, width, height, &numPixelsCopied); } //each pixel takes 4 RGBA values and 1 float = 8 bytes } else { } serverStatusOut.m_type = CMD_CAMERA_IMAGE_COMPLETED; serverStatusOut.m_sendPixelDataArguments.m_numPixelsCopied = numPixelsCopied; serverStatusOut.m_sendPixelDataArguments.m_numRemainingPixels = numRemainingPixels - numPixelsCopied; serverStatusOut.m_sendPixelDataArguments.m_startingPixelIndex = startPixelIndex; serverStatusOut.m_sendPixelDataArguments.m_imageWidth = width; serverStatusOut.m_sendPixelDataArguments.m_imageHeight = height; return hasStatus; } bool PhysicsServerCommandProcessor::processSaveWorldCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = false; BT_PROFILE("CMD_SAVE_WORLD"); serverStatusOut.m_type = CMD_SAVE_WORLD_FAILED; ///this is a very rudimentary way to save the state of the world, for scene authoring ///many todo's, for example save the state of motor controllers etc. { //saveWorld(clientCmd.m_sdfArguments.m_sdfFileName); int constraintCount = 0; FILE* f = fopen(clientCmd.m_sdfArguments.m_sdfFileName, "w"); if (f) { char line[2048]; { sprintf(line, "import pybullet as p\n"); int len = strlen(line); fwrite(line, len, 1, f); } { sprintf(line, "cin = p.connect(p.SHARED_MEMORY)\n"); int len = strlen(line); fwrite(line, len, 1, f); } { sprintf(line, "if (cin < 0):\n"); int len = strlen(line); fwrite(line, len, 1, f); } { sprintf(line, " cin = p.connect(p.GUI)\n"); int len = strlen(line); fwrite(line, len, 1, f); } //for each objects ... for (int i = 0; i < m_data->m_saveWorldBodyData.size(); i++) { SaveWorldObjectData& sd = m_data->m_saveWorldBodyData[i]; for (int i = 0; i < sd.m_bodyUniqueIds.size(); i++) { { int bodyUniqueId = sd.m_bodyUniqueIds[i]; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body) { if (body->m_multiBody) { btMultiBody* mb = body->m_multiBody; btTransform comTr = mb->getBaseWorldTransform(); btTransform tr = comTr * body->m_rootLocalInertialFrame.inverse(); if (strstr(sd.m_fileName.c_str(), ".urdf")) { sprintf(line, "objects = [p.loadURDF(\"%s\", %f,%f,%f,%f,%f,%f,%f)]\n", sd.m_fileName.c_str(), tr.getOrigin()[0], tr.getOrigin()[1], tr.getOrigin()[2], tr.getRotation()[0], tr.getRotation()[1], tr.getRotation()[2], tr.getRotation()[3]); int len = strlen(line); fwrite(line, len, 1, f); } if (strstr(sd.m_fileName.c_str(), ".sdf") && i == 0) { sprintf(line, "objects = p.loadSDF(\"%s\")\n", sd.m_fileName.c_str()); int len = strlen(line); fwrite(line, len, 1, f); } if (strstr(sd.m_fileName.c_str(), ".xml") && i == 0) { sprintf(line, "objects = p.loadMJCF(\"%s\")\n", sd.m_fileName.c_str()); int len = strlen(line); fwrite(line, len, 1, f); } if (strstr(sd.m_fileName.c_str(), ".sdf") || strstr(sd.m_fileName.c_str(), ".xml") || ((strstr(sd.m_fileName.c_str(), ".urdf")) && mb->getNumLinks())) { sprintf(line, "ob = objects[%d]\n", i); int len = strlen(line); fwrite(line, len, 1, f); } if (strstr(sd.m_fileName.c_str(), ".sdf") || strstr(sd.m_fileName.c_str(), ".xml")) { sprintf(line, "p.resetBasePositionAndOrientation(ob,[%f,%f,%f],[%f,%f,%f,%f])\n", comTr.getOrigin()[0], comTr.getOrigin()[1], comTr.getOrigin()[2], comTr.getRotation()[0], comTr.getRotation()[1], comTr.getRotation()[2], comTr.getRotation()[3]); int len = strlen(line); fwrite(line, len, 1, f); } if (mb->getNumLinks()) { { sprintf(line, "jointPositions=["); int len = strlen(line); fwrite(line, len, 1, f); } for (int i = 0; i < mb->getNumLinks(); i++) { btScalar jointPos = mb->getJointPosMultiDof(i)[0]; if (i < mb->getNumLinks() - 1) { sprintf(line, " %f,", jointPos); int len = strlen(line); fwrite(line, len, 1, f); } else { sprintf(line, " %f ", jointPos); int len = strlen(line); fwrite(line, len, 1, f); } } { sprintf(line, "]\nfor jointIndex in range (p.getNumJoints(ob)):\n\tp.resetJointState(ob,jointIndex,jointPositions[jointIndex])\n\n"); int len = strlen(line); fwrite(line, len, 1, f); } } } else { //todo: btRigidBody/btSoftBody etc case } } } } //for URDF, load at origin, then reposition... struct SaveWorldObjectData { b3AlignedObjectArray m_bodyUniqueIds; std::string m_fileName; }; } //user constraints { for (int i = 0; i < m_data->m_userConstraints.size(); i++) { InteralUserConstraintData* ucptr = m_data->m_userConstraints.getAtIndex(i); b3UserConstraint& uc = ucptr->m_userConstraintData; int parentBodyIndex = uc.m_parentBodyIndex; int parentJointIndex = uc.m_parentJointIndex; int childBodyIndex = uc.m_childBodyIndex; int childJointIndex = uc.m_childJointIndex; btVector3 jointAxis(uc.m_jointAxis[0], uc.m_jointAxis[1], uc.m_jointAxis[2]); btVector3 pivotParent(uc.m_parentFrame[0], uc.m_parentFrame[1], uc.m_parentFrame[2]); btVector3 pivotChild(uc.m_childFrame[0], uc.m_childFrame[1], uc.m_childFrame[2]); btQuaternion ornFrameParent(uc.m_parentFrame[3], uc.m_parentFrame[4], uc.m_parentFrame[5], uc.m_parentFrame[6]); btQuaternion ornFrameChild(uc.m_childFrame[3], uc.m_childFrame[4], uc.m_childFrame[5], uc.m_childFrame[6]); { char jointTypeStr[1024] = "FIXED"; bool hasKnownJointType = true; switch (uc.m_jointType) { case eRevoluteType: { sprintf(jointTypeStr, "p.JOINT_REVOLUTE"); break; } case ePrismaticType: { sprintf(jointTypeStr, "p.JOINT_PRISMATIC"); break; } case eSphericalType: { sprintf(jointTypeStr, "p.JOINT_SPHERICAL"); break; } case ePlanarType: { sprintf(jointTypeStr, "p.JOINT_PLANAR"); break; } case eFixedType: { sprintf(jointTypeStr, "p.JOINT_FIXED"); break; } case ePoint2PointType: { sprintf(jointTypeStr, "p.JOINT_POINT2POINT"); break; } case eGearType: { sprintf(jointTypeStr, "p.JOINT_GEAR"); break; } default: { hasKnownJointType = false; b3Warning("unknown constraint type in SAVE_WORLD"); } }; if (hasKnownJointType) { { sprintf(line, "cid%d = p.createConstraint(%d,%d,%d,%d,%s,[%f,%f,%f],[%f,%f,%f],[%f,%f,%f],[%f,%f,%f,%f],[%f,%f,%f,%f])\n", constraintCount, parentBodyIndex, parentJointIndex, childBodyIndex, childJointIndex, jointTypeStr, jointAxis[0], jointAxis[1], jointAxis[2], pivotParent[0], pivotParent[1], pivotParent[2], pivotChild[0], pivotChild[1], pivotChild[2], ornFrameParent[0], ornFrameParent[1], ornFrameParent[2], ornFrameParent[3], ornFrameChild[0], ornFrameChild[1], ornFrameChild[2], ornFrameChild[3]); int len = strlen(line); fwrite(line, len, 1, f); } { sprintf(line, "p.changeConstraint(cid%d,maxForce=%f)\n", constraintCount, uc.m_maxAppliedForce); int len = strlen(line); fwrite(line, len, 1, f); constraintCount++; } } } } } { btVector3 grav = this->m_data->m_dynamicsWorld->getGravity(); sprintf(line, "p.setGravity(%f,%f,%f)\n", grav[0], grav[1], grav[2]); int len = strlen(line); fwrite(line, len, 1, f); } { sprintf(line, "p.stepSimulation()\np.disconnect()\n"); int len = strlen(line); fwrite(line, len, 1, f); } fclose(f); } serverStatusOut.m_type = CMD_SAVE_WORLD_COMPLETED; hasStatus = true; } return hasStatus; } #define MYLINELENGTH 16 * 32768 static unsigned char* MyGetRawHeightfieldData(CommonFileIOInterface& fileIO, PHY_ScalarType type, const char* fileName, int& width, int& height, btScalar& minHeight, btScalar& maxHeight) { std::string ext; std::string fn(fileName); std::string ext_ = fn.substr(fn.size() - 4); for (std::string::iterator i = ext_.begin(); i != ext_.end(); ++i) { ext += char(tolower(*i)); } if (ext != ".txt") { char relativeFileName[1024]; int found = fileIO.findResourcePath(fileName, relativeFileName, 1024); b3AlignedObjectArray buffer; buffer.reserve(1024); int fileId = fileIO.fileOpen(relativeFileName, "rb"); if (fileId >= 0) { int size = fileIO.getFileSize(fileId); if (size > 0) { buffer.resize(size); int actual = fileIO.fileRead(fileId, &buffer[0], size); if (actual != size) { b3Warning("STL filesize mismatch!\n"); buffer.resize(0); } } fileIO.fileClose(fileId); } if (buffer.size()) { int n; unsigned char* image = stbi_load_from_memory((const unsigned char*)&buffer[0], buffer.size(), &width, &height, &n, 3); if (image) { fileIO.fileClose(fileId); int nElements = width * height; int bytesPerElement = sizeof(btScalar); btAssert(bytesPerElement > 0 && "bad bytes per element"); int nBytes = nElements * bytesPerElement; unsigned char* raw = new unsigned char[nBytes]; btAssert(raw && "out of memory"); unsigned char* p = raw; for (int j = 0; j < height; ++j) { for (int i = 0; i < width; ++i) { float z = double(image[(width - 1 - i) * 3 + width * j * 3]) * (1. / 255.); btScalar* pf = (btScalar*)p; *pf = z; p += bytesPerElement; // update min/max if (!i && !j) { minHeight = z; maxHeight = z; } else { if (z < minHeight) { minHeight = z; } if (z > maxHeight) { maxHeight = z; } } } } free(image); return raw; } } } if (ext == ".txt") { //read a csv file as used in DeepLoco { char relativePath[1024]; int found = fileIO.findResourcePath(fileName, relativePath, 1024); btAlignedObjectArray lineBuffer; lineBuffer.resize(MYLINELENGTH); int slot = fileIO.fileOpen(relativePath, "r"); int rows = 0; int cols = 0; btAlignedObjectArray allValues; if (slot >= 0) { char* lineChar; while (lineChar = fileIO.readLine(slot, &lineBuffer[0], MYLINELENGTH)) { rows = 0; std::string line(lineChar); int pos = 0; while (pos < line.length()) { int nextPos = pos + 1; while (nextPos < line.length()) { if (line[nextPos - 1] == ',') { break; } nextPos++; } std::string substr = line.substr(pos, nextPos - pos - 1); double v; if (sscanf(substr.c_str(), "%lf", &v) == 1) { allValues.push_back(v); rows++; } pos = nextPos; } cols++; } width = rows; height = cols; fileIO.fileClose(slot); int nElements = width * height; // std::cerr << " nElements = " << nElements << "\n"; int bytesPerElement = sizeof(btScalar); // std::cerr << " bytesPerElement = " << bytesPerElement << "\n"; btAssert(bytesPerElement > 0 && "bad bytes per element"); long nBytes = nElements * bytesPerElement; // std::cerr << " nBytes = " << nBytes << "\n"; unsigned char* raw = new unsigned char[nBytes]; btAssert(raw && "out of memory"); unsigned char* p = raw; for (int i = 0; i < width; ++i) { for (int j = 0; j < height; ++j) { double z = allValues[i + width * j]; //convertFromFloat(p, z, type); btScalar* pf = (btScalar*)p; *pf = z; p += bytesPerElement; // update min/max if (!i && !j) { minHeight = z; maxHeight = z; } else { if (z < minHeight) { minHeight = z; } if (z > maxHeight) { maxHeight = z; } } } } return raw; } } } return 0; } class MyTriangleCollector4 : public btTriangleCallback { public: btAlignedObjectArray* m_pVerticesOut; btAlignedObjectArray* m_pIndicesOut; MyTriangleCollector4() { m_pVerticesOut = 0; m_pIndicesOut = 0; } virtual void processTriangle(btVector3* tris, int partId, int triangleIndex) { for (int k = 0; k < 3; k++) { GLInstanceVertex v; v.xyzw[3] = 0; v.uv[0] = v.uv[1] = 0.5f; btVector3 normal = (tris[0] - tris[1]).cross(tris[0] - tris[2]); normal.safeNormalize(); for (int l = 0; l < 3; l++) { v.xyzw[l] = tris[k][l]; v.normal[l] = normal[l]; } m_pIndicesOut->push_back(m_pVerticesOut->size()); m_pVerticesOut->push_back(v); } } }; bool PhysicsServerCommandProcessor::processCreateCollisionShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_FAILED; btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld); btCollisionShape* shape = 0; b3AlignedObjectArray urdfCollisionObjects; btCompoundShape* compound = 0; if (clientCmd.m_createUserShapeArgs.m_numUserShapes > 1) { compound = worldImporter->createCompoundShape(); compound->setMargin(m_data->m_defaultCollisionMargin); } for (int i = 0; i < clientCmd.m_createUserShapeArgs.m_numUserShapes; i++) { GLInstanceGraphicsShape* glmesh = 0; char pathPrefix[1024] = ""; char relativeFileName[1024] = ""; UrdfCollision urdfColObj; btTransform childTransform; childTransform.setIdentity(); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_hasChildTransform) { childTransform.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_childPosition[2])); childTransform.setRotation(btQuaternion( clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[2], clientCmd.m_createUserShapeArgs.m_shapes[i].m_childOrientation[3])); if (compound == 0) { compound = worldImporter->createCompoundShape(); } } urdfColObj.m_linkLocalFrame = childTransform; urdfColObj.m_sourceFileLocation = "memory"; urdfColObj.m_name = "memory"; urdfColObj.m_geometry.m_type = URDF_GEOM_UNKNOWN; switch (clientCmd.m_createUserShapeArgs.m_shapes[i].m_type) { case GEOM_SPHERE: { double radius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius; shape = worldImporter->createSphereShape(radius); shape->setMargin(m_data->m_defaultCollisionMargin); if (compound) { compound->addChildShape(childTransform, shape); } urdfColObj.m_geometry.m_type = URDF_GEOM_SPHERE; urdfColObj.m_geometry.m_sphereRadius = radius; break; } case GEOM_BOX: { //double halfExtents[3] = clientCmd.m_createUserShapeArgs.m_shapes[i].m_sphereRadius; btVector3 halfExtents( clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_boxHalfExtents[2]); shape = worldImporter->createBoxShape(halfExtents); shape->setMargin(m_data->m_defaultCollisionMargin); if (compound) { compound->addChildShape(childTransform, shape); } urdfColObj.m_geometry.m_type = URDF_GEOM_BOX; urdfColObj.m_geometry.m_boxSize = 2. * halfExtents; break; } case GEOM_CAPSULE: { shape = worldImporter->createCapsuleShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius, clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight); shape->setMargin(m_data->m_defaultCollisionMargin); if (compound) { compound->addChildShape(childTransform, shape); } urdfColObj.m_geometry.m_type = URDF_GEOM_CAPSULE; urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius; urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight; break; } case GEOM_CYLINDER: { shape = worldImporter->createCylinderShapeZ(clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius, 0.5 * clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight); shape->setMargin(m_data->m_defaultCollisionMargin); if (compound) { compound->addChildShape(childTransform, shape); } urdfColObj.m_geometry.m_type = URDF_GEOM_CYLINDER; urdfColObj.m_geometry.m_capsuleRadius = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleRadius; urdfColObj.m_geometry.m_capsuleHeight = clientCmd.m_createUserShapeArgs.m_shapes[i].m_capsuleHeight; break; } case GEOM_HEIGHTFIELD: { int width; int height; btScalar minHeight, maxHeight; PHY_ScalarType scalarType = PHY_FLOAT; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); const unsigned char* heightfieldData = 0; if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldColumns > 0 && clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldRows > 0) { width = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldRows; height = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numHeightfieldColumns; float* heightfieldDataSrc = (float*)bufferServerToClient; heightfieldData = new unsigned char[width * height * sizeof(btScalar)]; btScalar* datafl = (btScalar*)heightfieldData; minHeight = heightfieldDataSrc[0]; maxHeight = heightfieldDataSrc[0]; for (int i = 0; i < width * height; i++) { datafl[i] = heightfieldDataSrc[i]; minHeight = btMin(minHeight, (btScalar)datafl[i]); maxHeight = btMax(maxHeight, (btScalar)datafl[i]); } } else { heightfieldData = MyGetRawHeightfieldData(*fileIO, scalarType, clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshFileName, width, height, minHeight, maxHeight); } if (heightfieldData) { //replace heightfield data or create new heightfield if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_replaceHeightfieldIndex >= 0) { int collisionShapeUid = clientCmd.m_createUserShapeArgs.m_shapes[i].m_replaceHeightfieldIndex; InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeUid); if (handle && handle->m_collisionShape && handle->m_collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE) { btHeightfieldTerrainShape* terrainShape = (btHeightfieldTerrainShape*)handle->m_collisionShape; btScalar* heightfieldDest = (btScalar*)terrainShape->getHeightfieldRawData(); //replace the data btScalar* datafl = (btScalar*)heightfieldData; for (int i = 0; i < width * height; i++) { heightfieldDest[i] = datafl[i]; } //update graphics btAlignedObjectArray gfxVertices; btAlignedObjectArray indices; int strideInBytes = 9 * sizeof(float); MyTriangleCollector4 col; col.m_pVerticesOut = &gfxVertices; col.m_pIndicesOut = &indices; btVector3 aabbMin, aabbMax; for (int k = 0; k < 3; k++) { aabbMin[k] = -BT_LARGE_FLOAT; aabbMax[k] = BT_LARGE_FLOAT; } terrainShape->processAllTriangles(&col, aabbMin, aabbMax); if (gfxVertices.size() && indices.size()) { m_data->m_guiHelper->updateShape(terrainShape->getUserIndex(), &gfxVertices[0].xyzw[0]); } terrainShape->clearAccelerator(); terrainShape->buildAccelerator(); btTriangleInfoMap* oldTriangleInfoMap = terrainShape->getTriangleInfoMap(); delete (oldTriangleInfoMap); terrainShape->setTriangleInfoMap(0); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE) { btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap(); btGenerateInternalEdgeInfo(terrainShape, triangleInfoMap); } serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = collisionShapeUid; delete worldImporter; serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_COMPLETED; } delete heightfieldData; return hasStatus; } else { btScalar gridSpacing = 0.5; btScalar gridHeightScale = 1. / 256.; bool flipQuadEdges = false; int upAxis = 2; /*btHeightfieldTerrainShape* heightfieldShape = worldImporter->createHeightfieldShape( width, height, heightfieldData, gridHeightScale, minHeight, maxHeight, upAxis, int(scalarType), flipQuadEdges); */ btHeightfieldTerrainShape* heightfieldShape = new btHeightfieldTerrainShape(width, height, heightfieldData, gridHeightScale, minHeight, maxHeight, upAxis, scalarType, flipQuadEdges); m_data->m_collisionShapes.push_back(heightfieldShape); heightfieldShape->setUserValue3(clientCmd.m_createUserShapeArgs.m_shapes[i].m_heightfieldTextureScaling); shape = heightfieldShape; if (upAxis == 2) heightfieldShape->setFlipTriangleWinding(true); // scale the shape btVector3 localScaling(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]); heightfieldShape->setLocalScaling(localScaling); //buildAccelerator is optional, it may not support all features. heightfieldShape->buildAccelerator(); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE) { btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap(); btGenerateInternalEdgeInfo(heightfieldShape, triangleInfoMap); } this->m_data->m_heightfieldDatas.push_back(heightfieldData); } } break; } case GEOM_PLANE: { btVector3 planeNormal(clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]); shape = worldImporter->createPlaneShape(planeNormal, clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeConstant); shape->setMargin(m_data->m_defaultCollisionMargin); if (compound) { compound->addChildShape(childTransform, shape); } urdfColObj.m_geometry.m_type = URDF_GEOM_PLANE; urdfColObj.m_geometry.m_planeNormal.setValue( clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_planeNormal[2]); break; } case GEOM_MESH: { btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]); const std::string& urdf_path = ""; std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshFileName; urdfColObj.m_geometry.m_type = URDF_GEOM_MESH; urdfColObj.m_geometry.m_meshFileName = fileName; urdfColObj.m_geometry.m_meshScale = meshScale; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); pathPrefix[0] = 0; if (fileIO->findResourcePath(fileName.c_str(), relativeFileName, 1024)) { b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024); } const std::string& error_message_prefix = ""; std::string out_found_filename; int out_type; if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices) { int numVertices = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices; int numIndices = clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices; //int totalUploadSizeInBytes = numVertices * sizeof(double) * 3 + numIndices * sizeof(int); char* data = bufferServerToClient; double* vertexUpload = (double*)data; int* indexUpload = (int*)(data + numVertices * sizeof(double) * 3); if (compound == 0) { compound = worldImporter->createCompoundShape(); } compound->setMargin(m_data->m_defaultCollisionMargin); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices) { BT_PROFILE("convert trimesh2"); btTriangleMesh* meshInterface = new btTriangleMesh(); this->m_data->m_meshInterfaces.push_back(meshInterface); { BT_PROFILE("convert vertices2"); for (int j = 0; j < clientCmd.m_createUserShapeArgs.m_shapes[i].m_numIndices / 3; j++) { int i0 = indexUpload[j * 3 + 0]; int i1 = indexUpload[j * 3 + 1]; int i2 = indexUpload[j * 3 + 2]; btVector3 v0(vertexUpload[i0 * 3 + 0], vertexUpload[i0 * 3 + 1], vertexUpload[i0 * 3 + 2]); btVector3 v1(vertexUpload[i1 * 3 + 0], vertexUpload[i1 * 3 + 1], vertexUpload[i1 * 3 + 2]); btVector3 v2(vertexUpload[i2 * 3 + 0], vertexUpload[i2 * 3 + 1], vertexUpload[i2 * 3 + 2]); meshInterface->addTriangle(v0 * meshScale, v1 * meshScale, v2 * meshScale); } } { BT_PROFILE("create btBvhTriangleMeshShape"); btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true); m_data->m_collisionShapes.push_back(trimesh); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE) { btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap(); btGenerateInternalEdgeInfo(trimesh, triangleInfoMap); } shape = trimesh; if (compound) { compound->addChildShape(childTransform, shape); shape->setMargin(m_data->m_defaultCollisionMargin); } } } else { btConvexHullShape* convexHull = worldImporter->createConvexHullShape(); convexHull->setMargin(m_data->m_defaultCollisionMargin); for (int v = 0; v < clientCmd.m_createUserShapeArgs.m_shapes[i].m_numVertices; v++) { btVector3 pt(vertexUpload[v * 3 + 0], vertexUpload[v * 3 + 1], vertexUpload[v * 3 + 2]); convexHull->addPoint(pt * meshScale, false); } convexHull->recalcLocalAabb(); convexHull->optimizeConvexHull(); compound->addChildShape(childTransform, convexHull); } urdfColObj.m_geometry.m_meshFileType = UrdfGeometry::MEMORY_VERTICES; break; } bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type); if (foundFile) { urdfColObj.m_geometry.m_meshFileType = out_type; if (out_type == UrdfGeometry::FILE_STL) { CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface()); glmesh = LoadMeshFromSTL(relativeFileName, fileIO); } if (out_type == UrdfGeometry::FILE_OBJ) { //create a convex hull for each shape, and store it in a btCompoundShape if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_FORCE_CONCAVE_TRIMESH) { CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); glmesh = LoadMeshFromObj(relativeFileName, pathPrefix, fileIO); } else { std::vector shapes; tinyobj::attrib_t attribute; std::string err = tinyobj::LoadObj(attribute, shapes, out_found_filename.c_str(), "", fileIO); //shape = createConvexHullFromShapes(shapes, collision->m_geometry.m_meshScale); //static btCollisionShape* createConvexHullFromShapes(std::vector& shapes, const btVector3& geomScale) B3_PROFILE("createConvexHullFromShapes"); if (compound == 0) { compound = worldImporter->createCompoundShape(); } compound->setMargin(m_data->m_defaultCollisionMargin); for (int s = 0; s < (int)shapes.size(); s++) { btConvexHullShape* convexHull = worldImporter->createConvexHullShape(); convexHull->setMargin(m_data->m_defaultCollisionMargin); tinyobj::shape_t& shape = shapes[s]; int faceCount = shape.mesh.indices.size(); for (int f = 0; f < faceCount; f += 3) { btVector3 pt; pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 0], attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 1], attribute.vertices[3 * shape.mesh.indices[f + 0].vertex_index + 2]); convexHull->addPoint(pt * meshScale, false); pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 0], attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 1], attribute.vertices[3 * shape.mesh.indices[f + 1].vertex_index + 2]); convexHull->addPoint(pt * meshScale, false); pt.setValue(attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 0], attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 1], attribute.vertices[3 * shape.mesh.indices[f + 2].vertex_index + 2]); convexHull->addPoint(pt * meshScale, false); } if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_INITIALIZE_SAT_FEATURES) { convexHull->initializePolyhedralFeatures(); } convexHull->recalcLocalAabb(); convexHull->optimizeConvexHull(); compound->addChildShape(childTransform, convexHull); } } } } break; } default: { } } if (urdfColObj.m_geometry.m_type != URDF_GEOM_UNKNOWN) { urdfCollisionObjects.push_back(urdfColObj); } if (glmesh) { btVector3 meshScale(clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[0], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[1], clientCmd.m_createUserShapeArgs.m_shapes[i].m_meshScale[2]); if (!glmesh || glmesh->m_numvertices <= 0) { b3Warning("%s: cannot extract mesh from '%s'\n", pathPrefix, relativeFileName); delete glmesh; } else { btAlignedObjectArray convertedVerts; convertedVerts.reserve(glmesh->m_numvertices); for (int v = 0; v < glmesh->m_numvertices; v++) { convertedVerts.push_back(btVector3( glmesh->m_vertices->at(v).xyzw[0] * meshScale[0], glmesh->m_vertices->at(v).xyzw[1] * meshScale[1], glmesh->m_vertices->at(v).xyzw[2] * meshScale[2])); } if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_FORCE_CONCAVE_TRIMESH) { BT_PROFILE("convert trimesh"); btTriangleMesh* meshInterface = new btTriangleMesh(); this->m_data->m_meshInterfaces.push_back(meshInterface); { BT_PROFILE("convert vertices"); for (int i = 0; i < glmesh->m_numIndices / 3; i++) { const btVector3& v0 = convertedVerts[glmesh->m_indices->at(i * 3)]; const btVector3& v1 = convertedVerts[glmesh->m_indices->at(i * 3 + 1)]; const btVector3& v2 = convertedVerts[glmesh->m_indices->at(i * 3 + 2)]; meshInterface->addTriangle(v0, v1, v2); } } { BT_PROFILE("create btBvhTriangleMeshShape"); btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(meshInterface, true, true); m_data->m_collisionShapes.push_back(trimesh); if (clientCmd.m_createUserShapeArgs.m_shapes[i].m_collisionFlags & GEOM_CONCAVE_INTERNAL_EDGE) { btTriangleInfoMap* triangleInfoMap = new btTriangleInfoMap(); btGenerateInternalEdgeInfo(trimesh, triangleInfoMap); } //trimesh->setLocalScaling(collision->m_geometry.m_meshScale); shape = trimesh; if (compound) { compound->addChildShape(childTransform, shape); shape->setMargin(m_data->m_defaultCollisionMargin); } } delete glmesh; } else { //convex mesh if (compound == 0) { compound = worldImporter->createCompoundShape(); } compound->setMargin(m_data->m_defaultCollisionMargin); { btConvexHullShape* convexHull = worldImporter->createConvexHullShape(); convexHull->setMargin(m_data->m_defaultCollisionMargin); for (int v = 0; v < convertedVerts.size(); v++) { btVector3 pt = convertedVerts[v]; convexHull->addPoint(pt, false); } convexHull->recalcLocalAabb(); convexHull->optimizeConvexHull(); compound->addChildShape(childTransform, convexHull); } } } } } if (compound && compound->getNumChildShapes()) { shape = compound; } if (shape) { int collisionShapeUid = m_data->m_userCollisionShapeHandles.allocHandle(); InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeUid); handle->m_collisionShape = shape; for (int i = 0; i < urdfCollisionObjects.size(); i++) { handle->m_urdfCollisionObjects.push_back(urdfCollisionObjects[i]); } serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = collisionShapeUid; m_data->m_worldImporters.push_back(worldImporter); serverStatusOut.m_type = CMD_CREATE_COLLISION_SHAPE_COMPLETED; } else { delete worldImporter; } return hasStatus; } static void gatherVertices(const btTransform& trans, const btCollisionShape* colShape, btAlignedObjectArray& verticesOut, int collisionShapeIndex) { switch (colShape->getShapeType()) { case COMPOUND_SHAPE_PROXYTYPE: { const btCompoundShape* compound = (const btCompoundShape*)colShape; for (int i = 0; i < compound->getNumChildShapes(); i++) { btTransform childTr = trans * compound->getChildTransform(i); if ((collisionShapeIndex < 0) || (collisionShapeIndex == i)) { gatherVertices(childTr, compound->getChildShape(i), verticesOut, collisionShapeIndex); } } break; } case CONVEX_HULL_SHAPE_PROXYTYPE: { const btConvexHullShape* convex = (const btConvexHullShape*)colShape; btVector3 vtx; for (int i = 0; i < convex->getNumVertices(); i++) { convex->getVertex(i, vtx); btVector3 trVertex = trans * vtx; verticesOut.push_back(trVertex); } break; } default: { } } } bool PhysicsServerCommandProcessor::processRequestMeshDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_MESH_DATA"); serverStatusOut.m_type = CMD_REQUEST_MESH_DATA_FAILED; serverStatusOut.m_numDataStreamBytes = 0; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_requestMeshDataArgs.m_bodyUniqueId); if (bodyHandle) { int totalBytesPerVertex = sizeof(btVector3); btVector3* verticesOut = (btVector3*)bufferServerToClient; const btCollisionShape* colShape = 0; if (bodyHandle->m_multiBody) { //collision shape if (clientCmd.m_requestMeshDataArgs.m_linkIndex == -1) { colShape = bodyHandle->m_multiBody->getBaseCollider()->getCollisionShape(); } else { colShape = bodyHandle->m_multiBody->getLinkCollider(clientCmd.m_requestMeshDataArgs.m_linkIndex)->getCollisionShape(); } } if (bodyHandle->m_rigidBody) { colShape = bodyHandle->m_rigidBody->getCollisionShape(); } if (colShape) { btAlignedObjectArray vertices; btTransform tr; tr.setIdentity(); int collisionShapeIndex = -1; if (clientCmd.m_updateFlags& B3_MESH_DATA_COLLISIONSHAPEINDEX) { collisionShapeIndex = clientCmd.m_requestMeshDataArgs.m_collisionShapeIndex; } gatherVertices(tr, colShape, vertices, collisionShapeIndex); int numVertices = vertices.size(); int maxNumVertices = bufferSizeInBytes / totalBytesPerVertex - 1; int numVerticesRemaining = numVertices - clientCmd.m_requestMeshDataArgs.m_startingVertex; int verticesCopied = btMin(maxNumVertices, numVerticesRemaining); for (int i = 0; i < verticesCopied; ++i) { verticesOut[i] = vertices[i]; } serverStatusOut.m_type = CMD_REQUEST_MESH_DATA_COMPLETED; serverStatusOut.m_sendMeshDataArgs.m_numVerticesCopied = verticesCopied; serverStatusOut.m_sendMeshDataArgs.m_startingVertex = clientCmd.m_requestMeshDataArgs.m_startingVertex; serverStatusOut.m_sendMeshDataArgs.m_numVerticesRemaining = numVerticesRemaining - verticesCopied; } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (bodyHandle->m_softBody) { btSoftBody* psb = bodyHandle->m_softBody; bool separateRenderMesh = (psb->m_renderNodes.size() != 0); int numVertices = separateRenderMesh ? psb->m_renderNodes.size() : psb->m_nodes.size(); int maxNumVertices = bufferSizeInBytes / totalBytesPerVertex - 1; int numVerticesRemaining = numVertices - clientCmd.m_requestMeshDataArgs.m_startingVertex; int verticesCopied = btMin(maxNumVertices, numVerticesRemaining); for (int i = 0; i < verticesCopied; ++i) { if (separateRenderMesh) { const btSoftBody::Node& n = psb->m_renderNodes[i + clientCmd.m_requestMeshDataArgs.m_startingVertex]; verticesOut[i] = n.m_x; } else { const btSoftBody::Node& n = psb->m_nodes[i + clientCmd.m_requestMeshDataArgs.m_startingVertex]; verticesOut[i] = n.m_x; } } serverStatusOut.m_type = CMD_REQUEST_MESH_DATA_COMPLETED; serverStatusOut.m_sendMeshDataArgs.m_numVerticesCopied = verticesCopied; serverStatusOut.m_sendMeshDataArgs.m_startingVertex = clientCmd.m_requestMeshDataArgs.m_startingVertex; serverStatusOut.m_sendMeshDataArgs.m_numVerticesRemaining = numVerticesRemaining - verticesCopied; } #endif //SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD } serverStatusOut.m_numDataStreamBytes = 0; return hasStatus; } bool PhysicsServerCommandProcessor::processCreateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_FAILED; double globalScaling = 1.f; int flags = 0; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); BulletURDFImporter u2b(m_data->m_guiHelper, m_data->m_pluginManager.getRenderInterface(), fileIO, globalScaling, flags); u2b.setEnableTinyRenderer(m_data->m_enableTinyRenderer); btTransform localInertiaFrame; localInertiaFrame.setIdentity(); const char* pathPrefix = ""; int visualShapeUniqueId = -1; UrdfVisual visualShape; for (int userShapeIndex = 0; userShapeIndex < clientCmd.m_createUserShapeArgs.m_numUserShapes; userShapeIndex++) { btTransform childTrans; childTrans.setIdentity(); visualShape.m_geometry.m_type = (UrdfGeomTypes)clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_type; char relativeFileName[1024]; char pathPrefix[1024]; pathPrefix[0] = 0; const b3CreateUserShapeData& visShape = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex]; switch (visualShape.m_geometry.m_type) { case URDF_GEOM_CYLINDER: { visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight; visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius; break; } case URDF_GEOM_BOX: { visualShape.m_geometry.m_boxSize.setValue(2. * visShape.m_boxHalfExtents[0], 2. * visShape.m_boxHalfExtents[1], 2. * visShape.m_boxHalfExtents[2]); break; } case URDF_GEOM_SPHERE: { visualShape.m_geometry.m_sphereRadius = visShape.m_sphereRadius; break; } case URDF_GEOM_CAPSULE: { visualShape.m_geometry.m_hasFromTo = visShape.m_hasFromTo; if (visualShape.m_geometry.m_hasFromTo) { visualShape.m_geometry.m_capsuleFrom.setValue(visShape.m_capsuleFrom[0], visShape.m_capsuleFrom[1], visShape.m_capsuleFrom[2]); visualShape.m_geometry.m_capsuleTo.setValue(visShape.m_capsuleTo[0], visShape.m_capsuleTo[1], visShape.m_capsuleTo[2]); } else { visualShape.m_geometry.m_capsuleHeight = visShape.m_capsuleHeight; visualShape.m_geometry.m_capsuleRadius = visShape.m_capsuleRadius; } break; } case URDF_GEOM_MESH: { std::string fileName = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshFileName; if (fileName.length()) { const std::string& error_message_prefix = ""; std::string out_found_filename; int out_type; if (fileIO->findResourcePath(fileName.c_str(), relativeFileName, 1024)) { b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024); } bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type); if (foundFile) { visualShape.m_geometry.m_meshFileType = out_type; visualShape.m_geometry.m_meshFileName = fileName; } else { } } else { visualShape.m_geometry.m_meshFileType = UrdfGeometry::MEMORY_VERTICES; int numVertices = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numVertices; int numIndices = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numIndices; int numUVs = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numUVs; int numNormals = clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_numNormals; if (numVertices > 0 && numIndices > 0) { char* data = bufferServerToClient; double* vertexUpload = (double*)data; int* indexUpload = (int*)(data + numVertices * sizeof(double) * 3); double* normalUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int)); double* uvUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int) + numNormals * sizeof(double) * 3); for (int i = 0; i < numIndices; i++) { visualShape.m_geometry.m_indices.push_back(indexUpload[i]); } for (int i = 0; i < numVertices; i++) { btVector3 v0(vertexUpload[i * 3 + 0], vertexUpload[i * 3 + 1], vertexUpload[i * 3 + 2]); visualShape.m_geometry.m_vertices.push_back(v0); } for (int i = 0; i < numNormals; i++) { btVector3 normal(normalUpload[i * 3 + 0], normalUpload[i * 3 + 1], normalUpload[i * 3 + 2]); visualShape.m_geometry.m_normals.push_back(normal); } for (int i = 0; i < numUVs; i++) { btVector3 uv(uvUpload[i * 2 + 0], uvUpload[i * 2 + 1], 0); visualShape.m_geometry.m_uvs.push_back(uv); } } } visualShape.m_geometry.m_meshScale.setValue(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[0], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[1], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_meshScale[2]); break; } default: { } }; visualShape.m_name = "in_memory"; visualShape.m_materialName = ""; visualShape.m_sourceFileLocation = "in_memory_unknown_line"; visualShape.m_linkLocalFrame.setIdentity(); visualShape.m_geometry.m_hasLocalMaterial = false; bool hasRGBA = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags & GEOM_VISUAL_HAS_RGBA_COLOR) != 0; ; bool hasSpecular = (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_visualFlags & GEOM_VISUAL_HAS_SPECULAR_COLOR) != 0; ; visualShape.m_geometry.m_hasLocalMaterial = hasRGBA | hasSpecular; if (visualShape.m_geometry.m_hasLocalMaterial) { if (hasRGBA) { visualShape.m_geometry.m_localMaterial.m_matColor.m_rgbaColor.setValue( clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[0], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[1], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[2], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_rgbaColor[3]); } else { visualShape.m_geometry.m_localMaterial.m_matColor.m_rgbaColor.setValue(1, 1, 1, 1); } if (hasSpecular) { visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue( clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[0], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[1], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_specularColor[2]); } else { visualShape.m_geometry.m_localMaterial.m_matColor.m_specularColor.setValue(0.4, 0.4, 0.4); } } if (clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_hasChildTransform != 0) { childTrans.setOrigin(btVector3(clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[0], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[1], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childPosition[2])); childTrans.setRotation(btQuaternion( clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[0], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[1], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[2], clientCmd.m_createUserShapeArgs.m_shapes[userShapeIndex].m_childOrientation[3])); } if (visualShapeUniqueId < 0) { visualShapeUniqueId = m_data->m_userVisualShapeHandles.allocHandle(); } InternalVisualShapeHandle* visualHandle = m_data->m_userVisualShapeHandles.getHandle(visualShapeUniqueId); visualHandle->m_OpenGLGraphicsIndex = -1; visualHandle->m_tinyRendererVisualShapeIndex = -1; //tinyrenderer doesn't separate shape versus instance, so create it when creating the multibody instance //store needed info for tinyrenderer visualShape.m_linkLocalFrame = childTrans; visualHandle->m_visualShapes.push_back(visualShape); visualHandle->m_pathPrefixes.push_back(pathPrefix[0] ? pathPrefix : ""); serverStatusOut.m_createUserShapeResultArgs.m_userShapeUniqueId = visualShapeUniqueId; serverStatusOut.m_type = CMD_CREATE_VISUAL_SHAPE_COMPLETED; } return hasStatus; } bool PhysicsServerCommandProcessor::processCustomCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CUSTOM_COMMAND_FAILED; serverCmd.m_customCommandResultArgs.m_pluginUniqueId = -1; if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN) { //pluginPath could be registered or load from disk const char* postFix = ""; if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_LOAD_PLUGIN_POSTFIX) { postFix = clientCmd.m_customCommandArgs.m_postFix; } int pluginUniqueId = m_data->m_pluginManager.loadPlugin(clientCmd.m_customCommandArgs.m_pluginPath, postFix); if (pluginUniqueId >= 0) { serverCmd.m_customCommandResultArgs.m_pluginUniqueId = pluginUniqueId; serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED; } } if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_UNLOAD_PLUGIN) { m_data->m_pluginManager.unloadPlugin(clientCmd.m_customCommandArgs.m_pluginUniqueId); serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED; } if (clientCmd.m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND) { int result = m_data->m_pluginManager.executePluginCommand(clientCmd.m_customCommandArgs.m_pluginUniqueId, &clientCmd.m_customCommandArgs.m_arguments); serverCmd.m_customCommandResultArgs.m_executeCommandResult = result; serverCmd.m_type = CMD_CUSTOM_COMMAND_COMPLETED; } return hasStatus; } bool PhysicsServerCommandProcessor::processUserDebugDrawCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_USER_DEBUG_DRAW"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_USER_DEBUG_DRAW_FAILED; int trackingVisualShapeIndex = -1; if (clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId >= 0) { InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_userDebugDrawArgs.m_parentObjectUniqueId); if (bodyHandle) { int linkIndex = -1; if (bodyHandle->m_multiBody) { int linkIndex = clientCmd.m_userDebugDrawArgs.m_parentLinkIndex; if (linkIndex == -1) { if (bodyHandle->m_multiBody->getBaseCollider()) { trackingVisualShapeIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex(); } } else { if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks()) { if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider) { trackingVisualShapeIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex(); } } } } if (bodyHandle->m_rigidBody) { trackingVisualShapeIndex = bodyHandle->m_rigidBody->getUserIndex(); } } } if (clientCmd.m_updateFlags & USER_DEBUG_ADD_PARAMETER) { int uid = m_data->m_guiHelper->addUserDebugParameter( clientCmd.m_userDebugDrawArgs.m_text, clientCmd.m_userDebugDrawArgs.m_rangeMin, clientCmd.m_userDebugDrawArgs.m_rangeMax, clientCmd.m_userDebugDrawArgs.m_startValue); serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid; serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } if (clientCmd.m_updateFlags & USER_DEBUG_READ_PARAMETER) { int ok = m_data->m_guiHelper->readUserDebugParameter( clientCmd.m_userDebugDrawArgs.m_itemUniqueId, &serverCmd.m_userDebugDrawArgs.m_parameterValue); if (ok) { serverCmd.m_type = CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED; } } if ((clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR) || (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR)) { int bodyUniqueId = clientCmd.m_userDebugDrawArgs.m_objectUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body) { btCollisionObject* destColObj = 0; if (body->m_multiBody) { if (clientCmd.m_userDebugDrawArgs.m_linkIndex == -1) { destColObj = body->m_multiBody->getBaseCollider(); } else { if (clientCmd.m_userDebugDrawArgs.m_linkIndex >= 0 && clientCmd.m_userDebugDrawArgs.m_linkIndex < body->m_multiBody->getNumLinks()) { destColObj = body->m_multiBody->getLink(clientCmd.m_userDebugDrawArgs.m_linkIndex).m_collider; } } } if (body->m_rigidBody) { destColObj = body->m_rigidBody; } if (destColObj) { if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR) { destColObj->removeCustomDebugColor(); serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } if (clientCmd.m_updateFlags & USER_DEBUG_SET_CUSTOM_OBJECT_COLOR) { btVector3 objectColorRGB; objectColorRGB.setValue(clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[0], clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[1], clientCmd.m_userDebugDrawArgs.m_objectDebugColorRGB[2]); destColObj->setCustomDebugColor(objectColorRGB); serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } } } } if (clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT) { //addUserDebugText3D( const double orientation[4], const double textColorRGB[3], double size, double lifeTime, int trackingObjectUniqueId, int optionFlags){return -1;} int optionFlags = clientCmd.m_userDebugDrawArgs.m_optionFlags; if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_TEXT_ORIENTATION) == 0) { optionFlags |= DEB_DEBUG_TEXT_ALWAYS_FACE_CAMERA; } int replaceItemUniqueId = -1; if ((clientCmd.m_updateFlags & USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID) != 0) { replaceItemUniqueId = clientCmd.m_userDebugDrawArgs.m_replaceItemUniqueId; } int uid = m_data->m_guiHelper->addUserDebugText3D(clientCmd.m_userDebugDrawArgs.m_text, clientCmd.m_userDebugDrawArgs.m_textPositionXYZ, clientCmd.m_userDebugDrawArgs.m_textOrientation, clientCmd.m_userDebugDrawArgs.m_textColorRGB, clientCmd.m_userDebugDrawArgs.m_textSize, clientCmd.m_userDebugDrawArgs.m_lifeTime, trackingVisualShapeIndex, optionFlags, replaceItemUniqueId); if (uid >= 0) { serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid; serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } } if (clientCmd.m_updateFlags & USER_DEBUG_HAS_LINE) { int replaceItemUid = -1; if (clientCmd.m_updateFlags & USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID) { replaceItemUid = clientCmd.m_userDebugDrawArgs.m_replaceItemUniqueId; } int uid = m_data->m_guiHelper->addUserDebugLine( clientCmd.m_userDebugDrawArgs.m_debugLineFromXYZ, clientCmd.m_userDebugDrawArgs.m_debugLineToXYZ, clientCmd.m_userDebugDrawArgs.m_debugLineColorRGB, clientCmd.m_userDebugDrawArgs.m_lineWidth, clientCmd.m_userDebugDrawArgs.m_lifeTime, trackingVisualShapeIndex, replaceItemUid); if (uid >= 0) { serverCmd.m_userDebugDrawArgs.m_debugItemUniqueId = uid; serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } } if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ALL) { m_data->m_guiHelper->removeAllUserDebugItems(); serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ALL_PARAMETERS) { m_data->m_guiHelper->removeAllUserParameters(); serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } if (clientCmd.m_updateFlags & USER_DEBUG_REMOVE_ONE_ITEM) { m_data->m_guiHelper->removeUserDebugItem(clientCmd.m_userDebugDrawArgs.m_itemUniqueId); serverCmd.m_type = CMD_USER_DEBUG_DRAW_COMPLETED; } return hasStatus; } bool PhysicsServerCommandProcessor::processSetVRCameraStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SET_VR_CAMERA_STATE"); if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_POSITION) { gVRTeleportPos1[0] = clientCmd.m_vrCameraStateArguments.m_rootPosition[0]; gVRTeleportPos1[1] = clientCmd.m_vrCameraStateArguments.m_rootPosition[1]; gVRTeleportPos1[2] = clientCmd.m_vrCameraStateArguments.m_rootPosition[2]; } if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_ORIENTATION) { gVRTeleportOrn[0] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[0]; gVRTeleportOrn[1] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[1]; gVRTeleportOrn[2] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[2]; gVRTeleportOrn[3] = clientCmd.m_vrCameraStateArguments.m_rootOrientation[3]; } if (clientCmd.m_updateFlags & VR_CAMERA_ROOT_TRACKING_OBJECT) { gVRTrackingObjectUniqueId = clientCmd.m_vrCameraStateArguments.m_trackingObjectUniqueId; } if (clientCmd.m_updateFlags & VR_CAMERA_FLAG) { gVRTrackingObjectFlag = clientCmd.m_vrCameraStateArguments.m_trackingObjectFlag; } serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestVREventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; //BT_PROFILE("CMD_REQUEST_VR_EVENTS_DATA"); serverStatusOut.m_sendVREvents.m_numVRControllerEvents = 0; for (int i = 0; i < MAX_VR_CONTROLLERS; i++) { b3VRControllerEvent& event = m_data->m_vrControllerEvents.m_vrEvents[i]; if (clientCmd.m_updateFlags & event.m_deviceType) { if (event.m_numButtonEvents + event.m_numMoveEvents) { serverStatusOut.m_sendVREvents.m_controllerEvents[serverStatusOut.m_sendVREvents.m_numVRControllerEvents++] = event; event.m_numButtonEvents = 0; event.m_numMoveEvents = 0; for (int b = 0; b < MAX_VR_BUTTONS; b++) { event.m_buttons[b] = 0; } } } } serverStatusOut.m_type = CMD_REQUEST_VR_EVENTS_DATA_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestMouseEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; serverStatusOut.m_sendMouseEvents.m_numMouseEvents = m_data->m_mouseEvents.size(); if (serverStatusOut.m_sendMouseEvents.m_numMouseEvents > MAX_MOUSE_EVENTS) { serverStatusOut.m_sendMouseEvents.m_numMouseEvents = MAX_MOUSE_EVENTS; } for (int i = 0; i < serverStatusOut.m_sendMouseEvents.m_numMouseEvents; i++) { serverStatusOut.m_sendMouseEvents.m_mouseEvents[i] = m_data->m_mouseEvents[i]; } m_data->m_mouseEvents.resize(0); serverStatusOut.m_type = CMD_REQUEST_MOUSE_EVENTS_DATA_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestKeyboardEventsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { //BT_PROFILE("CMD_REQUEST_KEYBOARD_EVENTS_DATA"); bool hasStatus = true; serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = m_data->m_keyboardEvents.size(); if (serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents > MAX_KEYBOARD_EVENTS) { serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents = MAX_KEYBOARD_EVENTS; } for (int i = 0; i < serverStatusOut.m_sendKeyboardEvents.m_numKeyboardEvents; i++) { serverStatusOut.m_sendKeyboardEvents.m_keyboardEvents[i] = m_data->m_keyboardEvents[i]; } btAlignedObjectArray events; //remove out-of-date events for (int i = 0; i < m_data->m_keyboardEvents.size(); i++) { b3KeyboardEvent event = m_data->m_keyboardEvents[i]; if (event.m_keyState & eButtonIsDown) { event.m_keyState = eButtonIsDown; events.push_back(event); } } m_data->m_keyboardEvents.resize(events.size()); for (int i = 0; i < events.size(); i++) { m_data->m_keyboardEvents[i] = events[i]; } serverStatusOut.m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA_COMPLETED; return hasStatus; } #if __cplusplus >= 201103L #include struct CastSyncInfo { std::atomic m_nextTaskNumber; CastSyncInfo() : m_nextTaskNumber(0) {} inline int getNextTask() { return m_nextTaskNumber++; } }; #else // __cplusplus >= 201103L struct CastSyncInfo { volatile int m_nextTaskNumber; btSpinMutex m_taskLock; CastSyncInfo() : m_nextTaskNumber(0) {} inline int getNextTask() { m_taskLock.lock(); const int taskNr = m_nextTaskNumber++; m_taskLock.unlock(); return taskNr; } }; #endif // __cplusplus >= 201103L struct BatchRayCaster { b3ThreadPool* m_threadPool; CastSyncInfo* m_syncInfo; const btCollisionWorld* m_world; const b3RayData* m_rayInputBuffer; b3RayHitInfo* m_hitInfoOutputBuffer; int m_numRays; BatchRayCaster(b3ThreadPool* threadPool, const btCollisionWorld* world, const b3RayData* rayInputBuffer, b3RayHitInfo* hitInfoOutputBuffer, int numRays) : m_threadPool(threadPool), m_world(world), m_rayInputBuffer(rayInputBuffer), m_hitInfoOutputBuffer(hitInfoOutputBuffer), m_numRays(numRays) { m_syncInfo = new CastSyncInfo; } ~BatchRayCaster() { delete m_syncInfo; } void castRays(int numWorkers) { #if BT_THREADSAFE if (numWorkers <= 1) { castSequentially(); } else { { BT_PROFILE("BatchRayCaster_startingWorkerThreads"); int numTasks = btMin(m_threadPool->numWorkers(), numWorkers - 1); for (int i = 0; i < numTasks; i++) { m_threadPool->runTask(i, BatchRayCaster::rayCastWorker, this); } } rayCastWorker(this); m_threadPool->waitForAllTasks(); } #else // BT_THREADSAFE castSequentially(); #endif // BT_THREADSAFE } static void rayCastWorker(void* arg) { BT_PROFILE("BatchRayCaster_raycastWorker"); BatchRayCaster* const obj = (BatchRayCaster*)arg; const int numRays = obj->m_numRays; int taskNr; while (true) { { BT_PROFILE("CastSyncInfo_getNextTask"); taskNr = obj->m_syncInfo->getNextTask(); } if (taskNr >= numRays) return; obj->processRay(taskNr); } } void castSequentially() { for (int i = 0; i < m_numRays; i++) { processRay(i); } } void processRay(int ray) { BT_PROFILE("BatchRayCaster_processRay"); const double* from = m_rayInputBuffer[ray].m_rayFromPosition; const double* to = m_rayInputBuffer[ray].m_rayToPosition; btVector3 rayFromWorld(from[0], from[1], from[2]); btVector3 rayToWorld(to[0], to[1], to[2]); btCollisionWorld::ClosestRayResultCallback rayResultCallback(rayFromWorld, rayToWorld); rayResultCallback.m_flags |= btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest; m_world->rayTest(rayFromWorld, rayToWorld, rayResultCallback); b3RayHitInfo& hit = m_hitInfoOutputBuffer[ray]; if (rayResultCallback.hasHit()) { hit.m_hitFraction = rayResultCallback.m_closestHitFraction; int objectUniqueId = -1; int linkIndex = -1; const btRigidBody* body = btRigidBody::upcast(rayResultCallback.m_collisionObject); if (body) { objectUniqueId = rayResultCallback.m_collisionObject->getUserIndex2(); } else { const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(rayResultCallback.m_collisionObject); if (mblB && mblB->m_multiBody) { linkIndex = mblB->m_link; objectUniqueId = mblB->m_multiBody->getUserIndex2(); } } hit.m_hitObjectUniqueId = objectUniqueId; hit.m_hitObjectLinkIndex = linkIndex; hit.m_hitPositionWorld[0] = rayResultCallback.m_hitPointWorld[0]; hit.m_hitPositionWorld[1] = rayResultCallback.m_hitPointWorld[1]; hit.m_hitPositionWorld[2] = rayResultCallback.m_hitPointWorld[2]; hit.m_hitNormalWorld[0] = rayResultCallback.m_hitNormalWorld[0]; hit.m_hitNormalWorld[1] = rayResultCallback.m_hitNormalWorld[1]; hit.m_hitNormalWorld[2] = rayResultCallback.m_hitNormalWorld[2]; } else { hit.m_hitFraction = 1; hit.m_hitObjectUniqueId = -1; hit.m_hitObjectLinkIndex = -1; hit.m_hitPositionWorld[0] = 0; hit.m_hitPositionWorld[1] = 0; hit.m_hitPositionWorld[2] = 0; hit.m_hitNormalWorld[0] = 0; hit.m_hitNormalWorld[1] = 0; hit.m_hitNormalWorld[2] = 0; } } }; void PhysicsServerCommandProcessor::createThreadPool() { #ifdef BT_THREADSAFE if (m_data->m_threadPool == 0) { m_data->m_threadPool = new b3ThreadPool("PhysicsServerCommandProcessorThreadPool"); } #endif //BT_THREADSAFE } bool PhysicsServerCommandProcessor::processRequestRaycastIntersectionsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_RAY_CAST_INTERSECTIONS"); serverStatusOut.m_raycastHits.m_numRaycastHits = 0; const int numCommandRays = clientCmd.m_requestRaycastIntersections.m_numCommandRays; const int numStreamingRays = clientCmd.m_requestRaycastIntersections.m_numStreamingRays; const int totalRays = numCommandRays + numStreamingRays; int numThreads = clientCmd.m_requestRaycastIntersections.m_numThreads; if (numThreads == 0) { // When 0 is specified, Bullet can decide how many threads to use. // About 16 rays per thread seems to work reasonably well. numThreads = btMax(1, totalRays / 16); } if (numThreads > 1) { createThreadPool(); } btAlignedObjectArray rays; rays.resize(totalRays); if (numCommandRays) { memcpy(&rays[0], &clientCmd.m_requestRaycastIntersections.m_fromToRays[0], numCommandRays * sizeof(b3RayData)); } if (numStreamingRays) { memcpy(&rays[numCommandRays], bufferServerToClient, numStreamingRays * sizeof(b3RayData)); } if (clientCmd.m_requestRaycastIntersections.m_parentObjectUniqueId >= 0) { btTransform tr; tr.setIdentity(); InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_requestRaycastIntersections.m_parentObjectUniqueId); if (bodyHandle) { int linkIndex = -1; if (bodyHandle->m_multiBody) { int linkIndex = clientCmd.m_requestRaycastIntersections.m_parentLinkIndex; if (linkIndex == -1) { tr = bodyHandle->m_multiBody->getBaseWorldTransform(); } else { if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks()) { tr = bodyHandle->m_multiBody->getLink(linkIndex).m_cachedWorldTransform; } } } if (bodyHandle->m_rigidBody) { tr = bodyHandle->m_rigidBody->getWorldTransform(); } //convert all rays into world space for (int i = 0; i < totalRays; i++) { btVector3 localPosTo(rays[i].m_rayToPosition[0], rays[i].m_rayToPosition[1], rays[i].m_rayToPosition[2]); btVector3 worldPosTo = tr * localPosTo; btVector3 localPosFrom(rays[i].m_rayFromPosition[0], rays[i].m_rayFromPosition[1], rays[i].m_rayFromPosition[2]); btVector3 worldPosFrom = tr * localPosFrom; rays[i].m_rayFromPosition[0] = worldPosFrom[0]; rays[i].m_rayFromPosition[1] = worldPosFrom[1]; rays[i].m_rayFromPosition[2] = worldPosFrom[2]; rays[i].m_rayToPosition[0] = worldPosTo[0]; rays[i].m_rayToPosition[1] = worldPosTo[1]; rays[i].m_rayToPosition[2] = worldPosTo[2]; } } } BatchRayCaster batchRayCaster(m_data->m_threadPool, m_data->m_dynamicsWorld, &rays[0], (b3RayHitInfo*)bufferServerToClient, totalRays); batchRayCaster.castRays(numThreads); serverStatusOut.m_raycastHits.m_numRaycastHits = totalRays; serverStatusOut.m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestDebugLinesCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_DEBUG_LINES"); int curFlags = m_data->m_remoteDebugDrawer->getDebugMode(); int debugMode = clientCmd.m_requestDebugLinesArguments.m_debugMode; //clientCmd.btIDebugDraw::DBG_DrawWireframe|btIDebugDraw::DBG_DrawAabb; int startingLineIndex = clientCmd.m_requestDebugLinesArguments.m_startingLineIndex; if (startingLineIndex < 0) { b3Warning("startingLineIndex should be non-negative"); startingLineIndex = 0; } if (clientCmd.m_requestDebugLinesArguments.m_startingLineIndex == 0) { m_data->m_remoteDebugDrawer->m_lines2.resize(0); //|btIDebugDraw::DBG_DrawAabb| // btIDebugDraw::DBG_DrawConstraints |btIDebugDraw::DBG_DrawConstraintLimits ; m_data->m_remoteDebugDrawer->setDebugMode(debugMode); btIDebugDraw* oldDebugDrawer = m_data->m_dynamicsWorld->getDebugDrawer(); m_data->m_dynamicsWorld->setDebugDrawer(m_data->m_remoteDebugDrawer); m_data->m_dynamicsWorld->debugDrawWorld(); m_data->m_dynamicsWorld->setDebugDrawer(oldDebugDrawer); m_data->m_remoteDebugDrawer->setDebugMode(curFlags); } //9 floats per line: 3 floats for 'from', 3 floats for 'to' and 3 floats for 'color' int bytesPerLine = (sizeof(float) * 9); int maxNumLines = bufferSizeInBytes / bytesPerLine - 1; if (startingLineIndex > m_data->m_remoteDebugDrawer->m_lines2.size()) { b3Warning("m_startingLineIndex exceeds total number of debug lines"); startingLineIndex = m_data->m_remoteDebugDrawer->m_lines2.size(); } int numLines = btMin(maxNumLines, m_data->m_remoteDebugDrawer->m_lines2.size() - startingLineIndex); if (numLines) { float* linesFrom = (float*)bufferServerToClient; float* linesTo = (float*)(bufferServerToClient + numLines * 3 * sizeof(float)); float* linesColor = (float*)(bufferServerToClient + 2 * numLines * 3 * sizeof(float)); for (int i = 0; i < numLines; i++) { linesFrom[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.x(); linesTo[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.x(); linesColor[i * 3] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.x(); linesFrom[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.y(); linesTo[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.y(); linesColor[i * 3 + 1] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.y(); linesFrom[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_from.z(); linesTo[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_to.z(); linesColor[i * 3 + 2] = m_data->m_remoteDebugDrawer->m_lines2[i + startingLineIndex].m_color.z(); } } serverStatusOut.m_type = CMD_DEBUG_LINES_COMPLETED; serverStatusOut.m_numDataStreamBytes = numLines * bytesPerLine; serverStatusOut.m_sendDebugLinesArgs.m_numDebugLines = numLines; serverStatusOut.m_sendDebugLinesArgs.m_startingLineIndex = startingLineIndex; serverStatusOut.m_sendDebugLinesArgs.m_numRemainingDebugLines = m_data->m_remoteDebugDrawer->m_lines2.size() - (startingLineIndex + numLines); return hasStatus; } bool PhysicsServerCommandProcessor::processSyncBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SYNC_BODY_INFO"); b3AlignedObjectArray usedHandles; m_data->m_bodyHandles.getUsedHandles(usedHandles); int actualNumBodies = 0; int* bodyUids = (int*)bufferServerToClient; for (int i = 0; i < usedHandles.size(); i++) { int usedHandle = usedHandles[i]; InternalBodyData* body = m_data->m_bodyHandles.getHandle(usedHandle); #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (body && (body->m_multiBody || body->m_rigidBody || body->m_softBody)) #else if (body && (body->m_multiBody || body->m_rigidBody)) #endif { bodyUids[actualNumBodies++] = usedHandle; } } serverStatusOut.m_sdfLoadedArgs.m_numBodies = actualNumBodies; int usz = m_data->m_userConstraints.size(); int* constraintUid = bodyUids + actualNumBodies; serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = usz; for (int i = 0; i < usz; i++) { int key = m_data->m_userConstraints.getKeyAtIndex(i).getUid1(); constraintUid[i] = key; } serverStatusOut.m_type = CMD_SYNC_BODY_INFO_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processSyncUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SYNC_USER_DATA"); b3AlignedObjectArray userDataHandles; if (clientCmd.m_syncUserDataRequestArgs.m_numRequestedBodies == 0) { m_data->m_userDataHandles.getUsedHandles(userDataHandles); } else { for (int i=0; im_bodyHandles.getHandle(bodyUniqueId); if (!body) { return hasStatus; } for (int j=0; j < body->m_userDataHandles.size(); ++j) { userDataHandles.push_back(body->m_userDataHandles[j]); } } } if (userDataHandles.size()) { memcpy(bufferServerToClient, &userDataHandles[0], sizeof(int) * userDataHandles.size()); } // Only clear the client-side cache when a full sync is requested serverStatusOut.m_syncUserDataArgs.m_clearCachedUserDataEntries = clientCmd.m_syncUserDataRequestArgs.m_numRequestedBodies == 0; serverStatusOut.m_syncUserDataArgs.m_numUserDataIdentifiers = userDataHandles.size(); serverStatusOut.m_type = CMD_SYNC_USER_DATA_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_USER_DATA"); serverStatusOut.m_type = CMD_REQUEST_USER_DATA_FAILED; SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(clientCmd.m_userDataRequestArgs.m_userDataId); if (!userData) { return hasStatus; } btAssert(bufferSizeInBytes >= userData->m_bytes.size()); serverStatusOut.m_userDataResponseArgs.m_userDataId = clientCmd.m_userDataRequestArgs.m_userDataId; serverStatusOut.m_userDataResponseArgs.m_bodyUniqueId = userData->m_bodyUniqueId; serverStatusOut.m_userDataResponseArgs.m_linkIndex = userData->m_linkIndex; serverStatusOut.m_userDataResponseArgs.m_visualShapeIndex = userData->m_visualShapeIndex; serverStatusOut.m_userDataResponseArgs.m_valueType = userData->m_type; serverStatusOut.m_userDataResponseArgs.m_valueLength = userData->m_bytes.size(); serverStatusOut.m_type = CMD_REQUEST_USER_DATA_COMPLETED; strcpy(serverStatusOut.m_userDataResponseArgs.m_key, userData->m_key.c_str()); if (userData->m_bytes.size()) { memcpy(bufferServerToClient, &userData->m_bytes[0], userData->m_bytes.size()); } return hasStatus; } bool PhysicsServerCommandProcessor::processAddUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_ADD_USER_DATA"); serverStatusOut.m_type = CMD_ADD_USER_DATA_FAILED; const AddUserDataRequestArgs& addUserDataArgs = clientCmd.m_addUserDataRequestArgs; if (addUserDataArgs.m_bodyUniqueId < 0 || addUserDataArgs.m_bodyUniqueId >= m_data->m_bodyHandles.getNumHandles()) { return hasStatus; } int userDataHandle = addUserData( addUserDataArgs.m_bodyUniqueId, addUserDataArgs.m_linkIndex, addUserDataArgs.m_visualShapeIndex, addUserDataArgs.m_key, bufferServerToClient, addUserDataArgs.m_valueLength, addUserDataArgs.m_valueType); if (userDataHandle < 0) { return hasStatus; } serverStatusOut.m_type = CMD_ADD_USER_DATA_COMPLETED; UserDataResponseArgs& userDataResponseArgs = serverStatusOut.m_userDataResponseArgs; userDataResponseArgs.m_userDataId = userDataHandle; userDataResponseArgs.m_bodyUniqueId = addUserDataArgs.m_bodyUniqueId; userDataResponseArgs.m_linkIndex = addUserDataArgs.m_linkIndex; userDataResponseArgs.m_visualShapeIndex = addUserDataArgs.m_visualShapeIndex; userDataResponseArgs.m_valueLength = addUserDataArgs.m_valueLength; userDataResponseArgs.m_valueType = addUserDataArgs.m_valueType; strcpy(userDataResponseArgs.m_key, addUserDataArgs.m_key); b3Notification notification; notification.m_notificationType = USER_DATA_ADDED; b3UserDataNotificationArgs& userDataArgs = notification.m_userDataArgs; userDataArgs.m_userDataId = userDataHandle; userDataArgs.m_bodyUniqueId = addUserDataArgs.m_bodyUniqueId; userDataArgs.m_linkIndex = addUserDataArgs.m_linkIndex; userDataArgs.m_visualShapeIndex = addUserDataArgs.m_visualShapeIndex; strcpy(userDataArgs.m_key, addUserDataArgs.m_key); m_data->m_pluginManager.addNotification(notification); // Keep bufferServerToClient as-is. return hasStatus; } bool PhysicsServerCommandProcessor::processCollisionFilterCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED; b3PluginCollisionInterface* collisionInterface = m_data->m_pluginManager.getCollisionInterface(); if (collisionInterface) { if (clientCmd.m_updateFlags & B3_COLLISION_FILTER_PAIR) { collisionInterface->setBroadphaseCollisionFilter(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA, clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB, clientCmd.m_collisionFilterArgs.m_linkIndexA, clientCmd.m_collisionFilterArgs.m_linkIndexB, clientCmd.m_collisionFilterArgs.m_enableCollision); btAlignedObjectArray bodies; //now also 'refresh' the broadphase collision pairs involved if (clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA >= 0) { bodies.push_back(m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA)); } if (clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB >= 0) { bodies.push_back(m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdB)); } for (int i = 0; i < bodies.size(); i++) { InternalBodyData* body = bodies[i]; if (body) { if (body->m_multiBody) { if (body->m_multiBody->getBaseCollider()) { m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_multiBody->getBaseCollider()); } for (int i = 0; i < body->m_multiBody->getNumLinks(); i++) { if (body->m_multiBody->getLinkCollider(i)) { m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_multiBody->getLinkCollider(i)); } } } else { //btRigidBody case if (body->m_rigidBody) { m_data->m_dynamicsWorld->refreshBroadphaseProxy(body->m_rigidBody); } } } } } if (clientCmd.m_updateFlags & B3_COLLISION_FILTER_GROUP_MASK) { InternalBodyData* body = m_data->m_bodyHandles.getHandle(clientCmd.m_collisionFilterArgs.m_bodyUniqueIdA); btCollisionObject* colObj = 0; if (body->m_multiBody) { if (clientCmd.m_collisionFilterArgs.m_linkIndexA == -1) { colObj = body->m_multiBody->getBaseCollider(); } else { if (clientCmd.m_collisionFilterArgs.m_linkIndexA >= 0 && clientCmd.m_collisionFilterArgs.m_linkIndexA < body->m_multiBody->getNumLinks()) { colObj = body->m_multiBody->getLinkCollider(clientCmd.m_collisionFilterArgs.m_linkIndexA); } } } else { if (body->m_rigidBody) { colObj = body->m_rigidBody; } } if (colObj) { colObj->getBroadphaseHandle()->m_collisionFilterGroup = clientCmd.m_collisionFilterArgs.m_collisionFilterGroup; colObj->getBroadphaseHandle()->m_collisionFilterMask = clientCmd.m_collisionFilterArgs.m_collisionFilterMask; m_data->m_dynamicsWorld->refreshBroadphaseProxy(colObj); } } } return true; } bool PhysicsServerCommandProcessor::processRemoveUserDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REMOVE_USER_DATA"); serverStatusOut.m_type = CMD_REMOVE_USER_DATA_FAILED; SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(clientCmd.m_removeUserDataRequestArgs.m_userDataId); if (!userData) { return hasStatus; } InternalBodyData* body = m_data->m_bodyHandles.getHandle(userData->m_bodyUniqueId); if (!body) { return hasStatus; } body->m_userDataHandles.remove(clientCmd.m_removeUserDataRequestArgs.m_userDataId); b3Notification notification; notification.m_notificationType = USER_DATA_REMOVED; b3UserDataNotificationArgs& userDataArgs = notification.m_userDataArgs; userDataArgs.m_userDataId = clientCmd.m_removeUserDataRequestArgs.m_userDataId; userDataArgs.m_bodyUniqueId = userData->m_bodyUniqueId; userDataArgs.m_linkIndex = userData->m_linkIndex; userDataArgs.m_visualShapeIndex = userData->m_visualShapeIndex; strcpy(userDataArgs.m_key, userData->m_key.c_str()); m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData)); m_data->m_userDataHandles.freeHandle(clientCmd.m_removeUserDataRequestArgs.m_userDataId); serverStatusOut.m_removeUserDataResponseArgs = clientCmd.m_removeUserDataRequestArgs; serverStatusOut.m_type = CMD_REMOVE_USER_DATA_COMPLETED; m_data->m_pluginManager.addNotification(notification); return hasStatus; } bool PhysicsServerCommandProcessor::processSendDesiredStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SEND_DESIRED_STATE"); if (m_data->m_verboseOutput) { b3Printf("Processed CMD_SEND_DESIRED_STATE"); } int bodyUniqueId = clientCmd.m_sendDesiredStateCommandArgument.m_bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; btAssert(mb); switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode) { case CONTROL_MODE_PD: { if (m_data->m_verboseOutput) { b3Printf("Using CONTROL_MODE_PD"); } b3PluginArguments args; args.m_ints[1] = bodyUniqueId; //find the joint motors and apply the desired velocity and maximum force/torque { args.m_numInts = 0; args.m_numFloats = 0; //syncBodies is expensive/slow, use it only once m_data->m_pluginManager.executePluginCommand(m_data->m_pdControlPlugin, &args); int velIndex = 6; //skip the 3 linear + 3 angular degree of freedom velocity entries of the base int posIndex = 7; //skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base for (int link = 0; link < mb->getNumLinks(); link++) { if (supportsJointMotor(mb, link)) { bool hasDesiredPosOrVel = false; btScalar desiredVelocity = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0) { hasDesiredPosOrVel = true; desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex]; args.m_floats[2] = 0.1; // kd } btScalar desiredPosition = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0) { hasDesiredPosOrVel = true; desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex]; args.m_floats[3] = 0.1; // kp } if (hasDesiredPosOrVel) { if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0) { args.m_floats[3] = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex]; } if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0) { args.m_floats[2] = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex]; } args.m_floats[1] = desiredVelocity; //clamp position if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit) { btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit); } args.m_floats[0] = desiredPosition; btScalar maxImp = 1000000.f; if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex]; args.m_floats[4] = maxImp; args.m_ints[2] = link; args.m_numInts = 3; args.m_numFloats = 5; args.m_ints[0] = eSetPDControl; if (args.m_floats[4] < B3_EPSILON) { args.m_ints[0] = eRemovePDControl; } m_data->m_pluginManager.executePluginCommand(m_data->m_pdControlPlugin, &args); } } velIndex += mb->getLink(link).m_dofCount; posIndex += mb->getLink(link).m_posVarCount; } } break; } case CONTROL_MODE_TORQUE: { if (m_data->m_verboseOutput) { b3Printf("Using CONTROL_MODE_TORQUE"); } // mb->clearForcesAndTorques(); int torqueIndex = 6; if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) { for (int link = 0; link < mb->getNumLinks(); link++) { for (int dof = 0; dof < mb->getLink(link).m_dofCount; dof++) { double torque = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[torqueIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) { torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[torqueIndex]; mb->addJointTorqueMultiDof(link, dof, torque); } torqueIndex++; } } } break; } case CONTROL_MODE_VELOCITY: { if (m_data->m_verboseOutput) { b3Printf("Using CONTROL_MODE_VELOCITY"); } int numMotors = 0; //find the joint motors and apply the desired velocity and maximum force/torque { int dofIndex = 6; //skip the 3 linear + 3 angular degree of freedom entries of the base for (int link = 0; link < mb->getNumLinks(); link++) { if (supportsJointMotor(mb, link)) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr; if (motor) { btScalar desiredVelocity = 0.f; bool hasDesiredVelocity = false; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0) { desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex]; btScalar kd = 0.1f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_KD) != 0) { kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[dofIndex]; } motor->setVelocityTarget(desiredVelocity, kd); btScalar kp = 0.f; motor->setPositionTarget(0, kp); hasDesiredVelocity = true; } if (hasDesiredVelocity) { //disable velocity clamp in velocity mode motor->setRhsClamp(SIMD_INFINITY); btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) { maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] * m_data->m_physicsDeltaTime; } motor->setMaxAppliedImpulse(maxImp); } numMotors++; } } dofIndex += mb->getLink(link).m_dofCount; } } break; } case CONTROL_MODE_POSITION_VELOCITY_PD: { if (m_data->m_verboseOutput) { b3Printf("Using CONTROL_MODE_POSITION_VELOCITY_PD"); } //compute the force base on PD control int numMotors = 0; //find the joint motors and apply the desired velocity and maximum force/torque { int velIndex = 6; //skip the 3 linear + 3 angular degree of freedom velocity entries of the base int posIndex = 7; //skip 3 positional and 4 orientation (quaternion) positional degrees of freedom of the base for (int link = 0; link < mb->getNumLinks(); link++) { if (supportsJointMotor(mb, link)) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)mb->getLink(link).m_userPtr; if (motor) { if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_RHS_CLAMP) != 0) { motor->setRhsClamp(clientCmd.m_sendDesiredStateCommandArgument.m_rhsClamp[velIndex]); } bool hasDesiredPosOrVel = false; btScalar kp = 0.f; btScalar kd = 0.f; btScalar desiredVelocity = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0) { hasDesiredPosOrVel = true; desiredVelocity = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex]; kd = 0.1; } btScalar desiredPosition = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0) { hasDesiredPosOrVel = true; desiredPosition = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex]; kp = 0.1; } if (hasDesiredPosOrVel) { if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0) { kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex]; } if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0) { kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex]; } motor->setVelocityTarget(desiredVelocity, kd); //todo: instead of clamping, combine the motor and limit //and combine handling of limit force and motor force. //clamp position if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit) { btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit); } motor->setPositionTarget(desiredPosition, kp); btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime; if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex] * m_data->m_physicsDeltaTime; motor->setMaxAppliedImpulse(maxImp); } numMotors++; } } if (mb->getLink(link).m_jointType == btMultibodyLink::eSpherical) { btMultiBodySphericalJointMotor* motor = (btMultiBodySphericalJointMotor*)mb->getLink(link).m_userPtr; if (motor) { if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_RHS_CLAMP) != 0) { motor->setRhsClamp(clientCmd.m_sendDesiredStateCommandArgument.m_rhsClamp[velIndex]); } bool hasDesiredPosOrVel = false; btScalar kp = 0.f; btScalar kd = 0.f; btVector3 desiredVelocity(0, 0, 0); if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0) { hasDesiredPosOrVel = true; desiredVelocity.setValue( clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 0], clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 1], clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex + 2]); kd = 0.1; } btQuaternion desiredPosition(0, 0, 0, 1); if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0) { hasDesiredPosOrVel = true; desiredPosition.setValue( clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 0], clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 1], clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 2], clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex + 3]); kp = 0.1; } if (hasDesiredPosOrVel) { if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KP) != 0) { kp = clientCmd.m_sendDesiredStateCommandArgument.m_Kp[velIndex]; } if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_KD) != 0) { kd = clientCmd.m_sendDesiredStateCommandArgument.m_Kd[velIndex]; } motor->setVelocityTarget(desiredVelocity, kd); //todo: instead of clamping, combine the motor and limit //and combine handling of limit force and motor force. //clamp position //if (mb->getLink(link).m_jointLowerLimit <= mb->getLink(link).m_jointUpperLimit) //{ // btClamp(desiredPosition, mb->getLink(link).m_jointLowerLimit, mb->getLink(link).m_jointUpperLimit); //} motor->setPositionTarget(desiredPosition, kp); btScalar maxImp = 1000000.f * m_data->m_physicsDeltaTime; if ((clientCmd.m_updateFlags & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) maxImp = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex] * m_data->m_physicsDeltaTime; motor->setMaxAppliedImpulse(maxImp); } numMotors++; } } velIndex += mb->getLink(link).m_dofCount; posIndex += mb->getLink(link).m_posVarCount; } } break; } #ifdef STATIC_LINK_SPD_PLUGIN case CONTROL_MODE_STABLE_PD: { int posVal = body->m_multiBody->getNumPosVars(); btAlignedObjectArray zeroVel; int dof = 7 + posVal; zeroVel.resize(dof); //clientCmd.m_sendDesiredStateCommandArgument. //current positions and velocities btAlignedObjectArray jointPositionsQ; btAlignedObjectArray jointVelocitiesQdot; btTransform baseTr = body->m_multiBody->getBaseWorldTransform(); #if 1 jointPositionsQ.push_back(baseTr.getOrigin()[0]); jointPositionsQ.push_back(baseTr.getOrigin()[1]); jointPositionsQ.push_back(baseTr.getOrigin()[2]); jointPositionsQ.push_back(baseTr.getRotation()[0]); jointPositionsQ.push_back(baseTr.getRotation()[1]); jointPositionsQ.push_back(baseTr.getRotation()[2]); jointPositionsQ.push_back(baseTr.getRotation()[3]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[0]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[1]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseVel()[2]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[0]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[1]); jointVelocitiesQdot.push_back(body->m_multiBody->getBaseOmega()[2]); jointVelocitiesQdot.push_back(0); #else for (int i = 0; i < 7; i++) { jointPositionsQ.push_back(0); jointVelocitiesQdot.push_back(0); } jointPositionsQ[6] = 1; #endif for (int i = 0; i < body->m_multiBody->getNumLinks(); i++) { switch (body->m_multiBody->getLink(i).m_jointType) { case btMultibodyLink::eSpherical: { btScalar* jointPos = body->m_multiBody->getJointPosMultiDof(i); jointPositionsQ.push_back(jointPos[0]); jointPositionsQ.push_back(jointPos[1]); jointPositionsQ.push_back(jointPos[2]); jointPositionsQ.push_back(jointPos[3]); btScalar* jointVel = body->m_multiBody->getJointVelMultiDof(i); jointVelocitiesQdot.push_back(jointVel[0]); jointVelocitiesQdot.push_back(jointVel[1]); jointVelocitiesQdot.push_back(jointVel[2]); jointVelocitiesQdot.push_back(0); break; } case btMultibodyLink::ePrismatic: case btMultibodyLink::eRevolute: { btScalar* jointPos = body->m_multiBody->getJointPosMultiDof(i); jointPositionsQ.push_back(jointPos[0]); btScalar* jointVel = body->m_multiBody->getJointVelMultiDof(i); jointVelocitiesQdot.push_back(jointVel[0]); break; } case btMultibodyLink::eFixed: { //skip break; } default: { b3Error("Unsupported joint type"); btAssert(0); } } } cRBDModel* rbdModel = 0; { BT_PROFILE("findOrCreateRBDModel"); rbdModel = m_data->findOrCreateRBDModel(body->m_multiBody, &jointPositionsQ[0], &jointVelocitiesQdot[0]); } if (rbdModel) { int num_dof = jointPositionsQ.size(); const Eigen::VectorXd& pose = rbdModel->GetPose(); const Eigen::VectorXd& vel = rbdModel->GetVel(); Eigen::Map mKp((double*)clientCmd.m_sendDesiredStateCommandArgument.m_Kp, num_dof); Eigen::Map mKd((double*)clientCmd.m_sendDesiredStateCommandArgument.m_Kd, num_dof); Eigen::Map maxForce((double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque, num_dof); Eigen::DiagonalMatrix Kp_mat = mKp.asDiagonal(); Eigen::DiagonalMatrix Kd_mat = mKd.asDiagonal(); Eigen::MatrixXd M = rbdModel->GetMassMat(); //rbdModel->UpdateBiasForce(); const Eigen::VectorXd& C = rbdModel->GetBiasForce(); M.diagonal() += m_data->m_physicsDeltaTime * mKd; Eigen::VectorXd pose_inc; const Eigen::MatrixXd& joint_mat = rbdModel->GetJointMat(); { BT_PROFILE("cKinTree::VelToPoseDiff"); cKinTree::VelToPoseDiff(joint_mat, rbdModel->GetPose(), rbdModel->GetVel(), pose_inc); } //tar_pose needs to be reshuffled? Eigen::VectorXd tar_pose, tar_vel; { BT_PROFILE("convertPose"); PhysicsServerCommandProcessorInternalData::convertPose(body->m_multiBody, (double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ, (double*)clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot, tar_pose, tar_vel); } pose_inc = pose + m_data->m_physicsDeltaTime * pose_inc; { BT_PROFILE("cKinTree::PostProcessPose"); cKinTree::PostProcessPose(joint_mat, pose_inc); } Eigen::VectorXd pose_err; { BT_PROFILE("cKinTree::CalcVel"); cKinTree::CalcVel(joint_mat, pose_inc, tar_pose, 1, pose_err); } for (int i = 0; i < 7; i++) { pose_err[i] = 0; } Eigen::VectorXd vel_err = tar_vel - vel; Eigen::VectorXd acc; { BT_PROFILE("acc"); acc = Kp_mat * pose_err + Kd_mat * vel_err - C; } { BT_PROFILE("M.ldlt().solve"); acc = M.ldlt().solve(acc); } Eigen::VectorXd out_tau = Eigen::VectorXd::Zero(num_dof); out_tau += Kp_mat * pose_err + Kd_mat * (vel_err - m_data->m_physicsDeltaTime * acc); //clamp the forces out_tau = out_tau.cwiseMax(-maxForce); out_tau = out_tau.cwiseMin(maxForce); //apply the forces int torqueIndex = 7; for (int link = 0; link < mb->getNumLinks(); link++) { int dofCount = mb->getLink(link).m_dofCount; int dofOffset = mb->getLink(link).m_dofOffset; if (dofCount == 3) { for (int dof = 0; dof < 3; dof++) { double torque = out_tau[torqueIndex + dof]; mb->addJointTorqueMultiDof(link, dof, torque); } torqueIndex += 4; } if (dofCount == 1) { double torque = out_tau[torqueIndex]; mb->addJointTorqueMultiDof(link, 0, torque); torqueIndex++; } } } break; } #endif default: { b3Warning("m_controlMode not implemented yet"); break; } } } else { //support for non-btMultiBody, such as btRigidBody if (body && body->m_rigidBody) { btRigidBody* rb = body->m_rigidBody; btAssert(rb); //switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode) { //case CONTROL_MODE_TORQUE: { if (m_data->m_verboseOutput) { b3Printf("Using CONTROL_MODE_TORQUE"); } // mb->clearForcesAndTorques(); ///see addJointInfoFromConstraint int velIndex = 6; int posIndex = 7; //if ((clientCmd.m_updateFlags&SIM_DESIRED_STATE_HAS_MAX_FORCE)!=0) { for (int link = 0; link < body->m_rigidBodyJoints.size(); link++) { btGeneric6DofSpring2Constraint* con = body->m_rigidBodyJoints[link]; btVector3 linearLowerLimit; btVector3 linearUpperLimit; btVector3 angularLowerLimit; btVector3 angularUpperLimit; //for (int dof=0;dofgetLink(link).m_dofCount;dof++) { { int torqueIndex = velIndex; double torque = 100; bool hasDesiredTorque = false; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_MAX_FORCE) != 0) { torque = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[velIndex]; hasDesiredTorque = true; } bool hasDesiredPosOrVel = false; btScalar qdotTarget = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[velIndex] & SIM_DESIRED_STATE_HAS_QDOT) != 0) { hasDesiredPosOrVel = true; qdotTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQdot[velIndex]; } btScalar qTarget = 0.f; if ((clientCmd.m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[posIndex] & SIM_DESIRED_STATE_HAS_Q) != 0) { hasDesiredPosOrVel = true; qTarget = clientCmd.m_sendDesiredStateCommandArgument.m_desiredStateQ[posIndex]; } con->getLinearLowerLimit(linearLowerLimit); con->getLinearUpperLimit(linearUpperLimit); con->getAngularLowerLimit(angularLowerLimit); con->getAngularUpperLimit(angularUpperLimit); if (linearLowerLimit.isZero() && linearUpperLimit.isZero() && angularLowerLimit.isZero() && angularUpperLimit.isZero()) { //fixed, don't do anything } else { con->calculateTransforms(); if (linearLowerLimit.isZero() && linearUpperLimit.isZero()) { //eRevoluteType; btVector3 limitRange = angularLowerLimit.absolute() + angularUpperLimit.absolute(); int limitAxis = limitRange.maxAxis(); const btTransform& transA = con->getCalculatedTransformA(); const btTransform& transB = con->getCalculatedTransformB(); btVector3 axisA = transA.getBasis().getColumn(limitAxis); btVector3 axisB = transB.getBasis().getColumn(limitAxis); switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode) { case CONTROL_MODE_TORQUE: { if (hasDesiredTorque) { con->getRigidBodyA().applyTorque(torque * axisA); con->getRigidBodyB().applyTorque(-torque * axisB); } break; } case CONTROL_MODE_VELOCITY: { if (hasDesiredPosOrVel) { con->enableMotor(3 + limitAxis, true); con->setTargetVelocity(3 + limitAxis, qdotTarget); con->setMaxMotorForce(3 + limitAxis, torque); } break; } case CONTROL_MODE_POSITION_VELOCITY_PD: { if (hasDesiredPosOrVel) { con->setServo(3 + limitAxis, true); con->setServoTarget(3 + limitAxis, -qTarget); //next one is the maximum velocity to reach target position. //the maximum velocity is limited by maxMotorForce con->setTargetVelocity(3 + limitAxis, 100); con->setMaxMotorForce(3 + limitAxis, torque); con->enableMotor(3 + limitAxis, true); } break; } default: { } }; } else { //ePrismaticType; @todo btVector3 limitRange = linearLowerLimit.absolute() + linearUpperLimit.absolute(); int limitAxis = limitRange.maxAxis(); const btTransform& transA = con->getCalculatedTransformA(); const btTransform& transB = con->getCalculatedTransformB(); btVector3 axisA = transA.getBasis().getColumn(limitAxis); btVector3 axisB = transB.getBasis().getColumn(limitAxis); switch (clientCmd.m_sendDesiredStateCommandArgument.m_controlMode) { case CONTROL_MODE_TORQUE: { con->getRigidBodyA().applyForce(-torque * axisA, btVector3(0, 0, 0)); con->getRigidBodyB().applyForce(torque * axisB, btVector3(0, 0, 0)); break; } case CONTROL_MODE_VELOCITY: { con->enableMotor(limitAxis, true); con->setTargetVelocity(limitAxis, -qdotTarget); con->setMaxMotorForce(limitAxis, torque); break; } case CONTROL_MODE_POSITION_VELOCITY_PD: { con->setServo(limitAxis, true); con->setServoTarget(limitAxis, qTarget); //next one is the maximum velocity to reach target position. //the maximum velocity is limited by maxMotorForce con->setTargetVelocity(limitAxis, 100); con->setMaxMotorForce(limitAxis, torque); con->enableMotor(limitAxis, true); break; } default: { } }; } } } //fi ///see addJointInfoFromConstraint velIndex++; //info.m_uIndex posIndex++; //info.m_qIndex } } } //fi //break; } } } //if (body && body->m_rigidBody) } serverStatusOut.m_type = CMD_DESIRED_STATE_RECEIVED_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestActualStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED; BT_PROFILE("CMD_REQUEST_ACTUAL_STATE"); if (m_data->m_verboseOutput) { b3Printf("Sending the actual state (Q,U)"); } int bodyUniqueId = clientCmd.m_requestActualStateInformationCommandArgument.m_bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); //we store the state details in the shared memory block, to reduce status size SendActualStateSharedMemoryStorage* stateDetails = (SendActualStateSharedMemoryStorage*)bufferServerToClient; //make sure the storage fits, otherwise btAssert(sizeof(SendActualStateSharedMemoryStorage) < bufferSizeInBytes); if (sizeof(SendActualStateSharedMemoryStorage) > bufferSizeInBytes) { //this forces an error report body = 0; } if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; SharedMemoryStatus& serverCmd = serverStatusOut; serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED; serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId; serverCmd.m_sendActualStateArgs.m_numLinks = body->m_multiBody->getNumLinks(); serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage); serverCmd.m_sendActualStateArgs.m_stateDetails = 0; int totalDegreeOfFreedomQ = 0; int totalDegreeOfFreedomU = 0; if (mb->getNumLinks() >= MAX_DEGREE_OF_FREEDOM) { serverStatusOut.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED; hasStatus = true; return hasStatus; } //always add the base, even for static (non-moving objects) //so that we can easily move the 'fixed' base when needed //do we don't use this conditional "if (!mb->hasFixedBase())" { btTransform tr; tr.setOrigin(mb->getBasePos()); tr.setRotation(mb->getWorldToBaseRot().inverse()); serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3]; //base position in world space, cartesian stateDetails->m_actualStateQ[0] = tr.getOrigin()[0]; stateDetails->m_actualStateQ[1] = tr.getOrigin()[1]; stateDetails->m_actualStateQ[2] = tr.getOrigin()[2]; //base orientation, quaternion x,y,z,w, in world space, cartesian stateDetails->m_actualStateQ[3] = tr.getRotation()[0]; stateDetails->m_actualStateQ[4] = tr.getRotation()[1]; stateDetails->m_actualStateQ[5] = tr.getRotation()[2]; stateDetails->m_actualStateQ[6] = tr.getRotation()[3]; totalDegreeOfFreedomQ += 7; //pos + quaternion //base linear velocity (in world space, cartesian) stateDetails->m_actualStateQdot[0] = mb->getBaseVel()[0]; stateDetails->m_actualStateQdot[1] = mb->getBaseVel()[1]; stateDetails->m_actualStateQdot[2] = mb->getBaseVel()[2]; //base angular velocity (in world space, cartesian) stateDetails->m_actualStateQdot[3] = mb->getBaseOmega()[0]; stateDetails->m_actualStateQdot[4] = mb->getBaseOmega()[1]; stateDetails->m_actualStateQdot[5] = mb->getBaseOmega()[2]; totalDegreeOfFreedomU += 6; //3 linear and 3 angular DOF } btAlignedObjectArray omega; btAlignedObjectArray linVel; bool computeForwardKinematics = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_FORWARD_KINEMATICS) != 0); if (computeForwardKinematics) { B3_PROFILE("compForwardKinematics"); btAlignedObjectArray world_to_local; btAlignedObjectArray local_origin; world_to_local.resize(mb->getNumLinks() + 1); local_origin.resize(mb->getNumLinks() + 1); mb->forwardKinematics(world_to_local, local_origin); } bool computeLinkVelocities = ((clientCmd.m_updateFlags & ACTUAL_STATE_COMPUTE_LINKVELOCITY) != 0); if (computeLinkVelocities) { omega.resize(mb->getNumLinks() + 1); linVel.resize(mb->getNumLinks() + 1); { B3_PROFILE("compTreeLinkVelocities"); mb->compTreeLinkVelocities(&omega[0], &linVel[0]); } } for (int l = 0; l < mb->getNumLinks(); l++) { for (int d = 0; d < mb->getLink(l).m_posVarCount; d++) { stateDetails->m_actualStateQ[totalDegreeOfFreedomQ++] = mb->getJointPosMultiDof(l)[d]; } for (int d = 0; d < mb->getLink(l).m_dofCount; d++) { stateDetails->m_jointMotorForce[totalDegreeOfFreedomU] = 0; if (mb->getLink(l).m_jointType == btMultibodyLink::eSpherical) { btMultiBodySphericalJointMotor* motor = (btMultiBodySphericalJointMotor*)mb->getLink(l).m_userPtr; if (motor) { btScalar impulse = motor->getAppliedImpulse(d); btScalar force = impulse / m_data->m_physicsDeltaTime; stateDetails->m_jointMotorForceMultiDof[totalDegreeOfFreedomU] = force; } } else { if (supportsJointMotor(mb, l)) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr; if (motor && m_data->m_physicsDeltaTime > btScalar(0)) { btScalar force = motor->getAppliedImpulse(0) / m_data->m_physicsDeltaTime; stateDetails->m_jointMotorForceMultiDof[totalDegreeOfFreedomU] = force; } } } stateDetails->m_actualStateQdot[totalDegreeOfFreedomU++] = mb->getJointVelMultiDof(l)[d]; } if (0 == mb->getLink(l).m_jointFeedback) { for (int d = 0; d < 6; d++) { stateDetails->m_jointReactionForces[l * 6 + d] = 0; } } else { btVector3 sensedForce = mb->getLink(l).m_jointFeedback->m_reactionForces.getLinear(); btVector3 sensedTorque = mb->getLink(l).m_jointFeedback->m_reactionForces.getAngular(); stateDetails->m_jointReactionForces[l * 6 + 0] = sensedForce[0]; stateDetails->m_jointReactionForces[l * 6 + 1] = sensedForce[1]; stateDetails->m_jointReactionForces[l * 6 + 2] = sensedForce[2]; stateDetails->m_jointReactionForces[l * 6 + 3] = sensedTorque[0]; stateDetails->m_jointReactionForces[l * 6 + 4] = sensedTorque[1]; stateDetails->m_jointReactionForces[l * 6 + 5] = sensedTorque[2]; } stateDetails->m_jointMotorForce[l] = 0; if (supportsJointMotor(mb, l)) { btMultiBodyJointMotor* motor = (btMultiBodyJointMotor*)body->m_multiBody->getLink(l).m_userPtr; if (motor && m_data->m_physicsDeltaTime > btScalar(0)) { btScalar force = motor->getAppliedImpulse(0) / m_data->m_physicsDeltaTime; stateDetails->m_jointMotorForce[l] = force; //if (force>0) //{ // b3Printf("force = %f\n", force); //} } } btVector3 linkLocalInertialOrigin = body->m_linkLocalInertialFrames[l].getOrigin(); btQuaternion linkLocalInertialRotation = body->m_linkLocalInertialFrames[l].getRotation(); btVector3 linkCOMOrigin = mb->getLink(l).m_cachedWorldTransform.getOrigin(); btQuaternion linkCOMRotation = mb->getLink(l).m_cachedWorldTransform.getRotation(); stateDetails->m_linkState[l * 7 + 0] = linkCOMOrigin.getX(); stateDetails->m_linkState[l * 7 + 1] = linkCOMOrigin.getY(); stateDetails->m_linkState[l * 7 + 2] = linkCOMOrigin.getZ(); stateDetails->m_linkState[l * 7 + 3] = linkCOMRotation.x(); stateDetails->m_linkState[l * 7 + 4] = linkCOMRotation.y(); stateDetails->m_linkState[l * 7 + 5] = linkCOMRotation.z(); stateDetails->m_linkState[l * 7 + 6] = linkCOMRotation.w(); btVector3 worldLinVel(0, 0, 0); btVector3 worldAngVel(0, 0, 0); if (computeLinkVelocities) { const btMatrix3x3& linkRotMat = mb->getLink(l).m_cachedWorldTransform.getBasis(); worldLinVel = linkRotMat * linVel[l + 1]; worldAngVel = linkRotMat * omega[l + 1]; } stateDetails->m_linkWorldVelocities[l * 6 + 0] = worldLinVel[0]; stateDetails->m_linkWorldVelocities[l * 6 + 1] = worldLinVel[1]; stateDetails->m_linkWorldVelocities[l * 6 + 2] = worldLinVel[2]; stateDetails->m_linkWorldVelocities[l * 6 + 3] = worldAngVel[0]; stateDetails->m_linkWorldVelocities[l * 6 + 4] = worldAngVel[1]; stateDetails->m_linkWorldVelocities[l * 6 + 5] = worldAngVel[2]; stateDetails->m_linkLocalInertialFrames[l * 7 + 0] = linkLocalInertialOrigin.getX(); stateDetails->m_linkLocalInertialFrames[l * 7 + 1] = linkLocalInertialOrigin.getY(); stateDetails->m_linkLocalInertialFrames[l * 7 + 2] = linkLocalInertialOrigin.getZ(); stateDetails->m_linkLocalInertialFrames[l * 7 + 3] = linkLocalInertialRotation.x(); stateDetails->m_linkLocalInertialFrames[l * 7 + 4] = linkLocalInertialRotation.y(); stateDetails->m_linkLocalInertialFrames[l * 7 + 5] = linkLocalInertialRotation.z(); stateDetails->m_linkLocalInertialFrames[l * 7 + 6] = linkLocalInertialRotation.w(); } serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ; serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU; hasStatus = true; } else if (body && body->m_rigidBody) { btRigidBody* rb = body->m_rigidBody; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED; serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId; serverCmd.m_sendActualStateArgs.m_numLinks = 0; serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage); serverCmd.m_sendActualStateArgs.m_stateDetails = 0; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3]; btTransform tr = rb->getWorldTransform(); //base position in world space, cartesian stateDetails->m_actualStateQ[0] = tr.getOrigin()[0]; stateDetails->m_actualStateQ[1] = tr.getOrigin()[1]; stateDetails->m_actualStateQ[2] = tr.getOrigin()[2]; //base orientation, quaternion x,y,z,w, in world space, cartesian stateDetails->m_actualStateQ[3] = tr.getRotation()[0]; stateDetails->m_actualStateQ[4] = tr.getRotation()[1]; stateDetails->m_actualStateQ[5] = tr.getRotation()[2]; stateDetails->m_actualStateQ[6] = tr.getRotation()[3]; int totalDegreeOfFreedomQ = 7; //pos + quaternion //base linear velocity (in world space, cartesian) stateDetails->m_actualStateQdot[0] = rb->getLinearVelocity()[0]; stateDetails->m_actualStateQdot[1] = rb->getLinearVelocity()[1]; stateDetails->m_actualStateQdot[2] = rb->getLinearVelocity()[2]; //base angular velocity (in world space, cartesian) stateDetails->m_actualStateQdot[3] = rb->getAngularVelocity()[0]; stateDetails->m_actualStateQdot[4] = rb->getAngularVelocity()[1]; stateDetails->m_actualStateQdot[5] = rb->getAngularVelocity()[2]; int totalDegreeOfFreedomU = 6; //3 linear and 3 angular DOF serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ; serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU; hasStatus = true; } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD else if (body && body->m_softBody) { btSoftBody* sb = body->m_softBody; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_COMPLETED; serverCmd.m_sendActualStateArgs.m_bodyUniqueId = bodyUniqueId; serverCmd.m_sendActualStateArgs.m_numLinks = 0; serverCmd.m_numDataStreamBytes = sizeof(SendActualStateSharedMemoryStorage); serverCmd.m_sendActualStateArgs.m_stateDetails = 0; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2]; serverCmd.m_sendActualStateArgs.m_rootLocalInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3]; btVector3 center_of_mass(sb->getCenterOfMass()); btTransform tr = sb->getRigidTransform(); //base position in world space, cartesian stateDetails->m_actualStateQ[0] = center_of_mass[0]; stateDetails->m_actualStateQ[1] = center_of_mass[1]; stateDetails->m_actualStateQ[2] = center_of_mass[2]; //base orientation, quaternion x,y,z,w, in world space, cartesian stateDetails->m_actualStateQ[3] = tr.getRotation()[0]; stateDetails->m_actualStateQ[4] = tr.getRotation()[1]; stateDetails->m_actualStateQ[5] = tr.getRotation()[2]; stateDetails->m_actualStateQ[6] = tr.getRotation()[3]; int totalDegreeOfFreedomQ = 7; //pos + quaternion int totalDegreeOfFreedomU = 6; //3 linear and 3 angular DOF serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomQ = totalDegreeOfFreedomQ; serverCmd.m_sendActualStateArgs.m_numDegreeOfFreedomU = totalDegreeOfFreedomU; hasStatus = true; } #endif else { //b3Warning("Request state but no multibody or rigid body available"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_ACTUAL_STATE_UPDATE_FAILED; hasStatus = true; } return hasStatus; } bool PhysicsServerCommandProcessor::processRequestContactpointInformationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_CONTACT_POINT_INFORMATION"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_sendContactPointArgs.m_numContactPointsCopied = 0; //make a snapshot of the contact manifolds into individual contact points if (clientCmd.m_requestContactPointArguments.m_startingContactPointIndex == 0) { m_data->m_cachedContactPoints.resize(0); int mode = CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS; if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE) { mode = clientCmd.m_requestContactPointArguments.m_mode; } switch (mode) { case CONTACT_QUERY_MODE_REPORT_EXISTING_CONTACT_POINTS: { int numContactManifolds = m_data->m_dynamicsWorld->getDispatcher()->getNumManifolds(); m_data->m_cachedContactPoints.reserve(numContactManifolds * 4); for (int i = 0; i < numContactManifolds; i++) { const btPersistentManifold* manifold = m_data->m_dynamicsWorld->getDispatcher()->getInternalManifoldPointer()[i]; int linkIndexA = -1; int linkIndexB = -1; int objectIndexB = -1; const btRigidBody* bodyB = btRigidBody::upcast(manifold->getBody1()); if (bodyB) { objectIndexB = bodyB->getUserIndex2(); } const btMultiBodyLinkCollider* mblB = btMultiBodyLinkCollider::upcast(manifold->getBody1()); if (mblB && mblB->m_multiBody) { linkIndexB = mblB->m_link; objectIndexB = mblB->m_multiBody->getUserIndex2(); } int objectIndexA = -1; const btRigidBody* bodyA = btRigidBody::upcast(manifold->getBody0()); if (bodyA) { objectIndexA = bodyA->getUserIndex2(); } const btMultiBodyLinkCollider* mblA = btMultiBodyLinkCollider::upcast(manifold->getBody0()); if (mblA && mblA->m_multiBody) { linkIndexA = mblA->m_link; objectIndexA = mblA->m_multiBody->getUserIndex2(); } btAssert(bodyA || mblA); //apply the filter, if the user provides it bool swap = false; if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter >= 0) { if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexA) { swap = false; } else if (clientCmd.m_requestContactPointArguments.m_objectAIndexFilter == objectIndexB) { swap = true; } else { continue; } } if (swap) { std::swap(objectIndexA, objectIndexB); std::swap(linkIndexA, linkIndexB); std::swap(bodyA, bodyB); } //apply the second object filter, if the user provides it if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter >= 0) { if (clientCmd.m_requestContactPointArguments.m_objectBIndexFilter != objectIndexB) { continue; } } if ( (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER) && clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter != linkIndexA) { continue; } if ( (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER) && clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter != linkIndexB) { continue; } for (int p = 0; p < manifold->getNumContacts(); p++) { b3ContactPointData pt; pt.m_bodyUniqueIdA = objectIndexA; pt.m_bodyUniqueIdB = objectIndexB; const btManifoldPoint& srcPt = manifold->getContactPoint(p); pt.m_contactDistance = srcPt.getDistance(); pt.m_contactFlags = 0; pt.m_linkIndexA = linkIndexA; pt.m_linkIndexB = linkIndexB; for (int j = 0; j < 3; j++) { pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j]; pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j]; pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j]; } pt.m_normalForce = srcPt.getAppliedImpulse() / m_data->m_physicsDeltaTime; pt.m_linearFrictionForce1 = srcPt.m_appliedImpulseLateral1 / m_data->m_physicsDeltaTime; pt.m_linearFrictionForce2 = srcPt.m_appliedImpulseLateral2 / m_data->m_physicsDeltaTime; for (int j = 0; j < 3; j++) { pt.m_linearFrictionDirection1[j] = srcPt.m_lateralFrictionDir1[j]; pt.m_linearFrictionDirection2[j] = srcPt.m_lateralFrictionDir2[j]; } m_data->m_cachedContactPoints.push_back(pt); } } break; } case CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS: { //todo(erwincoumans) compute closest points between all, and vs all, pair btScalar closestDistanceThreshold = 0.f; if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD) { closestDistanceThreshold = clientCmd.m_requestContactPointArguments.m_closestDistanceThreshold; } int bodyUniqueIdA = clientCmd.m_requestContactPointArguments.m_objectAIndexFilter; int bodyUniqueIdB = clientCmd.m_requestContactPointArguments.m_objectBIndexFilter; bool hasLinkIndexAFilter = (0 != (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER)); bool hasLinkIndexBFilter = (0 != (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER)); int linkIndexA = clientCmd.m_requestContactPointArguments.m_linkIndexAIndexFilter; int linkIndexB = clientCmd.m_requestContactPointArguments.m_linkIndexBIndexFilter; btAlignedObjectArray setA; btAlignedObjectArray setB; btAlignedObjectArray setALinkIndex; btAlignedObjectArray setBLinkIndex; btCollisionObject colObA; btCollisionObject colObB; int collisionShapeA = (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_A) ? clientCmd.m_requestContactPointArguments.m_collisionShapeA : -1; int collisionShapeB = (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_B) ? clientCmd.m_requestContactPointArguments.m_collisionShapeB : -1; if (collisionShapeA >= 0) { btVector3 posA(0, 0, 0); if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_A) { posA.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[0], clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[1], clientCmd.m_requestContactPointArguments.m_collisionShapePositionA[2]); } btQuaternion ornA(0, 0, 0, 1); if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_A) { ornA.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[0], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[1], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[2], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationA[3]); } InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeA); if (handle && handle->m_collisionShape) { colObA.setCollisionShape(handle->m_collisionShape); btTransform tr; tr.setIdentity(); tr.setOrigin(posA); tr.setRotation(ornA); colObA.setWorldTransform(tr); setA.push_back(&colObA); setALinkIndex.push_back(-2); } else { b3Warning("collisionShapeA provided is not valid."); } } if (collisionShapeB >= 0) { btVector3 posB(0, 0, 0); if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_B) { posB.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[0], clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[1], clientCmd.m_requestContactPointArguments.m_collisionShapePositionB[2]); } btQuaternion ornB(0, 0, 0, 1); if (clientCmd.m_updateFlags & CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_B) { ornB.setValue(clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[0], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[1], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[2], clientCmd.m_requestContactPointArguments.m_collisionShapeOrientationB[3]); } InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(collisionShapeB); if (handle && handle->m_collisionShape) { colObB.setCollisionShape(handle->m_collisionShape); btTransform tr; tr.setIdentity(); tr.setOrigin(posB); tr.setRotation(ornB); colObB.setWorldTransform(tr); setB.push_back(&colObB); setBLinkIndex.push_back(-2); } else { b3Warning("collisionShapeB provided is not valid."); } } if (bodyUniqueIdA >= 0) { InternalBodyData* bodyA = m_data->m_bodyHandles.getHandle(bodyUniqueIdA); if (bodyA) { if (bodyA->m_multiBody) { if (bodyA->m_multiBody->getBaseCollider()) { if (!hasLinkIndexAFilter || (linkIndexA == -1)) { setA.push_back(bodyA->m_multiBody->getBaseCollider()); setALinkIndex.push_back(-1); } } for (int i = 0; i < bodyA->m_multiBody->getNumLinks(); i++) { if (bodyA->m_multiBody->getLink(i).m_collider) { if (!hasLinkIndexAFilter || (linkIndexA == i)) { setA.push_back(bodyA->m_multiBody->getLink(i).m_collider); setALinkIndex.push_back(i); } } } } if (bodyA->m_rigidBody) { setA.push_back(bodyA->m_rigidBody); setALinkIndex.push_back(-1); } } } if (bodyUniqueIdB >= 0) { InternalBodyData* bodyB = m_data->m_bodyHandles.getHandle(bodyUniqueIdB); if (bodyB) { if (bodyB->m_multiBody) { if (bodyB->m_multiBody->getBaseCollider()) { if (!hasLinkIndexBFilter || (linkIndexB == -1)) { setB.push_back(bodyB->m_multiBody->getBaseCollider()); setBLinkIndex.push_back(-1); } } for (int i = 0; i < bodyB->m_multiBody->getNumLinks(); i++) { if (bodyB->m_multiBody->getLink(i).m_collider) { if (!hasLinkIndexBFilter || (linkIndexB == i)) { setB.push_back(bodyB->m_multiBody->getLink(i).m_collider); setBLinkIndex.push_back(i); } } } } if (bodyB->m_rigidBody) { setB.push_back(bodyB->m_rigidBody); setBLinkIndex.push_back(-1); } } } { ///ContactResultCallback is used to report contact points struct MyContactResultCallback : public btCollisionWorld::ContactResultCallback { int m_bodyUniqueIdA; int m_bodyUniqueIdB; int m_linkIndexA; int m_linkIndexB; btScalar m_deltaTime; btAlignedObjectArray& m_cachedContactPoints; MyContactResultCallback(btAlignedObjectArray& pointCache) : m_cachedContactPoints(pointCache) { } virtual ~MyContactResultCallback() { } virtual bool needsCollision(btBroadphaseProxy* proxy0) const { //bool collides = (proxy0->m_collisionFilterGroup & m_collisionFilterMask) != 0; //collides = collides && (m_collisionFilterGroup & proxy0->m_collisionFilterMask); //return collides; return true; } virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1) { if (cp.m_distance1 <= m_closestDistanceThreshold) { b3ContactPointData pt; pt.m_bodyUniqueIdA = m_bodyUniqueIdA; pt.m_bodyUniqueIdB = m_bodyUniqueIdB; const btManifoldPoint& srcPt = cp; pt.m_contactDistance = srcPt.getDistance(); pt.m_contactFlags = 0; pt.m_linkIndexA = m_linkIndexA; pt.m_linkIndexB = m_linkIndexB; for (int j = 0; j < 3; j++) { pt.m_contactNormalOnBInWS[j] = srcPt.m_normalWorldOnB[j]; pt.m_positionOnAInWS[j] = srcPt.getPositionWorldOnA()[j]; pt.m_positionOnBInWS[j] = srcPt.getPositionWorldOnB()[j]; } pt.m_normalForce = srcPt.getAppliedImpulse() / m_deltaTime; pt.m_linearFrictionForce1 = srcPt.m_appliedImpulseLateral1 / m_deltaTime; pt.m_linearFrictionForce2 = srcPt.m_appliedImpulseLateral2 / m_deltaTime; for (int j = 0; j < 3; j++) { pt.m_linearFrictionDirection1[j] = srcPt.m_lateralFrictionDir1[j]; pt.m_linearFrictionDirection2[j] = srcPt.m_lateralFrictionDir2[j]; } m_cachedContactPoints.push_back(pt); } return 1; } }; MyContactResultCallback cb(m_data->m_cachedContactPoints); cb.m_bodyUniqueIdA = bodyUniqueIdA; cb.m_bodyUniqueIdB = bodyUniqueIdB; cb.m_deltaTime = m_data->m_physicsDeltaTime; for (int i = 0; i < setA.size(); i++) { cb.m_linkIndexA = setALinkIndex[i]; for (int j = 0; j < setB.size(); j++) { cb.m_linkIndexB = setBLinkIndex[j]; cb.m_closestDistanceThreshold = closestDistanceThreshold; this->m_data->m_dynamicsWorld->contactPairTest(setA[i], setB[j], cb); } } } break; } default: { b3Warning("Unknown contact query mode: %d", mode); } } } int numContactPoints = m_data->m_cachedContactPoints.size(); //b3ContactPoint //struct b3ContactPointDynamics int totalBytesPerContact = sizeof(b3ContactPointData); int contactPointStorage = bufferSizeInBytes / totalBytesPerContact - 1; b3ContactPointData* contactData = (b3ContactPointData*)bufferServerToClient; int startContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex; int numContactPointBatch = btMin(numContactPoints, contactPointStorage); int endContactPointIndex = startContactPointIndex + numContactPointBatch; for (int i = startContactPointIndex; i < endContactPointIndex; i++) { const b3ContactPointData& srcPt = m_data->m_cachedContactPoints[i]; b3ContactPointData& destPt = contactData[serverCmd.m_sendContactPointArgs.m_numContactPointsCopied]; destPt = srcPt; serverCmd.m_sendContactPointArgs.m_numContactPointsCopied++; } serverCmd.m_sendContactPointArgs.m_startingContactPointIndex = clientCmd.m_requestContactPointArguments.m_startingContactPointIndex; serverCmd.m_sendContactPointArgs.m_numRemainingContactPoints = numContactPoints - clientCmd.m_requestContactPointArguments.m_startingContactPointIndex - serverCmd.m_sendContactPointArgs.m_numContactPointsCopied; serverCmd.m_numDataStreamBytes = totalBytesPerContact * serverCmd.m_sendContactPointArgs.m_numContactPointsCopied; serverCmd.m_type = CMD_CONTACT_POINT_INFORMATION_COMPLETED; //CMD_CONTACT_POINT_INFORMATION_FAILED, return hasStatus; } bool PhysicsServerCommandProcessor::processRequestBodyInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_BODY_INFO"); const SdfRequestInfoArgs& sdfInfoArgs = clientCmd.m_sdfRequestInfoArgs; //stream info into memory int streamSizeInBytes = createBodyInfoStream(sdfInfoArgs.m_bodyUniqueId, bufferServerToClient, bufferSizeInBytes); serverStatusOut.m_type = CMD_BODY_INFO_COMPLETED; serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = sdfInfoArgs.m_bodyUniqueId; serverStatusOut.m_dataStreamArguments.m_bodyName[0] = 0; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(sdfInfoArgs.m_bodyUniqueId); if (bodyHandle) { strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, bodyHandle->m_bodyName.c_str()); } serverStatusOut.m_numDataStreamBytes = streamSizeInBytes; return hasStatus; } bool PhysicsServerCommandProcessor::processLoadSDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_LOAD_SDF"); const SdfArgs& sdfArgs = clientCmd.m_sdfArguments; if (m_data->m_verboseOutput) { b3Printf("Processed CMD_LOAD_SDF:%s", sdfArgs.m_sdfFileName); } bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (sdfArgs.m_useMultiBody != 0) : true; int flags = CUF_USE_SDF; //CUF_USE_URDF_INERTIA btScalar globalScaling = 1.f; if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING) { globalScaling = sdfArgs.m_globalScaling; } bool completedOk = loadSdf(sdfArgs.m_sdfFileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, globalScaling); if (completedOk) { m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); //serverStatusOut.m_type = CMD_SDF_LOADING_FAILED; serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size(); serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0; int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies); for (int i = 0; i < maxBodies; i++) { serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i]; } serverStatusOut.m_type = CMD_SDF_LOADING_COMPLETED; } else { serverStatusOut.m_type = CMD_SDF_LOADING_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processCreateMultiBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { if (clientCmd.m_createMultiBodyArgs.m_numBatchObjects > 0) { //batch of objects, to speed up creation time bool result = false; SharedMemoryCommand clientCmd2 = clientCmd; int baseLinkIndex = clientCmd.m_createMultiBodyArgs.m_baseLinkIndex; double* basePositionAndOrientations = (double*)bufferServerToClient; for (int i = 0; i < clientCmd2.m_createMultiBodyArgs.m_numBatchObjects; i++) { clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 0] = basePositionAndOrientations[0 + i * 3]; clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 1] = basePositionAndOrientations[1 + i * 3]; clientCmd2.m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 2] = basePositionAndOrientations[2 + i * 3]; if (i == (clientCmd2.m_createMultiBodyArgs.m_numBatchObjects - 1)) { result = processCreateMultiBodyCommandSingle(clientCmd2, serverStatusOut, bufferServerToClient, bufferSizeInBytes); } else { result = processCreateMultiBodyCommandSingle(clientCmd2, serverStatusOut, 0, 0); } } m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); return result; } return processCreateMultiBodyCommandSingle(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); } bool PhysicsServerCommandProcessor::processCreateMultiBodyCommandSingle(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("processCreateMultiBodyCommand2"); bool hasStatus = true; serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_FAILED; if (clientCmd.m_createMultiBodyArgs.m_baseLinkIndex >= 0) { m_data->m_sdfRecentLoadedBodies.clear(); int flags = 0; if (clientCmd.m_updateFlags & MULT_BODY_HAS_FLAGS) { flags = clientCmd.m_createMultiBodyArgs.m_flags; } ProgrammaticUrdfInterface u2b(clientCmd.m_createMultiBodyArgs, m_data, flags); bool useMultiBody = true; if (clientCmd.m_updateFlags & MULT_BODY_USE_MAXIMAL_COORDINATES) { useMultiBody = false; } bool ok = 0; { BT_PROFILE("processImportedObjects"); ok = processImportedObjects("memory", bufferServerToClient, bufferSizeInBytes, useMultiBody, flags, u2b); } if (ok) { BT_PROFILE("post process"); int bodyUniqueId = -1; if (m_data->m_sdfRecentLoadedBodies.size() == 1) { bodyUniqueId = m_data->m_sdfRecentLoadedBodies[0]; } m_data->m_sdfRecentLoadedBodies.clear(); if (bodyUniqueId >= 0) { serverStatusOut.m_type = CMD_CREATE_MULTI_BODY_COMPLETED; if (bufferSizeInBytes > 0 && serverStatusOut.m_numDataStreamBytes == 0) { { BT_PROFILE("autogenerateGraphicsObjects"); m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); } BT_PROFILE("createBodyInfoStream"); int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes); serverStatusOut.m_numDataStreamBytes = streamSizeInBytes; serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str()); } } } //ConvertURDF2Bullet(u2b,creation, rootTrans,m_data->m_dynamicsWorld,useMultiBody,u2b.getPathPrefix(),flags); } return hasStatus; } bool PhysicsServerCommandProcessor::processLoadURDFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; serverStatusOut.m_type = CMD_URDF_LOADING_FAILED; BT_PROFILE("CMD_LOAD_URDF"); const UrdfArgs& urdfArgs = clientCmd.m_urdfArguments; if (m_data->m_verboseOutput) { b3Printf("Processed CMD_LOAD_URDF:%s", urdfArgs.m_urdfFileName); } btAssert((clientCmd.m_updateFlags & URDF_ARGS_FILE_NAME) != 0); btAssert(urdfArgs.m_urdfFileName); btVector3 initialPos(0, 0, 0); btQuaternion initialOrn(0, 0, 0, 1); if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_POSITION) { initialPos[0] = urdfArgs.m_initialPosition[0]; initialPos[1] = urdfArgs.m_initialPosition[1]; initialPos[2] = urdfArgs.m_initialPosition[2]; } int urdfFlags = 0; if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS) { urdfFlags = urdfArgs.m_urdfFlags; } if (clientCmd.m_updateFlags & URDF_ARGS_INITIAL_ORIENTATION) { initialOrn[0] = urdfArgs.m_initialOrientation[0]; initialOrn[1] = urdfArgs.m_initialOrientation[1]; initialOrn[2] = urdfArgs.m_initialOrientation[2]; initialOrn[3] = urdfArgs.m_initialOrientation[3]; } bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (urdfArgs.m_useMultiBody != 0) : true; bool useFixedBase = (clientCmd.m_updateFlags & URDF_ARGS_USE_FIXED_BASE) ? (urdfArgs.m_useFixedBase != 0) : false; int bodyUniqueId; btScalar globalScaling = 1.f; if (clientCmd.m_updateFlags & URDF_ARGS_USE_GLOBAL_SCALING) { globalScaling = urdfArgs.m_globalScaling; } //load the actual URDF and send a report: completed or failed bool completedOk = loadUrdf(urdfArgs.m_urdfFileName, initialPos, initialOrn, useMultiBody, useFixedBase, &bodyUniqueId, bufferServerToClient, bufferSizeInBytes, urdfFlags, globalScaling); if (completedOk && bodyUniqueId >= 0) { m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); serverStatusOut.m_type = CMD_URDF_LOADING_COMPLETED; int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes); serverStatusOut.m_numDataStreamBytes = streamSizeInBytes; #ifdef ENABLE_LINK_MAPPER if (m_data->m_urdfLinkNameMapper.size()) { serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size() - 1)->m_memSerializer->getCurrentBufferSize(); } #endif serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str()); } return hasStatus; } void constructUrdfDeformable(const struct SharedMemoryCommand& clientCmd, UrdfDeformable& deformable, bool verbose) { const LoadSoftBodyArgs& loadSoftBodyArgs = clientCmd.m_loadSoftBodyArguments; if (verbose) { b3Printf("Processed CMD_LOAD_SOFT_BODY:%s", loadSoftBodyArgs.m_fileName); } btAssert((clientCmd.m_updateFlags & LOAD_SOFT_BODY_FILE_NAME) != 0); btAssert(loadSoftBodyArgs.m_fileName); if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_MASS) { deformable.m_mass = loadSoftBodyArgs.m_mass; } if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_COLLISION_MARGIN) { deformable.m_collisionMargin = loadSoftBodyArgs.m_collisionMargin; } deformable.m_visualFileName = loadSoftBodyArgs.m_fileName; if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_SIM_MESH) { deformable.m_simFileName = loadSoftBodyArgs.m_simFileName; } else { deformable.m_simFileName = ""; } #ifndef SKIP_DEFORMABLE_BODY deformable.m_springCoefficients.elastic_stiffness = loadSoftBodyArgs.m_springElasticStiffness; deformable.m_springCoefficients.damping_stiffness = loadSoftBodyArgs.m_springDampingStiffness; if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_BENDING_SPRINGS) { deformable.m_springCoefficients.bending_stiffness = loadSoftBodyArgs.m_springBendingStiffness; } if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_COROTATED_FORCE) { deformable.m_corotatedCoefficients.mu = loadSoftBodyArgs.m_corotatedMu; deformable.m_corotatedCoefficients.lambda = loadSoftBodyArgs.m_corotatedLambda; } if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_ADD_NEOHOOKEAN_FORCE) { deformable.m_neohookeanCoefficients.mu = loadSoftBodyArgs.m_NeoHookeanMu; deformable.m_neohookeanCoefficients.lambda = loadSoftBodyArgs.m_NeoHookeanLambda; deformable.m_neohookeanCoefficients.damping = loadSoftBodyArgs.m_NeoHookeanDamping; } if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_SET_FRICTION_COEFFICIENT) { deformable.m_friction = loadSoftBodyArgs.m_frictionCoeff; } #endif } bool PhysicsServerCommandProcessor::processDeformable(const UrdfDeformable& deformable, const btVector3& pos, const btQuaternion& orn, int* bodyUniqueId, char* bufferServerToClient, int bufferSizeInBytes, btScalar scale, bool useSelfCollision) { btSoftBody* psb = NULL; CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface()); char relativeFileName[1024]; char pathPrefix[1024]; pathPrefix[0] = 0; if (fileIO->findResourcePath(deformable.m_visualFileName.c_str(), relativeFileName, 1024)) { b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024); } const std::string& error_message_prefix = ""; std::string out_found_filename, out_found_sim_filename; int out_type(0), out_sim_type(0); bool foundFile = UrdfFindMeshFile(fileIO, pathPrefix, relativeFileName, error_message_prefix, &out_found_filename, &out_type); if (!deformable.m_simFileName.empty()) { bool foundSimMesh = UrdfFindMeshFile(fileIO, pathPrefix, deformable.m_simFileName, error_message_prefix, &out_found_sim_filename, &out_sim_type); } else { out_sim_type = out_type; out_found_sim_filename = out_found_filename; } if (out_sim_type == UrdfGeometry::FILE_OBJ) { std::vector shapes; tinyobj::attrib_t attribute; std::string err = tinyobj::LoadObj(attribute, shapes, out_found_sim_filename.c_str(), "", fileIO); if (!shapes.empty()) { const tinyobj::shape_t& shape = shapes[0]; btAlignedObjectArray vertices; btAlignedObjectArray indices; for (int i = 0; i < attribute.vertices.size(); i++) { vertices.push_back(attribute.vertices[i]); } for (int i = 0; i < shape.mesh.indices.size(); i++) { indices.push_back(shape.mesh.indices[i].vertex_index); } int numTris = shape.mesh.indices.size() / 3; if (numTris > 0) { { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { psb = btSoftBodyHelpers::CreateFromTriMesh(softWorld->getWorldInfo(), &vertices[0], &indices[0], numTris); if (!psb) { printf("Load deformable failed\n"); return false; } } } { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { psb = btSoftBodyHelpers::CreateFromTriMesh(deformWorld->getWorldInfo(), &vertices[0], &indices[0], numTris); if (!psb) { printf("Load deformable failed\n"); return false; } } } } } #ifndef SKIP_DEFORMABLE_BODY btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld && deformable.m_springCoefficients.elastic_stiffness > 0.) { btDeformableLagrangianForce* springForce = new btDeformableMassSpringForce(deformable.m_springCoefficients.elastic_stiffness, deformable.m_springCoefficients.damping_stiffness, true, deformable.m_springCoefficients.bending_stiffness); deformWorld->addForce(psb, springForce); m_data->m_lf.push_back(springForce); } #endif } else if (out_sim_type == UrdfGeometry::FILE_VTK) { #ifndef SKIP_DEFORMABLE_BODY btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { psb = btSoftBodyHelpers::CreateFromVtkFile(deformWorld->getWorldInfo(), out_found_sim_filename.c_str()); if (!psb) { printf("Load deformable failed\n"); return false; } btScalar corotated_mu(0.), corotated_lambda(0.); corotated_mu = deformable.m_corotatedCoefficients.mu; corotated_lambda = deformable.m_corotatedCoefficients.lambda; if (corotated_mu > 0 || corotated_lambda > 0) { btDeformableLagrangianForce* corotatedForce = new btDeformableCorotatedForce(corotated_mu, corotated_lambda); deformWorld->addForce(psb, corotatedForce); m_data->m_lf.push_back(corotatedForce); } btScalar neohookean_mu, neohookean_lambda, neohookean_damping; neohookean_mu = deformable.m_neohookeanCoefficients.mu; neohookean_lambda = deformable.m_neohookeanCoefficients.lambda; neohookean_damping = deformable.m_neohookeanCoefficients.damping; if (neohookean_mu > 0 || neohookean_lambda > 0) { btDeformableLagrangianForce* neohookeanForce = new btDeformableNeoHookeanForce(neohookean_mu, neohookean_lambda, neohookean_damping); deformWorld->addForce(psb, neohookeanForce); m_data->m_lf.push_back(neohookeanForce); } btScalar spring_elastic_stiffness, spring_damping_stiffness, spring_bending_stiffness; spring_elastic_stiffness = deformable.m_springCoefficients.elastic_stiffness; spring_damping_stiffness = deformable.m_springCoefficients.damping_stiffness; spring_bending_stiffness = deformable.m_springCoefficients.bending_stiffness; if (spring_elastic_stiffness > 0.) { btDeformableLagrangianForce* springForce = new btDeformableMassSpringForce(spring_elastic_stiffness, spring_damping_stiffness, true, spring_bending_stiffness); deformWorld->addForce(psb, springForce); m_data->m_lf.push_back(springForce); } } #endif } if (psb != NULL) { #ifndef SKIP_DEFORMABLE_BODY btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { // load render mesh if (out_found_sim_filename != out_found_filename) { // load render mesh { tinyobj::attrib_t attribute; std::vector shapes; std::string err = tinyobj::LoadObj(attribute, shapes, out_found_filename.c_str(), pathPrefix, m_data->m_pluginManager.getFileIOInterface()); for (int s = 0; s < (int)shapes.size(); s++) { tinyobj::shape_t& shape = shapes[s]; int faceCount = shape.mesh.indices.size(); int vertexCount = attribute.vertices.size() / 3; for (int v = 0; v < vertexCount; v++) { btSoftBody::Node n; n.m_x = btVector3(attribute.vertices[3 * v], attribute.vertices[3 * v + 1], attribute.vertices[3 * v + 2]); psb->m_renderNodes.push_back(n); } for (int f = 0; f < faceCount; f += 3) { if (f < 0 && f >= int(shape.mesh.indices.size())) { continue; } tinyobj::index_t v_0 = shape.mesh.indices[f]; tinyobj::index_t v_1 = shape.mesh.indices[f + 1]; tinyobj::index_t v_2 = shape.mesh.indices[f + 2]; btSoftBody::Face ff; ff.m_n[0] = &psb->m_renderNodes[v_0.vertex_index]; ff.m_n[1] = &psb->m_renderNodes[v_1.vertex_index]; ff.m_n[2] = &psb->m_renderNodes[v_2.vertex_index]; psb->m_renderFaces.push_back(ff); } } } if (out_sim_type == UrdfGeometry::FILE_VTK) { btSoftBodyHelpers::interpolateBarycentricWeights(psb); } else if (out_sim_type == UrdfGeometry::FILE_OBJ) { btSoftBodyHelpers::extrapolateBarycentricWeights(psb); } } else { psb->m_renderNodes.resize(0); } btVector3 gravity = m_data->m_dynamicsWorld->getGravity(); btDeformableLagrangianForce* gravityForce = new btDeformableGravityForce(gravity); deformWorld->addForce(psb, gravityForce); m_data->m_lf.push_back(gravityForce); btScalar collision_hardness = 1; psb->m_cfg.kKHR = collision_hardness; psb->m_cfg.kCHR = collision_hardness; psb->m_cfg.kDF = deformable.m_friction; if (deformable.m_springCoefficients.bending_stiffness) { psb->generateBendingConstraints(2); } btSoftBody::Material* pm = psb->appendMaterial(); pm->m_flags -= btSoftBody::fMaterial::DebugDraw; // turn on the collision flag for deformable // collision between deformable and rigid psb->m_cfg.collisions = btSoftBody::fCollision::SDF_RD; // turn on face contact only for multibodies psb->m_cfg.collisions |= btSoftBody::fCollision::SDF_MDF; // collion between deformable and deformable and self-collision psb->m_cfg.collisions |= btSoftBody::fCollision::VF_DD; psb->setCollisionFlags(0); psb->setTotalMass(deformable.m_mass); psb->setSelfCollision(useSelfCollision); } #endif //SKIP_DEFORMABLE_BODY #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { btSoftBody::Material* pm = psb->appendMaterial(); pm->m_kLST = 0.5; pm->m_flags -= btSoftBody::fMaterial::DebugDraw; psb->generateBendingConstraints(2, pm); psb->m_cfg.piterations = 20; psb->m_cfg.kDF = 0.5; //turn on softbody vs softbody collision psb->m_cfg.collisions |= btSoftBody::fCollision::VF_SS; psb->randomizeConstraints(); psb->setTotalMass(deformable.m_mass, true); } #endif //SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD psb->scale(btVector3(scale, scale, scale)); psb->rotate(orn); psb->translate(pos); psb->getCollisionShape()->setMargin(deformable.m_collisionMargin); psb->getCollisionShape()->setUserPointer(psb); #ifndef SKIP_DEFORMABLE_BODY if (deformWorld) { deformWorld->addSoftBody(psb); } else #endif //SKIP_DEFORMABLE_BODY { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { softWorld->addSoftBody(psb); } } m_data->m_guiHelper->createCollisionShapeGraphicsObject(psb->getCollisionShape()); *bodyUniqueId = m_data->m_bodyHandles.allocHandle(); InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(*bodyUniqueId); bodyHandle->m_softBody = psb; b3VisualShapeData visualShape; visualShape.m_objectUniqueId = *bodyUniqueId; visualShape.m_linkIndex = -1; visualShape.m_visualGeometryType = URDF_GEOM_MESH; //dimensions just contains the scale visualShape.m_dimensions[0] = scale; visualShape.m_dimensions[1] = scale; visualShape.m_dimensions[2] = scale; //filename strncpy(visualShape.m_meshAssetFileName, relativeFileName, VISUAL_SHAPE_MAX_PATH_LEN); visualShape.m_meshAssetFileName[VISUAL_SHAPE_MAX_PATH_LEN - 1] = 0; //position and orientation visualShape.m_localVisualFrame[0] = pos[0]; visualShape.m_localVisualFrame[1] = pos[1]; visualShape.m_localVisualFrame[2] = pos[2]; visualShape.m_localVisualFrame[3] = orn[0]; visualShape.m_localVisualFrame[4] = orn[1]; visualShape.m_localVisualFrame[5] = orn[2]; visualShape.m_localVisualFrame[6] = orn[3]; //color and ids to be set by the renderer visualShape.m_rgbaColor[0] = 0; visualShape.m_rgbaColor[1] = 0; visualShape.m_rgbaColor[2] = 0; visualShape.m_rgbaColor[3] = 1; visualShape.m_tinyRendererTextureId = -1; visualShape.m_textureUniqueId = -1; visualShape.m_openglTextureId = -1; m_data->m_pluginManager.getRenderInterface()->addVisualShape(&visualShape, fileIO); if (!deformable.m_name.empty()) { bodyHandle->m_bodyName = deformable.m_name; } else { int pos = strlen(relativeFileName) - 1; while (pos >= 0 && relativeFileName[pos] != '/') { pos--; } btAssert(strlen(relativeFileName) - pos - 5 > 0); std::string object_name(std::string(relativeFileName).substr(pos + 1, strlen(relativeFileName) - 5 - pos)); bodyHandle->m_bodyName = object_name; } b3Notification notification; notification.m_notificationType = BODY_ADDED; notification.m_bodyArgs.m_bodyUniqueId = *bodyUniqueId; m_data->m_pluginManager.addNotification(notification); } return true; } bool PhysicsServerCommandProcessor::processLoadSoftBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_FAILED; bool hasStatus = true; #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD UrdfDeformable deformable; constructUrdfDeformable(clientCmd, deformable, m_data->m_verboseOutput); // const LoadSoftBodyArgs& loadSoftBodyArgs = clientCmd.m_loadSoftBodyArguments; btVector3 initialPos(0, 0, 0); if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_INITIAL_POSITION) { initialPos[0] = clientCmd.m_loadSoftBodyArguments.m_initialPosition[0]; initialPos[1] = clientCmd.m_loadSoftBodyArguments.m_initialPosition[1]; initialPos[2] = clientCmd.m_loadSoftBodyArguments.m_initialPosition[2]; } btQuaternion initialOrn(0, 0, 0, 1); if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_INITIAL_ORIENTATION) { initialOrn[0] = clientCmd.m_loadSoftBodyArguments.m_initialOrientation[0]; initialOrn[1] = clientCmd.m_loadSoftBodyArguments.m_initialOrientation[1]; initialOrn[2] = clientCmd.m_loadSoftBodyArguments.m_initialOrientation[2]; initialOrn[3] = clientCmd.m_loadSoftBodyArguments.m_initialOrientation[3]; } double scale = 1; if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_UPDATE_SCALE) { scale = clientCmd.m_loadSoftBodyArguments.m_scale; } bool use_self_collision = false; if (clientCmd.m_updateFlags & LOAD_SOFT_BODY_USE_SELF_COLLISION) { use_self_collision = clientCmd.m_loadSoftBodyArguments.m_useSelfCollision; } int bodyUniqueId = -1; bool completedOk = processDeformable(deformable, initialPos, initialOrn, &bodyUniqueId, bufferServerToClient, bufferSizeInBytes, scale, use_self_collision); if (completedOk && bodyUniqueId >= 0) { m_data->m_guiHelper->autogenerateGraphicsObjects(m_data->m_dynamicsWorld); serverStatusOut.m_type = CMD_LOAD_SOFT_BODY_COMPLETED; int streamSizeInBytes = createBodyInfoStream(bodyUniqueId, bufferServerToClient, bufferSizeInBytes); serverStatusOut.m_numDataStreamBytes = streamSizeInBytes; #ifdef ENABLE_LINK_MAPPER if (m_data->m_urdfLinkNameMapper.size()) { serverStatusOut.m_numDataStreamBytes = m_data->m_urdfLinkNameMapper.at(m_data->m_urdfLinkNameMapper.size() - 1)->m_memSerializer->getCurrentBufferSize(); } #endif serverStatusOut.m_dataStreamArguments.m_bodyUniqueId = bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); strcpy(serverStatusOut.m_dataStreamArguments.m_bodyName, body->m_bodyName.c_str()); serverStatusOut.m_loadSoftBodyResultArguments.m_objectUniqueId = bodyUniqueId; #endif } return hasStatus; } bool PhysicsServerCommandProcessor::processCreateSensorCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CREATE_SENSOR"); if (m_data->m_verboseOutput) { b3Printf("Processed CMD_CREATE_SENSOR"); } int bodyUniqueId = clientCmd.m_createSensorArguments.m_bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; btAssert(mb); for (int i = 0; i < clientCmd.m_createSensorArguments.m_numJointSensorChanges; i++) { int jointIndex = clientCmd.m_createSensorArguments.m_jointIndex[i]; if (clientCmd.m_createSensorArguments.m_enableJointForceSensor[i]) { if (mb->getLink(jointIndex).m_jointFeedback) { b3Warning("CMD_CREATE_SENSOR: sensor for joint [%d] already enabled", jointIndex); } else { btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback(); fb->m_reactionForces.setZero(); mb->getLink(jointIndex).m_jointFeedback = fb; m_data->m_multiBodyJointFeedbacks.push_back(fb); }; } else { if (mb->getLink(jointIndex).m_jointFeedback) { m_data->m_multiBodyJointFeedbacks.remove(mb->getLink(jointIndex).m_jointFeedback); delete mb->getLink(jointIndex).m_jointFeedback; mb->getLink(jointIndex).m_jointFeedback = 0; } else { b3Warning("CMD_CREATE_SENSOR: cannot perform sensor removal request, no sensor on joint [%d]", jointIndex); }; } } } else { b3Warning("No btMultiBody in the world. btRigidBody/btTypedConstraint sensor not hooked up yet"); } #if 0 //todo(erwincoumans) here is some sample code to hook up a force/torque sensor for btTypedConstraint/btRigidBody /* for (int i=0;im_dynamicsWorld->getNumConstraints();i++) { btTypedConstraint* c = m_data->m_dynamicsWorld->getConstraint(i); btJointFeedback* fb = new btJointFeedback(); m_data->m_jointFeedbacks.push_back(fb); c->setJointFeedback(fb); } */ #endif serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processProfileTimingCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; { if (clientCmd.m_profile.m_type == 0) { char** eventNamePtr = m_data->m_profileEvents[clientCmd.m_profile.m_name]; char* eventName = 0; if (eventNamePtr) { eventName = *eventNamePtr; } else { int len = strlen(clientCmd.m_profile.m_name); eventName = new char[len + 1]; strcpy(eventName, clientCmd.m_profile.m_name); eventName[len] = 0; m_data->m_profileEvents.insert(eventName, eventName); } b3EnterProfileZone(eventName); } if (clientCmd.m_profile.m_type == 1) { b3LeaveProfileZone(); } } serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED; hasStatus = true; return hasStatus; } void setDefaultRootWorldAABB(SharedMemoryStatus& serverCmd) { serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = 0; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = 0; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = 0; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = -1; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = -1; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = -1; } bool PhysicsServerCommandProcessor::processRequestCollisionInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_FAILED; hasStatus = true; int bodyUniqueId = clientCmd.m_requestCollisionInfoArgs.m_bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED; serverCmd.m_sendCollisionInfoArgs.m_numLinks = body->m_multiBody->getNumLinks(); setDefaultRootWorldAABB(serverCmd); if (body->m_multiBody->getBaseCollider()) { btTransform tr; tr.setOrigin(mb->getBasePos()); tr.setRotation(mb->getWorldToBaseRot().inverse()); btVector3 aabbMin, aabbMax; body->m_multiBody->getBaseCollider()->getCollisionShape()->getAabb(tr, aabbMin, aabbMax); serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2]; } for (int l = 0; l < mb->getNumLinks(); l++) { serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 0] = 0; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 1] = 0; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 2] = 0; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 0] = -1; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 1] = -1; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 2] = -1; if (body->m_multiBody->getLink(l).m_collider) { btVector3 aabbMin, aabbMax; body->m_multiBody->getLinkCollider(l)->getCollisionShape()->getAabb(mb->getLink(l).m_cachedWorldTransform, aabbMin, aabbMax); serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 0] = aabbMin[0]; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 1] = aabbMin[1]; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMin[3 * l + 2] = aabbMin[2]; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 0] = aabbMax[0]; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 1] = aabbMax[1]; serverCmd.m_sendCollisionInfoArgs.m_linkWorldAABBsMax[3 * l + 2] = aabbMax[2]; } } } else if (body && body->m_rigidBody) { btRigidBody* rb = body->m_rigidBody; SharedMemoryStatus& serverCmd = serverStatusOut; serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED; serverCmd.m_sendCollisionInfoArgs.m_numLinks = 0; setDefaultRootWorldAABB(serverCmd); if (rb->getCollisionShape()) { btTransform tr = rb->getWorldTransform(); btVector3 aabbMin, aabbMax; rb->getCollisionShape()->getAabb(tr, aabbMin, aabbMax); serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2]; } } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD else if (body && body->m_softBody) { btSoftBody* sb = body->m_softBody; serverCmd.m_sendCollisionInfoArgs.m_numLinks = 0; btVector3 aabbMin, aabbMax; sb->getAabb(aabbMin, aabbMax); serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[0] = aabbMin[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[1] = aabbMin[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMin[2] = aabbMin[2]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[0] = aabbMax[0]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[1] = aabbMax[1]; serverCmd.m_sendCollisionInfoArgs.m_rootWorldAABBMax[2] = aabbMax[2]; SharedMemoryStatus& serverCmd = serverStatusOut; serverStatusOut.m_type = CMD_REQUEST_COLLISION_INFO_COMPLETED; } #endif return hasStatus; } bool PhysicsServerCommandProcessor::processForwardDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_STEP_FORWARD_SIMULATION"); if (m_data->m_verboseOutput) { b3Printf("Step simulation request"); b3Printf("CMD_STEP_FORWARD_SIMULATION clientCmd = %d\n", clientCmd.m_sequenceNumber); } ///todo(erwincoumans) move this damping inside Bullet for (int i = 0; i < m_data->m_dynamicsWorld->getNumMultibodies(); i++) { btMultiBody* mb = m_data->m_dynamicsWorld->getMultiBody(i); for (int l = 0; l < mb->getNumLinks(); l++) { for (int d = 0; d < mb->getLink(l).m_dofCount; d++) { double damping_coefficient = mb->getLink(l).m_jointDamping; double damping = -damping_coefficient * mb->getJointVelMultiDof(l)[d]; mb->addJointTorqueMultiDof(l, d, damping); } } } btScalar deltaTimeScaled = m_data->m_physicsDeltaTime * simTimeScalingFactor; int numSteps = 0; if (m_data->m_numSimulationSubSteps > 0) { numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, m_data->m_numSimulationSubSteps, m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps); m_data->m_simulationTimestamp += deltaTimeScaled; } else { numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, 0); m_data->m_simulationTimestamp += deltaTimeScaled; } if (numSteps > 0) { addBodyChangedNotifications(); } SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSteps = numSteps; btAlignedObjectArray islandAnalyticsData; m_data->m_dynamicsWorld->getAnalyticsData(islandAnalyticsData); serverCmd.m_forwardDynamicsAnalyticsArgs.m_numIslands = islandAnalyticsData.size(); int numIslands = btMin(islandAnalyticsData.size(), MAX_ISLANDS_ANALYTICS); for (int i = 0; i < numIslands; i++) { serverCmd.m_forwardDynamicsAnalyticsArgs.m_numSolverCalls = islandAnalyticsData[i].m_numSolverCalls; serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_islandId = islandAnalyticsData[i].m_islandId; serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numBodies = islandAnalyticsData[i].m_numBodies; serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numIterationsUsed = islandAnalyticsData[i].m_numIterationsUsed; serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_remainingLeastSquaresResidual = islandAnalyticsData[i].m_remainingLeastSquaresResidual; serverCmd.m_forwardDynamicsAnalyticsArgs.m_islandData[i].m_numContactManifolds = islandAnalyticsData[i].m_numContactManifolds; } serverCmd.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED; m_data->m_remoteSyncTransformTime += deltaTimeScaled; if (m_data->m_remoteSyncTransformTime >= m_data->m_remoteSyncTransformInterval) { m_data->m_remoteSyncTransformTime = 0; syncPhysicsToGraphics2(); } return hasStatus; } bool PhysicsServerCommandProcessor::processRequestInternalDataCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_INTERNAL_DATA"); //todo: also check version etc? SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_FAILED; int sz = btDefaultSerializer::getMemoryDnaSizeInBytes(); const char* memDna = btDefaultSerializer::getMemoryDna(); if (sz < bufferSizeInBytes) { for (int i = 0; i < sz; i++) { bufferServerToClient[i] = memDna[i]; } serverCmd.m_type = CMD_REQUEST_INTERNAL_DATA_COMPLETED; serverCmd.m_numDataStreamBytes = sz; } return hasStatus; } bool PhysicsServerCommandProcessor::processChangeDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CHANGE_DYNAMICS_INFO"); int bodyUniqueId = clientCmd.m_changeDynamicsInfoArgs.m_bodyUniqueId; int linkIndex = clientCmd.m_changeDynamicsInfoArgs.m_linkIndex; double mass = clientCmd.m_changeDynamicsInfoArgs.m_mass; double lateralFriction = clientCmd.m_changeDynamicsInfoArgs.m_lateralFriction; double spinningFriction = clientCmd.m_changeDynamicsInfoArgs.m_spinningFriction; double rollingFriction = clientCmd.m_changeDynamicsInfoArgs.m_rollingFriction; double restitution = clientCmd.m_changeDynamicsInfoArgs.m_restitution; btVector3 newLocalInertiaDiagonal(clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[0], clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[1], clientCmd.m_changeDynamicsInfoArgs.m_localInertiaDiagonal[2]); btVector3 anisotropicFriction(clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[0], clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[1], clientCmd.m_changeDynamicsInfoArgs.m_anisotropicFriction[2]); btAssert(bodyUniqueId >= 0); InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE) { if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateWakeUp) { mb->wakeUp(); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateSleep) { mb->goToSleep(); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableSleeping) { mb->setCanSleep(true); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableSleeping) { mb->setCanSleep(false); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableWakeup) { mb->setCanWakeup(true); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableWakeup) { mb->setCanWakeup(false); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING) { mb->setLinearDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING) { mb->setAngularDamping(clientCmd.m_changeDynamicsInfoArgs.m_angularDamping); } if (linkIndex == -1) { if (mb->getBaseCollider()) { if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION) { mb->getBaseCollider()->setRestitution(restitution); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING) { mb->getBaseCollider()->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION) { mb->getBaseCollider()->setFriction(lateralFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION) { mb->getBaseCollider()->setSpinningFriction(spinningFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION) { mb->getBaseCollider()->setRollingFriction(rollingFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR) { if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor) { mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR); } else { mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR); } } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS) { mb->setBaseMass(mass); if (mb->getBaseCollider() && mb->getBaseCollider()->getCollisionShape()) { btVector3 localInertia; mb->getBaseCollider()->getCollisionShape()->calculateLocalInertia(mass, localInertia); mb->setBaseInertia(localInertia); } //handle switch from static/fixedBase to dynamic and vise-versa if (mass > 0) { bool isDynamic = true; if (mb->hasFixedBase()) { int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); m_data->m_dynamicsWorld->removeCollisionObject(mb->getBaseCollider()); int oldFlags = mb->getBaseCollider()->getCollisionFlags(); mb->getBaseCollider()->setCollisionFlags(oldFlags & ~btCollisionObject::CF_STATIC_OBJECT); mb->setFixedBase(false); m_data->m_dynamicsWorld->addCollisionObject(mb->getBaseCollider(), collisionFilterGroup, collisionFilterMask); } } else { if (!mb->hasFixedBase()) { bool isDynamic = false; int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); int oldFlags = mb->getBaseCollider()->getCollisionFlags(); mb->getBaseCollider()->setCollisionFlags(oldFlags | btCollisionObject::CF_STATIC_OBJECT); m_data->m_dynamicsWorld->removeCollisionObject(mb->getBaseCollider()); mb->setFixedBase(true); m_data->m_dynamicsWorld->addCollisionObject(mb->getBaseCollider(), collisionFilterGroup, collisionFilterMask); } } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL) { mb->setBaseInertia(newLocalInertiaDiagonal); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION) { mb->getBaseCollider()->setAnisotropicFriction(anisotropicFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MAX_JOINT_VELOCITY) { mb->setMaxCoordinateVelocity(clientCmd.m_changeDynamicsInfoArgs.m_maxJointVelocity); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_COLLISION_MARGIN) { mb->getBaseCollider()->getCollisionShape()->setMargin(clientCmd.m_changeDynamicsInfoArgs.m_collisionMargin); if (mb->getBaseCollider()->getCollisionShape()->isCompound()) { btCompoundShape* compound = (btCompoundShape*)mb->getBaseCollider()->getCollisionShape(); for (int s = 0; s < compound->getNumChildShapes(); s++) { compound->getChildShape(s)->setMargin(clientCmd.m_changeDynamicsInfoArgs.m_collisionMargin); } } } } else { if (linkIndex >= 0 && linkIndex < mb->getNumLinks()) { if (mb->getLinkCollider(linkIndex)) { if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION) { mb->getLinkCollider(linkIndex)->setRestitution(restitution); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION) { mb->getLinkCollider(linkIndex)->setSpinningFriction(spinningFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION) { mb->getLinkCollider(linkIndex)->setRollingFriction(rollingFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR) { if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor) { mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR); } else { mb->getLinkCollider(linkIndex)->setCollisionFlags(mb->getLinkCollider(linkIndex)->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION) { mb->getLinkCollider(linkIndex)->setFriction(lateralFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING) { mb->getLinkCollider(linkIndex)->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_COLLISION_MARGIN) { mb->getLinkCollider(linkIndex)->getCollisionShape()->setMargin(clientCmd.m_changeDynamicsInfoArgs.m_collisionMargin); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING) { mb->getLink(linkIndex).m_jointDamping = clientCmd.m_changeDynamicsInfoArgs.m_jointDamping; } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS) { mb->getLink(linkIndex).m_mass = mass; if (mb->getLinkCollider(linkIndex) && mb->getLinkCollider(linkIndex)->getCollisionShape()) { btVector3 localInertia; mb->getLinkCollider(linkIndex)->getCollisionShape()->calculateLocalInertia(mass, localInertia); mb->getLink(linkIndex).m_inertiaLocal = localInertia; } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL) { mb->getLink(linkIndex).m_inertiaLocal = newLocalInertiaDiagonal; } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION) { mb->getLinkCollider(linkIndex)->setAnisotropicFriction(anisotropicFriction); } } } } else { btRigidBody* rb = 0; if (body && body->m_rigidBody) { if (linkIndex == -1) { rb = body->m_rigidBody; } else { if (linkIndex >= 0 && linkIndex < body->m_rigidBodyJoints.size()) { btRigidBody* parentRb = &body->m_rigidBodyJoints[linkIndex]->getRigidBodyA(); btRigidBody* childRb = &body->m_rigidBodyJoints[linkIndex]->getRigidBodyB(); rb = childRb; } } } if (rb) { if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE) { if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableSleeping) { rb->forceActivationState(ACTIVE_TAG); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableSleeping) { rb->forceActivationState(DISABLE_DEACTIVATION); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateWakeUp) { rb->forceActivationState(ACTIVE_TAG); rb->setDeactivationTime(0.0); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateSleep) { rb->forceActivationState(ISLAND_SLEEPING); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING) { btScalar angDamping = rb->getAngularDamping(); rb->setDamping(clientCmd.m_changeDynamicsInfoArgs.m_linearDamping, angDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING) { btScalar linDamping = rb->getLinearDamping(); rb->setDamping(linDamping, clientCmd.m_changeDynamicsInfoArgs.m_angularDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING) { rb->setContactStiffnessAndDamping(clientCmd.m_changeDynamicsInfoArgs.m_contactStiffness, clientCmd.m_changeDynamicsInfoArgs.m_contactDamping); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_RESTITUTION) { rb->setRestitution(restitution); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION) { rb->setFriction(lateralFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION) { rb->setSpinningFriction(spinningFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION) { rb->setRollingFriction(rollingFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR) { if (clientCmd.m_changeDynamicsInfoArgs.m_frictionAnchor) { rb->setCollisionFlags(rb->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR); } else { rb->setCollisionFlags(rb->getCollisionFlags() & ~btCollisionObject::CF_HAS_FRICTION_ANCHOR); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_MASS) { btVector3 localInertia; if (rb->getCollisionShape()) { rb->getCollisionShape()->calculateLocalInertia(mass, localInertia); } rb->setMassProps(mass, localInertia); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL) { btScalar orgMass = rb->getInvMass(); if (orgMass > 0) { rb->setMassProps(mass, newLocalInertiaDiagonal); } } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ANISOTROPIC_FRICTION) { rb->setAnisotropicFriction(anisotropicFriction); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CONTACT_PROCESSING_THRESHOLD) { rb->setContactProcessingThreshold(clientCmd.m_changeDynamicsInfoArgs.m_contactProcessingThreshold); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS) { rb->setCcdSweptSphereRadius(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius); //for a given sphere radius, use a motion threshold of half the radius, before the ccd algorithm is enabled rb->setCcdMotionThreshold(clientCmd.m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius / 2.); } if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_COLLISION_MARGIN) { rb->getCollisionShape()->setMargin(clientCmd.m_changeDynamicsInfoArgs.m_collisionMargin); } } } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (body && body->m_softBody) { btSoftBody* psb = body->m_softBody; if (psb) { if (clientCmd.m_updateFlags & CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE) { if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateEnableSleeping) { psb->forceActivationState(ACTIVE_TAG); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateDisableSleeping) { psb->forceActivationState(DISABLE_DEACTIVATION); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateWakeUp) { psb->forceActivationState(ACTIVE_TAG); psb->setDeactivationTime(0.0); } if (clientCmd.m_changeDynamicsInfoArgs.m_activationState & eActivationStateSleep) { psb->forceActivationState(ISLAND_SLEEPING); } } } } #endif SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; b3Notification notification; notification.m_notificationType = LINK_DYNAMICS_CHANGED; notification.m_linkArgs.m_bodyUniqueId = bodyUniqueId; notification.m_linkArgs.m_linkIndex = linkIndex; m_data->m_pluginManager.addNotification(notification); return hasStatus; } bool PhysicsServerCommandProcessor::processSetAdditionalSearchPathCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SET_ADDITIONAL_SEARCH_PATH"); b3ResourcePath::setAdditionalSearchPath(clientCmd.m_searchPathArgs.m_path); serverStatusOut.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processGetDynamicsInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED; int bodyUniqueId = clientCmd.m_getDynamicsInfoArgs.m_bodyUniqueId; int linkIndex = clientCmd.m_getDynamicsInfoArgs.m_linkIndex; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (body && body->m_multiBody) { SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED; serverCmd.m_dynamicsInfo.m_bodyType = BT_MULTI_BODY; btMultiBody* mb = body->m_multiBody; if (linkIndex == -1) { serverCmd.m_dynamicsInfo.m_mass = mb->getBaseMass(); if (mb->getBaseCollider()) { serverCmd.m_dynamicsInfo.m_activationState = mb->getBaseCollider()->getActivationState(); serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = mb->getBaseCollider()->getContactProcessingThreshold(); serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = mb->getBaseCollider()->getCcdSweptSphereRadius(); serverCmd.m_dynamicsInfo.m_frictionAnchor = mb->getBaseCollider()->getCollisionFlags() & btCollisionObject::CF_HAS_FRICTION_ANCHOR; serverCmd.m_dynamicsInfo.m_collisionMargin = mb->getBaseCollider()->getCollisionShape()->getMargin(); } else { serverCmd.m_dynamicsInfo.m_activationState = 0; serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = 0; serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = 0; serverCmd.m_dynamicsInfo.m_frictionAnchor = 0; serverCmd.m_dynamicsInfo.m_collisionMargin = 0; } serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getBaseInertia()[0]; serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getBaseInertia()[1]; serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getBaseInertia()[2]; serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getBaseCollider()->getFriction(); serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_rootLocalInertialFrame.getOrigin()[0]; serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_rootLocalInertialFrame.getOrigin()[1]; serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_rootLocalInertialFrame.getOrigin()[2]; serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_rootLocalInertialFrame.getRotation()[0]; serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_rootLocalInertialFrame.getRotation()[1]; serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_rootLocalInertialFrame.getRotation()[2]; serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_rootLocalInertialFrame.getRotation()[3]; serverCmd.m_dynamicsInfo.m_angularDamping = body->m_multiBody->getAngularDamping(); serverCmd.m_dynamicsInfo.m_linearDamping = body->m_multiBody->getLinearDamping(); serverCmd.m_dynamicsInfo.m_restitution = mb->getBaseCollider()->getRestitution(); serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getBaseCollider()->getRollingFriction(); serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getBaseCollider()->getSpinningFriction(); if (mb->getBaseCollider()->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING) { serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getBaseCollider()->getContactStiffness(); serverCmd.m_dynamicsInfo.m_contactDamping = mb->getBaseCollider()->getContactDamping(); } else { serverCmd.m_dynamicsInfo.m_contactStiffness = -1; serverCmd.m_dynamicsInfo.m_contactDamping = -1; } } else { serverCmd.m_dynamicsInfo.m_mass = mb->getLinkMass(linkIndex); if (mb->getLinkCollider(linkIndex)) { serverCmd.m_dynamicsInfo.m_activationState = mb->getLinkCollider(linkIndex)->getActivationState(); serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = mb->getLinkCollider(linkIndex)->getContactProcessingThreshold(); serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = mb->getLinkCollider(linkIndex)->getCcdSweptSphereRadius(); serverCmd.m_dynamicsInfo.m_frictionAnchor = mb->getLinkCollider(linkIndex)->getCollisionFlags() & btCollisionObject::CF_HAS_FRICTION_ANCHOR; serverCmd.m_dynamicsInfo.m_collisionMargin = mb->getLinkCollider(linkIndex)->getCollisionShape()->getMargin(); } else { serverCmd.m_dynamicsInfo.m_activationState = 0; serverCmd.m_dynamicsInfo.m_contactProcessingThreshold = 0; serverCmd.m_dynamicsInfo.m_ccdSweptSphereRadius = 0; serverCmd.m_dynamicsInfo.m_frictionAnchor = 0; serverCmd.m_dynamicsInfo.m_collisionMargin = 0; } serverCmd.m_dynamicsInfo.m_localInertialDiagonal[0] = mb->getLinkInertia(linkIndex)[0]; serverCmd.m_dynamicsInfo.m_localInertialDiagonal[1] = mb->getLinkInertia(linkIndex)[1]; serverCmd.m_dynamicsInfo.m_localInertialDiagonal[2] = mb->getLinkInertia(linkIndex)[2]; serverCmd.m_dynamicsInfo.m_localInertialFrame[0] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[0]; serverCmd.m_dynamicsInfo.m_localInertialFrame[1] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[1]; serverCmd.m_dynamicsInfo.m_localInertialFrame[2] = body->m_linkLocalInertialFrames[linkIndex].getOrigin()[2]; serverCmd.m_dynamicsInfo.m_localInertialFrame[3] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[0]; serverCmd.m_dynamicsInfo.m_localInertialFrame[4] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[1]; serverCmd.m_dynamicsInfo.m_localInertialFrame[5] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[2]; serverCmd.m_dynamicsInfo.m_localInertialFrame[6] = body->m_linkLocalInertialFrames[linkIndex].getRotation()[3]; serverCmd.m_dynamicsInfo.m_angularDamping = body->m_multiBody->getAngularDamping(); serverCmd.m_dynamicsInfo.m_linearDamping = body->m_multiBody->getLinearDamping(); if (mb->getLinkCollider(linkIndex)) { serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = mb->getLinkCollider(linkIndex)->getFriction(); serverCmd.m_dynamicsInfo.m_restitution = mb->getLinkCollider(linkIndex)->getRestitution(); serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = mb->getLinkCollider(linkIndex)->getRollingFriction(); serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = mb->getLinkCollider(linkIndex)->getSpinningFriction(); if (mb->getLinkCollider(linkIndex)->getCollisionFlags() & btCollisionObject::CF_HAS_CONTACT_STIFFNESS_DAMPING) { serverCmd.m_dynamicsInfo.m_contactStiffness = mb->getLinkCollider(linkIndex)->getContactStiffness(); serverCmd.m_dynamicsInfo.m_contactDamping = mb->getLinkCollider(linkIndex)->getContactDamping(); } else { serverCmd.m_dynamicsInfo.m_contactStiffness = -1; serverCmd.m_dynamicsInfo.m_contactDamping = -1; } } else { b3Warning("The dynamic info requested is not available"); serverCmd.m_type = CMD_GET_DYNAMICS_INFO_FAILED; } } hasStatus = true; } else if (body && body->m_rigidBody) { SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED; serverCmd.m_dynamicsInfo.m_bodyType = BT_RIGID_BODY; btRigidBody* rb = body->m_rigidBody; serverCmd.m_dynamicsInfo.m_lateralFrictionCoeff = rb->getFriction(); serverCmd.m_dynamicsInfo.m_rollingFrictionCoeff = rb->getRollingFriction(); serverCmd.m_dynamicsInfo.m_spinningFrictionCoeff = rb->getSpinningFriction(); serverCmd.m_dynamicsInfo.m_angularDamping = rb->getAngularDamping(); serverCmd.m_dynamicsInfo.m_linearDamping = rb->getLinearDamping(); serverCmd.m_dynamicsInfo.m_mass = rb->getMass(); serverCmd.m_dynamicsInfo.m_collisionMargin = rb->getCollisionShape() ? rb->getCollisionShape()->getMargin() : 0; } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD else if (body && body->m_softBody){ SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_GET_DYNAMICS_INFO_COMPLETED; serverCmd.m_dynamicsInfo.m_bodyType = BT_SOFT_BODY; serverCmd.m_dynamicsInfo.m_collisionMargin = 0; } #endif return hasStatus; } bool PhysicsServerCommandProcessor::processRequestPhysicsSimulationParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED; serverCmd.m_simulationParameterResultArgs.m_allowedCcdPenetration = m_data->m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration; serverCmd.m_simulationParameterResultArgs.m_collisionFilterMode = m_data->m_broadphaseCollisionFilterCallback->m_filterMode; serverCmd.m_simulationParameterResultArgs.m_deltaTime = m_data->m_physicsDeltaTime; serverCmd.m_simulationParameterResultArgs.m_simulationTimestamp = m_data->m_simulationTimestamp; serverCmd.m_simulationParameterResultArgs.m_contactBreakingThreshold = gContactBreakingThreshold; serverCmd.m_simulationParameterResultArgs.m_contactSlop = m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop; serverCmd.m_simulationParameterResultArgs.m_enableSAT = m_data->m_dynamicsWorld->getDispatchInfo().m_enableSatConvex; serverCmd.m_simulationParameterResultArgs.m_defaultGlobalCFM = m_data->m_dynamicsWorld->getSolverInfo().m_globalCfm; serverCmd.m_simulationParameterResultArgs.m_defaultContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp2; serverCmd.m_simulationParameterResultArgs.m_defaultNonContactERP = m_data->m_dynamicsWorld->getSolverInfo().m_erp; serverCmd.m_simulationParameterResultArgs.m_deltaTime = m_data->m_physicsDeltaTime; serverCmd.m_simulationParameterResultArgs.m_deterministicOverlappingPairs = m_data->m_dynamicsWorld->getDispatchInfo().m_deterministicOverlappingPairs; serverCmd.m_simulationParameterResultArgs.m_enableConeFriction = (m_data->m_dynamicsWorld->getSolverInfo().m_solverMode & SOLVER_DISABLE_IMPLICIT_CONE_FRICTION) ? 0 : 1; serverCmd.m_simulationParameterResultArgs.m_enableFileCaching = b3IsFileCachingEnabled(); serverCmd.m_simulationParameterResultArgs.m_frictionCFM = m_data->m_dynamicsWorld->getSolverInfo().m_frictionCFM; serverCmd.m_simulationParameterResultArgs.m_frictionERP = m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP; btVector3 grav = m_data->m_dynamicsWorld->getGravity(); serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[0] = grav[0]; serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[1] = grav[1]; serverCmd.m_simulationParameterResultArgs.m_gravityAcceleration[2] = grav[2]; serverCmd.m_simulationParameterResultArgs.m_internalSimFlags = gInternalSimFlags; serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode = 0; if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace) { serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_WORLD_SPACE; } if (m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame) { serverCmd.m_simulationParameterResultArgs.m_jointFeedbackMode |= JOINT_FEEDBACK_IN_JOINT_FRAME; } serverCmd.m_simulationParameterResultArgs.m_numSimulationSubSteps = m_data->m_numSimulationSubSteps; serverCmd.m_simulationParameterResultArgs.m_numSolverIterations = m_data->m_dynamicsWorld->getSolverInfo().m_numIterations; serverCmd.m_simulationParameterResultArgs.m_numNonContactInnerIterations = m_data->m_dynamicsWorld->getSolverInfo().m_numNonContactInnerIterations; serverCmd.m_simulationParameterResultArgs.m_restitutionVelocityThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold; serverCmd.m_simulationParameterResultArgs.m_solverResidualThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold; serverCmd.m_simulationParameterResultArgs.m_splitImpulsePenetrationThreshold = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold; serverCmd.m_simulationParameterResultArgs.m_useRealTimeSimulation = m_data->m_useRealTimeSimulation; serverCmd.m_simulationParameterResultArgs.m_useSplitImpulse = m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse; return hasStatus; } bool PhysicsServerCommandProcessor::processSendPhysicsParametersCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SEND_PHYSICS_SIMULATION_PARAMETERS"); if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_CONE_FRICTION) { if (clientCmd.m_physSimParamArgs.m_enableConeFriction) { m_data->m_dynamicsWorld->getSolverInfo().m_solverMode &= ~SOLVER_DISABLE_IMPLICIT_CONE_FRICTION; } else { m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_DISABLE_IMPLICIT_CONE_FRICTION; } } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS) { m_data->m_dynamicsWorld->getDispatchInfo().m_deterministicOverlappingPairs = (clientCmd.m_physSimParamArgs.m_deterministicOverlappingPairs != 0); } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION) { m_data->m_dynamicsWorld->getDispatchInfo().m_allowedCcdPenetration = clientCmd.m_physSimParamArgs.m_allowedCcdPenetration; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE) { m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_WORLD_SPACE) != 0; m_data->m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = (clientCmd.m_physSimParamArgs.m_jointFeedbackMode & JOINT_FEEDBACK_IN_JOINT_FRAME) != 0; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DELTA_TIME) { m_data->m_physicsDeltaTime = clientCmd.m_physSimParamArgs.m_deltaTime; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_REAL_TIME_SIMULATION) { m_data->m_useRealTimeSimulation = (clientCmd.m_physSimParamArgs.m_useRealTimeSimulation != 0); } //see if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS) { //these flags are for internal/temporary/easter-egg/experimental demo purposes, use at own risk gInternalSimFlags = clientCmd.m_physSimParamArgs.m_internalSimFlags; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_GRAVITY) { btVector3 grav(clientCmd.m_physSimParamArgs.m_gravityAcceleration[0], clientCmd.m_physSimParamArgs.m_gravityAcceleration[1], clientCmd.m_physSimParamArgs.m_gravityAcceleration[2]); this->m_data->m_dynamicsWorld->setGravity(grav); #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { softWorld->getWorldInfo().m_gravity = grav; } btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { deformWorld->getWorldInfo().m_gravity = grav; for (int i = 0; i < m_data->m_lf.size(); ++i) { btDeformableLagrangianForce* force = m_data->m_lf[i]; if (force->getForceType() == BT_GRAVITY_FORCE) { btDeformableGravityForce* gforce = (btDeformableGravityForce*)force; gforce->m_gravity = grav; } } } #endif if (m_data->m_verboseOutput) { b3Printf("Updated Gravity: %f,%f,%f", grav[0], grav[1], grav[2]); } } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS) { m_data->m_dynamicsWorld->getSolverInfo().m_numIterations = clientCmd.m_physSimParamArgs.m_numSolverIterations; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_NUM_NONCONTACT_INNER_ITERATIONS) { m_data->m_dynamicsWorld->getSolverInfo().m_numNonContactInnerIterations = clientCmd.m_physSimParamArgs.m_numNonContactInnerIterations; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SOLVER_RESIDULAL_THRESHOLD) { m_data->m_dynamicsWorld->getSolverInfo().m_leastSquaresResidualThreshold = clientCmd.m_physSimParamArgs.m_solverResidualThreshold; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD) { gContactBreakingThreshold = clientCmd.m_physSimParamArgs.m_contactBreakingThreshold; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_CONTACT_SLOP) { m_data->m_dynamicsWorld->getSolverInfo().m_linearSlop = clientCmd.m_physSimParamArgs.m_contactSlop; } if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_SAT) { m_data->m_dynamicsWorld->getDispatchInfo().m_enableSatConvex = clientCmd.m_physSimParamArgs.m_enableSAT != 0; } if (clientCmd.m_updateFlags & SIM_PARAM_CONSTRAINT_SOLVER_TYPE) { //check if the current type is different from requested one if (m_data->m_constraintSolverType != clientCmd.m_physSimParamArgs.m_constraintSolverType) { m_data->m_constraintSolverType = clientCmd.m_physSimParamArgs.m_constraintSolverType; btConstraintSolver* oldSolver = m_data->m_dynamicsWorld->getConstraintSolver(); btMultiBodyConstraintSolver* newSolver = 0; switch (clientCmd.m_physSimParamArgs.m_constraintSolverType) { case eConstraintSolverLCP_SI: { newSolver = new btMultiBodyConstraintSolver; b3Printf("PyBullet: Constraint Solver: btMultiBodyConstraintSolver\n"); break; } case eConstraintSolverLCP_PGS: { btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel(); newSolver = new btMultiBodyMLCPConstraintSolver(mlcp); b3Printf("PyBullet: Constraint Solver: MLCP + PGS\n"); break; } case eConstraintSolverLCP_DANTZIG: { btDantzigSolver* mlcp = new btDantzigSolver(); newSolver = new btMultiBodyMLCPConstraintSolver(mlcp); b3Printf("PyBullet: Constraint Solver: MLCP + Dantzig\n"); break; } case eConstraintSolverLCP_BLOCK_PGS: { break; } default: { } }; if (newSolver) { delete oldSolver; m_data->m_dynamicsWorld->setMultiBodyConstraintSolver(newSolver); m_data->m_solver = newSolver; printf("switched solver\n"); } } } if (clientCmd.m_updateFlags & SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE) { m_data->m_dynamicsWorld->getSolverInfo().m_minimumSolverBatchSize = clientCmd.m_physSimParamArgs.m_minimumSolverIslandSize; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_COLLISION_FILTER_MODE) { m_data->m_broadphaseCollisionFilterCallback->m_filterMode = clientCmd.m_physSimParamArgs.m_collisionFilterMode; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE) { m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulse = clientCmd.m_physSimParamArgs.m_useSplitImpulse; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD) { m_data->m_dynamicsWorld->getSolverInfo().m_splitImpulsePenetrationThreshold = clientCmd.m_physSimParamArgs.m_splitImpulsePenetrationThreshold; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS) { m_data->m_numSimulationSubSteps = clientCmd.m_physSimParamArgs.m_numSimulationSubSteps; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP) { m_data->m_dynamicsWorld->getSolverInfo().m_erp2 = clientCmd.m_physSimParamArgs.m_defaultContactERP; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP) { m_data->m_dynamicsWorld->getSolverInfo().m_erp = clientCmd.m_physSimParamArgs.m_defaultNonContactERP; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP) { m_data->m_dynamicsWorld->getSolverInfo().m_frictionERP = clientCmd.m_physSimParamArgs.m_frictionERP; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_GLOBAL_CFM) { m_data->m_dynamicsWorld->getSolverInfo().m_globalCfm = clientCmd.m_physSimParamArgs.m_defaultGlobalCFM; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_DEFAULT_FRICTION_CFM) { m_data->m_dynamicsWorld->getSolverInfo().m_frictionCFM = clientCmd.m_physSimParamArgs.m_frictionCFM; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_SPARSE_SDF) { #ifndef SKIP_DEFORMABLE_BODY { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { deformWorld ->getWorldInfo().m_sparsesdf.setDefaultVoxelsz(clientCmd.m_physSimParamArgs.m_sparseSdfVoxelSize); deformWorld ->getWorldInfo().m_sparsesdf.Reset(); } } #endif #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { softWorld->getWorldInfo().m_sparsesdf.setDefaultVoxelsz(clientCmd.m_physSimParamArgs.m_sparseSdfVoxelSize); softWorld->getWorldInfo().m_sparsesdf.Reset(); } } #endif } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD) { m_data->m_dynamicsWorld->getSolverInfo().m_restitutionVelocityThreshold = clientCmd.m_physSimParamArgs.m_restitutionVelocityThreshold; } if (clientCmd.m_updateFlags & SIM_PARAM_ENABLE_FILE_CACHING) { b3EnableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching); m_data->m_pluginManager.getFileIOInterface()->enableFileCaching(clientCmd.m_physSimParamArgs.m_enableFileCaching != 0); } if (clientCmd.m_updateFlags & SIM_PARAM_REPORT_CONSTRAINT_SOLVER_ANALYTICS) { m_data->m_dynamicsWorld->getSolverInfo().m_reportSolverAnalytics = clientCmd.m_physSimParamArgs.m_reportSolverAnalytics; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_WARM_STARTING_FACTOR) { m_data->m_dynamicsWorld->getSolverInfo().m_warmstartingFactor = clientCmd.m_physSimParamArgs.m_warmStartingFactor; } if (clientCmd.m_updateFlags & SIM_PARAM_UPDATE_ARTICULATED_WARM_STARTING_FACTOR) { m_data->m_dynamicsWorld->getSolverInfo().m_solverMode |= SOLVER_USE_ARTICULATED_WARMSTARTING; m_data->m_dynamicsWorld->getSolverInfo().m_articulatedWarmstartingFactor = clientCmd.m_physSimParamArgs.m_articulatedWarmStartingFactor; } SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processInitPoseCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_INIT_POSE"); if (m_data->m_verboseOutput) { b3Printf("Server Init Pose not implemented yet"); } int bodyUniqueId = clientCmd.m_initPoseArgs.m_bodyUniqueId; InternalBodyData* body = m_data->m_bodyHandles.getHandle(bodyUniqueId); btVector3 baseLinVel(0, 0, 0); btVector3 baseAngVel(0, 0, 0); if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY) { baseLinVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[0], clientCmd.m_initPoseArgs.m_initialStateQdot[1], clientCmd.m_initPoseArgs.m_initialStateQdot[2]); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY) { baseAngVel.setValue(clientCmd.m_initPoseArgs.m_initialStateQdot[3], clientCmd.m_initPoseArgs.m_initialStateQdot[4], clientCmd.m_initPoseArgs.m_initialStateQdot[5]); } btVector3 basePos(0, 0, 0); if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION) { basePos = btVector3( clientCmd.m_initPoseArgs.m_initialStateQ[0], clientCmd.m_initPoseArgs.m_initialStateQ[1], clientCmd.m_initPoseArgs.m_initialStateQ[2]); } btQuaternion baseOrn(0, 0, 0, 1); if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION) { baseOrn.setValue(clientCmd.m_initPoseArgs.m_initialStateQ[3], clientCmd.m_initPoseArgs.m_initialStateQ[4], clientCmd.m_initPoseArgs.m_initialStateQ[5], clientCmd.m_initPoseArgs.m_initialStateQ[6]); } if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY) { mb->setBaseVel(baseLinVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY) { mb->setBaseOmega(baseAngVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION) { btVector3 zero(0, 0, 0); btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[0] && clientCmd.m_initPoseArgs.m_hasInitialStateQ[1] && clientCmd.m_initPoseArgs.m_hasInitialStateQ[2]); mb->setBaseVel(baseLinVel); mb->setBasePos(basePos); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION) { btAssert(clientCmd.m_initPoseArgs.m_hasInitialStateQ[3] && clientCmd.m_initPoseArgs.m_hasInitialStateQ[4] && clientCmd.m_initPoseArgs.m_hasInitialStateQ[5] && clientCmd.m_initPoseArgs.m_hasInitialStateQ[6]); mb->setBaseOmega(baseAngVel); btQuaternion invOrn(baseOrn); mb->setWorldToBaseRot(invOrn.inverse()); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_JOINT_STATE) { int uDofIndex = 6; int posVarCountIndex = 7; for (int i = 0; i < mb->getNumLinks(); i++) { int posVarCount = mb->getLink(i).m_posVarCount; bool hasPosVar = posVarCount > 0; for (int j = 0; j < posVarCount; j++) { if (clientCmd.m_initPoseArgs.m_hasInitialStateQ[posVarCountIndex + j] == 0) { hasPosVar = false; break; } } if (hasPosVar) { if (mb->getLink(i).m_dofCount == 1) { mb->setJointPos(i, clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex]); mb->setJointVel(i, 0); //backwards compatibility } if (mb->getLink(i).m_dofCount == 3) { btQuaternion q( clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex], clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 1], clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 2], clientCmd.m_initPoseArgs.m_initialStateQ[posVarCountIndex + 3]); q.normalize(); mb->setJointPosMultiDof(i, &q[0]); double vel[6] = {0, 0, 0, 0, 0, 0}; mb->setJointVelMultiDof(i, vel); } } bool hasVel = true; for (int j = 0; j < mb->getLink(i).m_dofCount; j++) { if (clientCmd.m_initPoseArgs.m_hasInitialStateQdot[uDofIndex + j] == 0) { hasVel = false; break; } } if (hasVel) { if (mb->getLink(i).m_dofCount == 1) { btScalar vel = clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex]; mb->setJointVel(i, vel); } if (mb->getLink(i).m_dofCount == 3) { mb->setJointVelMultiDof(i, &clientCmd.m_initPoseArgs.m_initialStateQdot[uDofIndex]); } } posVarCountIndex += mb->getLink(i).m_posVarCount; uDofIndex += mb->getLink(i).m_dofCount; } } btAlignedObjectArray scratch_q; btAlignedObjectArray scratch_m; mb->forwardKinematics(scratch_q, scratch_m); int nLinks = mb->getNumLinks(); scratch_q.resize(nLinks + 1); scratch_m.resize(nLinks + 1); mb->updateCollisionObjectWorldTransforms(scratch_q, scratch_m); } if (body && body->m_rigidBody) { if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY) { body->m_rigidBody->setLinearVelocity(baseLinVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY) { body->m_rigidBody->setAngularVelocity(baseAngVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION) { body->m_rigidBody->getWorldTransform().setOrigin(basePos); body->m_rigidBody->setLinearVelocity(baseLinVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION) { body->m_rigidBody->getWorldTransform().setRotation(baseOrn); body->m_rigidBody->setAngularVelocity(baseAngVel); } } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (body && body->m_softBody) { if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_LINEAR_VELOCITY) { body->m_softBody->setLinearVelocity(baseLinVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_BASE_ANGULAR_VELOCITY) { body->m_softBody->setAngularVelocity(baseAngVel); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION || clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION) { btTransform tr; tr.setIdentity(); if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_POSITION) { tr.setOrigin(basePos); } if (clientCmd.m_updateFlags & INIT_POSE_HAS_INITIAL_ORIENTATION) { tr.setRotation(baseOrn); } body->m_softBody->transformTo(tr); } } #endif syncPhysicsToGraphics2(); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processResetSimulationCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_RESET_SIMULATION"); m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 0); resetSimulation(clientCmd.m_updateFlags); m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 1); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_RESET_SIMULATION_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processCreateRigidBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_RIGID_BODY_CREATION_COMPLETED; BT_PROFILE("CMD_CREATE_RIGID_BODY"); btVector3 halfExtents(1, 1, 1); if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_HALF_EXTENTS) { halfExtents = btVector3( clientCmd.m_createBoxShapeArguments.m_halfExtentsX, clientCmd.m_createBoxShapeArguments.m_halfExtentsY, clientCmd.m_createBoxShapeArguments.m_halfExtentsZ); } btTransform startTrans; startTrans.setIdentity(); if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_POSITION) { startTrans.setOrigin(btVector3( clientCmd.m_createBoxShapeArguments.m_initialPosition[0], clientCmd.m_createBoxShapeArguments.m_initialPosition[1], clientCmd.m_createBoxShapeArguments.m_initialPosition[2])); } if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_INITIAL_ORIENTATION) { startTrans.setRotation(btQuaternion( clientCmd.m_createBoxShapeArguments.m_initialOrientation[0], clientCmd.m_createBoxShapeArguments.m_initialOrientation[1], clientCmd.m_createBoxShapeArguments.m_initialOrientation[2], clientCmd.m_createBoxShapeArguments.m_initialOrientation[3])); } btScalar mass = 0.f; if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_MASS) { mass = clientCmd.m_createBoxShapeArguments.m_mass; } int shapeType = COLLISION_SHAPE_TYPE_BOX; if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE) { shapeType = clientCmd.m_createBoxShapeArguments.m_collisionShapeType; } btMultiBodyWorldImporter* worldImporter = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld); m_data->m_worldImporters.push_back(worldImporter); btCollisionShape* shape = 0; switch (shapeType) { case COLLISION_SHAPE_TYPE_CYLINDER_X: { btScalar radius = halfExtents[1]; btScalar height = halfExtents[0]; shape = worldImporter->createCylinderShapeX(radius, height); break; } case COLLISION_SHAPE_TYPE_CYLINDER_Y: { btScalar radius = halfExtents[0]; btScalar height = halfExtents[1]; shape = worldImporter->createCylinderShapeY(radius, height); break; } case COLLISION_SHAPE_TYPE_CYLINDER_Z: { btScalar radius = halfExtents[1]; btScalar height = halfExtents[2]; shape = worldImporter->createCylinderShapeZ(radius, height); break; } case COLLISION_SHAPE_TYPE_CAPSULE_X: { btScalar radius = halfExtents[1]; btScalar height = halfExtents[0]; shape = worldImporter->createCapsuleShapeX(radius, height); break; } case COLLISION_SHAPE_TYPE_CAPSULE_Y: { btScalar radius = halfExtents[0]; btScalar height = halfExtents[1]; shape = worldImporter->createCapsuleShapeY(radius, height); break; } case COLLISION_SHAPE_TYPE_CAPSULE_Z: { btScalar radius = halfExtents[1]; btScalar height = halfExtents[2]; shape = worldImporter->createCapsuleShapeZ(radius, height); break; } case COLLISION_SHAPE_TYPE_SPHERE: { btScalar radius = halfExtents[0]; shape = worldImporter->createSphereShape(radius); break; } case COLLISION_SHAPE_TYPE_BOX: default: { shape = worldImporter->createBoxShape(halfExtents); } } bool isDynamic = (mass > 0); btRigidBody* rb = worldImporter->createRigidBody(isDynamic, mass, startTrans, shape, 0); //m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); btVector4 colorRGBA(1, 0, 0, 1); if (clientCmd.m_updateFlags & BOX_SHAPE_HAS_COLOR) { colorRGBA[0] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[0]; colorRGBA[1] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[1]; colorRGBA[2] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[2]; colorRGBA[3] = clientCmd.m_createBoxShapeArguments.m_colorRGBA[3]; } m_data->m_guiHelper->createCollisionShapeGraphicsObject(rb->getCollisionShape()); m_data->m_guiHelper->createCollisionObjectGraphicsObject(rb, colorRGBA); int bodyUniqueId = m_data->m_bodyHandles.allocHandle(); InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); serverCmd.m_rigidBodyCreateArgs.m_bodyUniqueId = bodyUniqueId; rb->setUserIndex2(bodyUniqueId); bodyHandle->m_rootLocalInertialFrame.setIdentity(); bodyHandle->m_rigidBody = rb; b3Notification notification; notification.m_notificationType = BODY_ADDED; notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId; m_data->m_pluginManager.addNotification(notification); return hasStatus; } bool PhysicsServerCommandProcessor::processPickBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_PICK_BODY"); pickBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0], clientCmd.m_pickBodyArguments.m_rayFromWorld[1], clientCmd.m_pickBodyArguments.m_rayFromWorld[2]), btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0], clientCmd.m_pickBodyArguments.m_rayToWorld[1], clientCmd.m_pickBodyArguments.m_rayToWorld[2])); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processMovePickedBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_MOVE_PICKED_BODY"); movePickedBody(btVector3(clientCmd.m_pickBodyArguments.m_rayFromWorld[0], clientCmd.m_pickBodyArguments.m_rayFromWorld[1], clientCmd.m_pickBodyArguments.m_rayFromWorld[2]), btVector3(clientCmd.m_pickBodyArguments.m_rayToWorld[0], clientCmd.m_pickBodyArguments.m_rayToWorld[1], clientCmd.m_pickBodyArguments.m_rayToWorld[2])); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRemovePickingConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REMOVE_PICKING_CONSTRAINT_BODY"); removePickingConstraint(); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRequestAabbOverlapCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_AABB_OVERLAP"); SharedMemoryStatus& serverCmd = serverStatusOut; int curObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex; if (0 == curObjectIndex) { //clientCmd.m_requestContactPointArguments.m_aabbQueryMin btVector3 aabbMin, aabbMax; aabbMin.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[0], clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[1], clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMin[2]); aabbMax.setValue(clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[0], clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[1], clientCmd.m_requestOverlappingObjectsArgs.m_aabbQueryMax[2]); m_data->m_cachedOverlappingObjects.clear(); m_data->m_dynamicsWorld->getBroadphase()->aabbTest(aabbMin, aabbMax, m_data->m_cachedOverlappingObjects); } int totalBytesPerObject = sizeof(b3OverlappingObject); int overlapCapacity = bufferSizeInBytes / totalBytesPerObject - 1; int numOverlap = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); int remainingObjects = numOverlap - curObjectIndex; int curNumObjects = btMin(overlapCapacity, remainingObjects); if (numOverlap < overlapCapacity) { b3OverlappingObject* overlapStorage = (b3OverlappingObject*)bufferServerToClient; for (int i = 0; i < m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); i++) { overlapStorage[i].m_objectUniqueId = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds[i]; overlapStorage[i].m_linkIndex = m_data->m_cachedOverlappingObjects.m_links[i]; } serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_COMPLETED; //int m_startingOverlappingObjectIndex; //int m_numOverlappingObjectsCopied; //int m_numRemainingOverlappingObjects; serverCmd.m_sendOverlappingObjectsArgs.m_startingOverlappingObjectIndex = clientCmd.m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex; serverCmd.m_sendOverlappingObjectsArgs.m_numOverlappingObjectsCopied = m_data->m_cachedOverlappingObjects.m_bodyUniqueIds.size(); serverCmd.m_sendOverlappingObjectsArgs.m_numRemainingOverlappingObjects = remainingObjects - curNumObjects; } else { serverCmd.m_type = CMD_REQUEST_AABB_OVERLAP_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processRequestOpenGLVisualizeCameraCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_OPENGL_VISUALIZER_CAMERA"); SharedMemoryStatus& serverCmd = serverStatusOut; bool result = this->m_data->m_guiHelper->getCameraInfo( &serverCmd.m_visualizerCameraResultArgs.m_width, &serverCmd.m_visualizerCameraResultArgs.m_height, serverCmd.m_visualizerCameraResultArgs.m_viewMatrix, serverCmd.m_visualizerCameraResultArgs.m_projectionMatrix, serverCmd.m_visualizerCameraResultArgs.m_camUp, serverCmd.m_visualizerCameraResultArgs.m_camForward, serverCmd.m_visualizerCameraResultArgs.m_horizontal, serverCmd.m_visualizerCameraResultArgs.m_vertical, &serverCmd.m_visualizerCameraResultArgs.m_yaw, &serverCmd.m_visualizerCameraResultArgs.m_pitch, &serverCmd.m_visualizerCameraResultArgs.m_dist, serverCmd.m_visualizerCameraResultArgs.m_target); serverCmd.m_type = result ? CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED : CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_FAILED; return hasStatus; } bool PhysicsServerCommandProcessor::processConfigureOpenGLVisualizerCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CONFIGURE_OPENGL_VISUALIZER"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; hasStatus = true; if (clientCmd.m_updateFlags & COV_SET_FLAGS) { if (clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag == COV_ENABLE_TINY_RENDERER) { m_data->m_enableTinyRenderer = clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled != 0; } m_data->m_guiHelper->setVisualizerFlag(clientCmd.m_configureOpenGLVisualizerArguments.m_setFlag, clientCmd.m_configureOpenGLVisualizerArguments.m_setEnabled); } if (clientCmd.m_updateFlags & COV_SET_CAMERA_VIEW_MATRIX) { m_data->m_guiHelper->resetCamera(clientCmd.m_configureOpenGLVisualizerArguments.m_cameraDistance, clientCmd.m_configureOpenGLVisualizerArguments.m_cameraYaw, clientCmd.m_configureOpenGLVisualizerArguments.m_cameraPitch, clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0], clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1], clientCmd.m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2]); } if (m_data->m_guiHelper->getRenderInterface()) { if (clientCmd.m_updateFlags & COV_SET_LIGHT_POSITION) { m_data->m_guiHelper->getRenderInterface()->setLightPosition(clientCmd.m_configureOpenGLVisualizerArguments.m_lightPosition); } if (clientCmd.m_updateFlags & COV_SET_SHADOWMAP_RESOLUTION) { m_data->m_guiHelper->getRenderInterface()->setShadowMapResolution(clientCmd.m_configureOpenGLVisualizerArguments.m_shadowMapResolution); } if (clientCmd.m_updateFlags & COV_SET_SHADOWMAP_WORLD_SIZE) { float worldSize = clientCmd.m_configureOpenGLVisualizerArguments.m_shadowMapWorldSize; m_data->m_guiHelper->getRenderInterface()->setShadowMapWorldSize(worldSize); } } if (clientCmd.m_updateFlags & COV_SET_REMOTE_SYNC_TRANSFORM_INTERVAL) { m_data->m_remoteSyncTransformInterval = clientCmd.m_configureOpenGLVisualizerArguments.m_remoteSyncTransformInterval; } return hasStatus; } bool PhysicsServerCommandProcessor::processInverseDynamicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CALCULATE_INVERSE_DYNAMICS"); SharedMemoryStatus& serverCmd = serverStatusOut; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId); serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED; if (bodyHandle && bodyHandle->m_multiBody) { if (clientCmd.m_calculateInverseDynamicsArguments.m_flags & 1) { #ifdef STATIC_LINK_SPD_PLUGIN { cRBDModel* rbdModel = m_data->findOrCreateRBDModel(bodyHandle->m_multiBody, clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ, clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot); if (rbdModel) { int posVal = bodyHandle->m_multiBody->getNumPosVars(); Eigen::VectorXd acc2 = Eigen::VectorXd::Zero(7 + posVal); Eigen::VectorXd out_tau = Eigen::VectorXd::Zero(7 + posVal); cRBDUtil::SolveInvDyna(*rbdModel, acc2, out_tau); int dof = 7 + bodyHandle->m_multiBody->getNumPosVars(); for (int i = 0; i < dof; i++) { serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = out_tau[i]; } serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId; serverCmd.m_inverseDynamicsResultArgs.m_dofCount = dof; serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED; } } #endif } else { btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody); int baseDofQ = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 7; int baseDofQdot = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6; const int num_dofs = bodyHandle->m_multiBody->getNumDofs(); if (tree && clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQ == (baseDofQ + num_dofs) && clientCmd.m_calculateInverseDynamicsArguments.m_dofCountQdot == (baseDofQdot + num_dofs)) { btInverseDynamics::vecx nu(num_dofs + baseDofQdot), qdot(num_dofs + baseDofQdot), q(num_dofs + baseDofQdot), joint_force(num_dofs + baseDofQdot); //for floating base, inverse dynamics expects euler angle x,y,z and position x,y,z in that order //PyBullet expects quaternion, so convert and swap to have a more consistent PyBullet API if (baseDofQ) { btVector3 pos(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0], clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1], clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2]); btQuaternion orn(clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[0], clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[1], clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[2], clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[3]); btScalar yawZ, pitchY, rollX; orn.getEulerZYX(yawZ, pitchY, rollX); q[0] = rollX; q[1] = pitchY; q[2] = yawZ; q[3] = pos[0]; q[4] = pos[1]; q[5] = pos[2]; } else { for (int i = 0; i < num_dofs; i++) { q[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointPositionsQ[i]; } } for (int i = 0; i < num_dofs + baseDofQdot; i++) { qdot[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i]; nu[i] = clientCmd.m_calculateInverseDynamicsArguments.m_jointAccelerations[i]; } // Set the gravity to correspond to the world gravity btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity()); if (-1 != tree->setGravityInWorldFrame(id_grav) && -1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force)) { serverCmd.m_inverseDynamicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId; serverCmd.m_inverseDynamicsResultArgs.m_dofCount = num_dofs + baseDofQdot; //inverse dynamics stores angular before linear, swap it to have a consistent PyBullet API. if (baseDofQdot) { serverCmd.m_inverseDynamicsResultArgs.m_jointForces[0] = joint_force[3]; serverCmd.m_inverseDynamicsResultArgs.m_jointForces[1] = joint_force[4]; serverCmd.m_inverseDynamicsResultArgs.m_jointForces[2] = joint_force[5]; serverCmd.m_inverseDynamicsResultArgs.m_jointForces[3] = joint_force[0]; serverCmd.m_inverseDynamicsResultArgs.m_jointForces[4] = joint_force[1]; serverCmd.m_inverseDynamicsResultArgs.m_jointForces[5] = joint_force[2]; } for (int i = baseDofQdot; i < num_dofs + baseDofQdot; i++) { serverCmd.m_inverseDynamicsResultArgs.m_jointForces[i] = joint_force[i]; } serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED; } else { serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED; } } } } else { serverCmd.m_type = CMD_CALCULATED_INVERSE_DYNAMICS_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processCalculateJacobianCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CALCULATE_JACOBIAN"); SharedMemoryStatus& serverCmd = serverStatusOut; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateJacobianArguments.m_bodyUniqueId); if (bodyHandle && bodyHandle->m_multiBody) { serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED; btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody); if (tree) { int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6; const int numDofs = bodyHandle->m_multiBody->getNumDofs(); btInverseDynamics::vecx q(numDofs + baseDofs); btInverseDynamics::vecx qdot(numDofs + baseDofs); btInverseDynamics::vecx nu(numDofs + baseDofs); btInverseDynamics::vecx joint_force(numDofs + baseDofs); for (int i = 0; i < numDofs; i++) { q[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointPositionsQ[i]; qdot[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointVelocitiesQdot[i]; nu[i + baseDofs] = clientCmd.m_calculateJacobianArguments.m_jointAccelerations[i]; } // Set the gravity to correspond to the world gravity btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity()); if (-1 != tree->setGravityInWorldFrame(id_grav) && -1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force)) { serverCmd.m_jacobianResultArgs.m_dofCount = numDofs + baseDofs; // Set jacobian value tree->calculateJacobians(q); btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs); btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs); // Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link. tree->getBodyJacobianTrans(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_t); tree->getBodyJacobianRot(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &jac_r); // Update the translational jacobian based on the desired local point. // v_pt = v_frame + w x pt // v_pt = J_t * qd + (J_r * qd) x pt // v_pt = J_t * qd - pt x (J_r * qd) // v_pt = J_t * qd - pt_x * J_r * qd) // v_pt = (J_t - pt_x * J_r) * qd // J_t_new = J_t - pt_x * J_r btInverseDynamics::vec3 localPosition; for (int i = 0; i < 3; ++i) { localPosition(i) = clientCmd.m_calculateJacobianArguments.m_localPosition[i]; } // Only calculate if the localPosition is non-zero. if (btInverseDynamics::maxAbs(localPosition) > 0.0) { // Write the localPosition into world coordinates. btInverseDynamics::mat33 world_rotation_body; tree->getBodyTransform(clientCmd.m_calculateJacobianArguments.m_linkIndex + 1, &world_rotation_body); localPosition = world_rotation_body * localPosition; // Correct the translational jacobian. btInverseDynamics::mat33 skewCrossProduct; btInverseDynamics::skew(localPosition, &skewCrossProduct); btInverseDynamics::mat3x jac_l(3, numDofs + baseDofs); btInverseDynamics::mul(skewCrossProduct, jac_r, &jac_l); btInverseDynamics::mat3x jac_t_new(3, numDofs + baseDofs); btInverseDynamics::sub(jac_t, jac_l, &jac_t_new); jac_t = jac_t_new; } // Fill in the result into the shared memory. for (int i = 0; i < 3; ++i) { for (int j = 0; j < (numDofs + baseDofs); ++j) { int element = (numDofs + baseDofs) * i + j; serverCmd.m_jacobianResultArgs.m_linearJacobian[element] = jac_t(i, j); serverCmd.m_jacobianResultArgs.m_angularJacobian[element] = jac_r(i, j); } } serverCmd.m_type = CMD_CALCULATED_JACOBIAN_COMPLETED; } else { serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED; } } } else { serverCmd.m_type = CMD_CALCULATED_JACOBIAN_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processCalculateMassMatrixCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CALCULATE_MASS_MATRIX"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateMassMatrixArguments.m_bodyUniqueId); if (bodyHandle && bodyHandle->m_multiBody) { if (clientCmd.m_calculateMassMatrixArguments.m_flags & 1) { #ifdef STATIC_LINK_SPD_PLUGIN { int posVal = bodyHandle->m_multiBody->getNumPosVars(); btAlignedObjectArray zeroVel; int dof = 7 + posVal; zeroVel.resize(dof); cRBDModel* rbdModel = m_data->findOrCreateRBDModel(bodyHandle->m_multiBody, clientCmd.m_calculateMassMatrixArguments.m_jointPositionsQ, &zeroVel[0]); if (rbdModel) { //Eigen::MatrixXd out_mass; //cRBDUtil::BuildMassMat(*rbdModel, out_mass); const Eigen::MatrixXd& out_mass = rbdModel->GetMassMat(); int skipDofs = 0; // 7 - baseDofQ; int totDofs = dof; serverCmd.m_massMatrixResultArgs.m_dofCount = totDofs - skipDofs; // Fill in the result into the shared memory. double* sharedBuf = (double*)bufferServerToClient; int sizeInBytes = totDofs * totDofs * sizeof(double); if (sizeInBytes < bufferSizeInBytes) { for (int i = skipDofs; i < (totDofs); ++i) { for (int j = skipDofs; j < (totDofs); ++j) { int element = (totDofs - skipDofs) * (i - skipDofs) + (j - skipDofs); double v = out_mass(i, j); if (i == j && v == 0) { v = 1; } sharedBuf[element] = v; } } serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_COMPLETED; } } } #endif } else { btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody); if (tree) { int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6; const int numDofs = bodyHandle->m_multiBody->getNumDofs(); const int totDofs = numDofs + baseDofs; btInverseDynamics::vecx q(totDofs); btInverseDynamics::matxx massMatrix(totDofs, totDofs); for (int i = 0; i < numDofs; i++) { q[i + baseDofs] = clientCmd.m_calculateMassMatrixArguments.m_jointPositionsQ[i]; } if (-1 != tree->calculateMassMatrix(q, &massMatrix)) { serverCmd.m_massMatrixResultArgs.m_dofCount = totDofs; // Fill in the result into the shared memory. double* sharedBuf = (double*)bufferServerToClient; int sizeInBytes = totDofs * totDofs * sizeof(double); if (sizeInBytes < bufferSizeInBytes) { for (int i = 0; i < (totDofs); ++i) { for (int j = 0; j < (totDofs); ++j) { int element = (totDofs)*i + j; sharedBuf[element] = massMatrix(i, j); } } serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_COMPLETED; } } } } } else { serverCmd.m_type = CMD_CALCULATED_MASS_MATRIX_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processApplyExternalForceCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_APPLY_EXTERNAL_FORCE"); if (m_data->m_verboseOutput) { b3Printf("CMD_APPLY_EXTERNAL_FORCE clientCmd = %d\n", clientCmd.m_sequenceNumber); } for (int i = 0; i < clientCmd.m_externalForceArguments.m_numForcesAndTorques; ++i) { InternalBodyData* body = m_data->m_bodyHandles.getHandle(clientCmd.m_externalForceArguments.m_bodyUniqueIds[i]); bool isLinkFrame = ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_LINK_FRAME) != 0); if (body && body->m_multiBody) { btMultiBody* mb = body->m_multiBody; if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0) { btVector3 tmpForce(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]); btVector3 tmpPosition( clientCmd.m_externalForceArguments.m_positions[i * 3 + 0], clientCmd.m_externalForceArguments.m_positions[i * 3 + 1], clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]); if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1) { btVector3 forceWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis() * tmpForce : tmpForce; btVector3 relPosWorld = isLinkFrame ? mb->getBaseWorldTransform().getBasis() * tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin(); mb->addBaseForce(forceWorld); mb->addBaseTorque(relPosWorld.cross(forceWorld)); //b3Printf("apply base force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2],positionLocal[0],positionLocal[1],positionLocal[2]); } else { int link = clientCmd.m_externalForceArguments.m_linkIds[i]; btVector3 forceWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis() * tmpForce : tmpForce; btVector3 relPosWorld = isLinkFrame ? mb->getLink(link).m_cachedWorldTransform.getBasis() * tmpPosition : tmpPosition - mb->getBaseWorldTransform().getOrigin(); mb->addLinkForce(link, forceWorld); mb->addLinkTorque(link, relPosWorld.cross(forceWorld)); //b3Printf("apply link force of %f,%f,%f at %f,%f,%f\n", forceWorld[0],forceWorld[1],forceWorld[2], positionLocal[0],positionLocal[1],positionLocal[2]); } } if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0) { btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]); if (clientCmd.m_externalForceArguments.m_linkIds[i] == -1) { btVector3 torqueWorld = isLinkFrame ? torqueLocal : mb->getBaseWorldTransform().getBasis() * torqueLocal; mb->addBaseTorque(torqueWorld); //b3Printf("apply base torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]); } else { int link = clientCmd.m_externalForceArguments.m_linkIds[i]; btVector3 torqueWorld = mb->getLink(link).m_cachedWorldTransform.getBasis() * torqueLocal; mb->addLinkTorque(link, torqueWorld); //b3Printf("apply link torque of %f,%f,%f\n", torqueWorld[0],torqueWorld[1],torqueWorld[2]); } } } if (body && body->m_rigidBody) { btRigidBody* rb = body->m_rigidBody; if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_FORCE) != 0) { btVector3 forceLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]); btVector3 positionLocal( clientCmd.m_externalForceArguments.m_positions[i * 3 + 0], clientCmd.m_externalForceArguments.m_positions[i * 3 + 1], clientCmd.m_externalForceArguments.m_positions[i * 3 + 2]); btVector3 forceWorld = isLinkFrame ? forceLocal : rb->getWorldTransform().getBasis() * forceLocal; btVector3 relPosWorld = isLinkFrame ? positionLocal : rb->getWorldTransform().getBasis() * positionLocal; rb->applyForce(forceWorld, relPosWorld); } if ((clientCmd.m_externalForceArguments.m_forceFlags[i] & EF_TORQUE) != 0) { btVector3 torqueLocal(clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 0], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 1], clientCmd.m_externalForceArguments.m_forcesAndTorques[i * 3 + 2]); btVector3 torqueWorld = isLinkFrame ? torqueLocal : rb->getWorldTransform().getBasis() * torqueLocal; rb->applyTorque(torqueWorld); } } } SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; return hasStatus; } bool PhysicsServerCommandProcessor::processRemoveBodyCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_REMOVE_BODY_FAILED; serverCmd.m_removeObjectArgs.m_numBodies = 0; serverCmd.m_removeObjectArgs.m_numUserConstraints = 0; m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 0); for (int i = 0; i < clientCmd.m_removeObjectArgs.m_numBodies; i++) { int bodyUniqueId = clientCmd.m_removeObjectArgs.m_bodyUniqueIds[i]; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (bodyHandle) { if (bodyHandle->m_multiBody) { serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId; if (m_data->m_pickingMultiBodyPoint2Point && m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA() == bodyHandle->m_multiBody) { //memory will be deleted in the code that follows m_data->m_pickingMultiBodyPoint2Point = 0; } //also remove user constraints... for (int i = m_data->m_dynamicsWorld->getNumMultiBodyConstraints() - 1; i >= 0; i--) { btMultiBodyConstraint* mbc = m_data->m_dynamicsWorld->getMultiBodyConstraint(i); if ((mbc->getMultiBodyA() == bodyHandle->m_multiBody) || (mbc->getMultiBodyB() == bodyHandle->m_multiBody)) { m_data->m_dynamicsWorld->removeMultiBodyConstraint(mbc); //also remove user constraint and submit it as removed for (int c = m_data->m_userConstraints.size() - 1; c >= 0; c--) { InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.getAtIndex(c); int userConstraintKey = m_data->m_userConstraints.getKeyAtIndex(c).getUid1(); if (userConstraintPtr->m_mbConstraint == mbc) { m_data->m_userConstraints.remove(userConstraintKey); serverCmd.m_removeObjectArgs.m_userConstraintUniqueIds[serverCmd.m_removeObjectArgs.m_numUserConstraints++] = userConstraintKey; } } delete mbc; } } if (bodyHandle->m_multiBody->getBaseCollider()) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getBaseCollider()->getUserIndex3()); } m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getBaseCollider()); int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex(); m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex); delete bodyHandle->m_multiBody->getBaseCollider(); } for (int link = 0; link < bodyHandle->m_multiBody->getNumLinks(); link++) { btCollisionObject* colObj = bodyHandle->m_multiBody->getLink(link).m_collider; if (colObj) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_multiBody->getLink(link).m_collider->getUserIndex3()); } m_data->m_dynamicsWorld->removeCollisionObject(bodyHandle->m_multiBody->getLink(link).m_collider); int graphicsIndex = bodyHandle->m_multiBody->getLink(link).m_collider->getUserIndex(); m_data->m_guiHelper->removeGraphicsInstance(graphicsIndex); delete colObj; } } int numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects(); m_data->m_dynamicsWorld->removeMultiBody(bodyHandle->m_multiBody); numCollisionObjects = m_data->m_dynamicsWorld->getNumCollisionObjects(); delete bodyHandle->m_multiBody; bodyHandle->m_multiBody = 0; serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED; } if (bodyHandle->m_rigidBody) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->removeVisualShape(bodyHandle->m_rigidBody->getUserIndex3()); } serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId; if (m_data->m_pickedConstraint && m_data->m_pickedBody == bodyHandle->m_rigidBody) { m_data->m_pickedConstraint = 0; m_data->m_pickedBody = 0; } //todo: clear all other remaining data... m_data->m_dynamicsWorld->removeRigidBody(bodyHandle->m_rigidBody); int graphicsInstance = bodyHandle->m_rigidBody->getUserIndex2(); m_data->m_guiHelper->removeGraphicsInstance(graphicsInstance); delete bodyHandle->m_rigidBody; bodyHandle->m_rigidBody = 0; serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED; } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (bodyHandle->m_softBody) { btSoftBody* psb = bodyHandle->m_softBody; if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->removeVisualShape(psb->getUserIndex3()); } serverCmd.m_removeObjectArgs.m_bodyUniqueIds[serverCmd.m_removeObjectArgs.m_numBodies++] = bodyUniqueId; btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { softWorld->removeSoftBody(psb); } btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { deformWorld->removeSoftBody(psb); } int graphicsInstance = psb->getUserIndex2(); m_data->m_guiHelper->removeGraphicsInstance(graphicsInstance); delete psb; psb = 0; serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED; } #endif for (int i = 0; i < bodyHandle->m_userDataHandles.size(); i++) { int userDataHandle = bodyHandle->m_userDataHandles[i]; SharedMemoryUserData* userData = m_data->m_userDataHandles.getHandle(userDataHandle); m_data->m_userDataHandleLookup.remove(SharedMemoryUserDataHashKey(userData)); m_data->m_userDataHandles.freeHandle(userDataHandle); } m_data->m_bodyHandles.freeHandle(bodyUniqueId); } } for (int i = 0; i < clientCmd.m_removeObjectArgs.m_numUserCollisionShapes; i++) { int removeCollisionShapeId = clientCmd.m_removeObjectArgs.m_userCollisionShapes[i]; InternalCollisionShapeHandle* handle = m_data->m_userCollisionShapeHandles.getHandle(removeCollisionShapeId); if (handle && handle->m_collisionShape) { if (handle->m_used) { b3Warning("Don't remove collision shape: it is used."); } else { b3Warning("TODO: dealloc"); int foundIndex = -1; for (int i = 0; i < m_data->m_worldImporters.size(); i++) { btMultiBodyWorldImporter* importer = m_data->m_worldImporters[i]; for (int c = 0; c < importer->getNumCollisionShapes(); c++) { if (importer->getCollisionShapeByIndex(c) == handle->m_collisionShape) { if ((importer->getNumRigidBodies() == 0) && (importer->getNumConstraints() == 0)) { foundIndex = i; break; } } } } if (foundIndex >= 0) { btMultiBodyWorldImporter* importer = m_data->m_worldImporters[foundIndex]; m_data->m_worldImporters.removeAtIndex(foundIndex); importer->deleteAllData(); delete importer; m_data->m_userCollisionShapeHandles.freeHandle(removeCollisionShapeId); serverCmd.m_type = CMD_REMOVE_BODY_COMPLETED; } } } } m_data->m_guiHelper->setVisualizerFlag(COV_ENABLE_SYNC_RENDERING_INTERNAL, 1); for (int i = 0; i < serverCmd.m_removeObjectArgs.m_numBodies; i++) { b3Notification notification; notification.m_notificationType = BODY_REMOVED; notification.m_bodyArgs.m_bodyUniqueId = serverCmd.m_removeObjectArgs.m_bodyUniqueIds[i]; m_data->m_pluginManager.addNotification(notification); } return hasStatus; } bool PhysicsServerCommandProcessor::processCreateUserConstraintCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_USER_CONSTRAINT"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_USER_CONSTRAINT_FAILED; hasStatus = true; if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_SOFT_BODY_ANCHOR) { #ifndef SKIP_DEFORMABLE_BODY InternalBodyHandle* sbodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex); if (sbodyHandle) { if (sbodyHandle->m_softBody) { int nodeIndex = clientCmd.m_userConstraintArguments.m_parentJointIndex; if (nodeIndex>=0 && nodeIndex < sbodyHandle->m_softBody->m_nodes.size()) { int bodyUniqueId = clientCmd.m_userConstraintArguments.m_childBodyIndex; if (bodyUniqueId<=0) { //fixed anchor (mass = 0) sbodyHandle->m_softBody->setMass(nodeIndex,0.0); int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } else { InternalBodyHandle* mbodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (mbodyHandle && mbodyHandle->m_multiBody) { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { int linkIndex = clientCmd.m_userConstraintArguments.m_childJointIndex; if (linkIndex<0) { sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_multiBody->getBaseCollider()); } else { if (linkIndex < mbodyHandle->m_multiBody->getNumLinks()) { sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_multiBody->getLinkCollider(linkIndex)); } } } } if (mbodyHandle && mbodyHandle->m_rigidBody) { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { //todo: expose those values bool disableCollisionBetweenLinkedBodies = true; //btVector3 localPivot(0,0,0); sbodyHandle->m_softBody->appendDeformableAnchor(nodeIndex, mbodyHandle->m_rigidBody); } #if 1 btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { bool disableCollisionBetweenLinkedBodies = true; btVector3 localPivot(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]); sbodyHandle->m_softBody->appendAnchor(nodeIndex, mbodyHandle->m_rigidBody, localPivot, disableCollisionBetweenLinkedBodies); } #endif } int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } } } #endif } if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_STATE) { int constraintUid = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId; InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(constraintUid); if (userConstraintPtr) { serverCmd.m_userConstraintStateResultArgs.m_numDofs = 0; for (int i = 0; i < 6; i++) { serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = 0; } if (userConstraintPtr->m_mbConstraint) { serverCmd.m_userConstraintStateResultArgs.m_numDofs = userConstraintPtr->m_mbConstraint->getNumRows(); for (int i = 0; i < userConstraintPtr->m_mbConstraint->getNumRows(); i++) { serverCmd.m_userConstraintStateResultArgs.m_appliedConstraintForces[i] = userConstraintPtr->m_mbConstraint->getAppliedImpulse(i) / m_data->m_dynamicsWorld->getSolverInfo().m_timeStep; } serverCmd.m_type = CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED; } } }; if (clientCmd.m_updateFlags & USER_CONSTRAINT_REQUEST_INFO) { int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId; InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange); if (userConstraintPtr) { serverCmd.m_userConstraintResultArgs = userConstraintPtr->m_userConstraintData; serverCmd.m_type = CMD_USER_CONSTRAINT_INFO_COMPLETED; } } if (clientCmd.m_updateFlags & USER_CONSTRAINT_ADD_CONSTRAINT) { btScalar defaultMaxForce = 500.0; InternalBodyData* parentBody = m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_parentBodyIndex); if (parentBody && parentBody->m_multiBody) { if ((clientCmd.m_userConstraintArguments.m_parentJointIndex >= -1) && clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_multiBody->getNumLinks()) { InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex >= 0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex) : 0; //also create a constraint with just a single multibody/rigid body without child //if (childBody) { btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]); btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]); btMatrix3x3 frameInParent(btQuaternion(clientCmd.m_userConstraintArguments.m_parentFrame[3], clientCmd.m_userConstraintArguments.m_parentFrame[4], clientCmd.m_userConstraintArguments.m_parentFrame[5], clientCmd.m_userConstraintArguments.m_parentFrame[6])); btMatrix3x3 frameInChild(btQuaternion(clientCmd.m_userConstraintArguments.m_childFrame[3], clientCmd.m_userConstraintArguments.m_childFrame[4], clientCmd.m_userConstraintArguments.m_childFrame[5], clientCmd.m_userConstraintArguments.m_childFrame[6])); btVector3 jointAxis(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]); if (clientCmd.m_userConstraintArguments.m_jointType == eGearType) { if (childBody && childBody->m_multiBody) { if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= -1) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_multiBody->getNumLinks())) { btMultiBodyGearConstraint* multibodyGear = new btMultiBodyGearConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild); multibodyGear->setMaxAppliedImpulse(defaultMaxForce); m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyGear); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = multibodyGear; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } } else if (clientCmd.m_userConstraintArguments.m_jointType == eFixedType) { if (childBody && childBody->m_multiBody) { if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= -1) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_multiBody->getNumLinks())) { btMultiBodyFixedConstraint* multibodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild); multibodyFixed->setMaxAppliedImpulse(defaultMaxForce); m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodyFixed); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = multibodyFixed; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } else { btRigidBody* rb = childBody ? childBody->m_rigidBody : 0; btMultiBodyFixedConstraint* rigidbodyFixed = new btMultiBodyFixedConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild, frameInParent, frameInChild); rigidbodyFixed->setMaxAppliedImpulse(defaultMaxForce); btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld; world->addMultiBodyConstraint(rigidbodyFixed); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = rigidbodyFixed; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } else if (clientCmd.m_userConstraintArguments.m_jointType == ePrismaticType) { if (childBody && childBody->m_multiBody) { btMultiBodySliderConstraint* multibodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild, frameInParent, frameInChild, jointAxis); multibodySlider->setMaxAppliedImpulse(defaultMaxForce); m_data->m_dynamicsWorld->addMultiBodyConstraint(multibodySlider); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = multibodySlider; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } else { btRigidBody* rb = childBody ? childBody->m_rigidBody : 0; btMultiBodySliderConstraint* rigidbodySlider = new btMultiBodySliderConstraint(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild, frameInParent, frameInChild, jointAxis); rigidbodySlider->setMaxAppliedImpulse(defaultMaxForce); btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld; world->addMultiBodyConstraint(rigidbodySlider); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = rigidbodySlider; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } else if (clientCmd.m_userConstraintArguments.m_jointType == ePoint2PointType) { if (childBody && childBody->m_multiBody) { btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, childBody->m_multiBody, clientCmd.m_userConstraintArguments.m_childJointIndex, pivotInParent, pivotInChild); p2p->setMaxAppliedImpulse(defaultMaxForce); m_data->m_dynamicsWorld->addMultiBodyConstraint(p2p); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = p2p; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } else { btRigidBody* rb = childBody ? childBody->m_rigidBody : 0; btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(parentBody->m_multiBody, clientCmd.m_userConstraintArguments.m_parentJointIndex, rb, pivotInParent, pivotInChild); p2p->setMaxAppliedImpulse(defaultMaxForce); btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld; world->addMultiBodyConstraint(p2p); InteralUserConstraintData userConstraintData; userConstraintData.m_mbConstraint = p2p; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } } else { b3Warning("unknown constraint type"); } } } } else { InternalBodyData* childBody = clientCmd.m_userConstraintArguments.m_childBodyIndex >= 0 ? m_data->m_bodyHandles.getHandle(clientCmd.m_userConstraintArguments.m_childBodyIndex) : 0; if (parentBody && childBody) { if (parentBody->m_rigidBody) { btRigidBody* parentRb = 0; if (clientCmd.m_userConstraintArguments.m_parentJointIndex == -1) { parentRb = parentBody->m_rigidBody; } else { if ((clientCmd.m_userConstraintArguments.m_parentJointIndex >= 0) && (clientCmd.m_userConstraintArguments.m_parentJointIndex < parentBody->m_rigidBodyJoints.size())) { parentRb = &parentBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_parentJointIndex]->getRigidBodyB(); } } btRigidBody* childRb = 0; if (childBody->m_rigidBody) { if (clientCmd.m_userConstraintArguments.m_childJointIndex == -1) { childRb = childBody->m_rigidBody; } else { if ((clientCmd.m_userConstraintArguments.m_childJointIndex >= 0) && (clientCmd.m_userConstraintArguments.m_childJointIndex < childBody->m_rigidBodyJoints.size())) { childRb = &childBody->m_rigidBodyJoints[clientCmd.m_userConstraintArguments.m_childJointIndex]->getRigidBodyB(); } } } switch (clientCmd.m_userConstraintArguments.m_jointType) { case eRevoluteType: { break; } case ePrismaticType: { break; } case eFixedType: { if (childRb && parentRb && (childRb != parentRb)) { btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]); btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]); btTransform offsetTrA, offsetTrB; offsetTrA.setIdentity(); offsetTrA.setOrigin(pivotInParent); offsetTrB.setIdentity(); offsetTrB.setOrigin(pivotInChild); btGeneric6DofSpring2Constraint* dof6 = new btGeneric6DofSpring2Constraint(*parentRb, *childRb, offsetTrA, offsetTrB); dof6->setLinearLowerLimit(btVector3(0, 0, 0)); dof6->setLinearUpperLimit(btVector3(0, 0, 0)); dof6->setAngularLowerLimit(btVector3(0, 0, 0)); dof6->setAngularUpperLimit(btVector3(0, 0, 0)); m_data->m_dynamicsWorld->addConstraint(dof6); InteralUserConstraintData userConstraintData; userConstraintData.m_rbConstraint = dof6; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } break; } case ePoint2PointType: { if (childRb && parentRb && (childRb != parentRb)) { btVector3 pivotInParent(clientCmd.m_userConstraintArguments.m_parentFrame[0], clientCmd.m_userConstraintArguments.m_parentFrame[1], clientCmd.m_userConstraintArguments.m_parentFrame[2]); btVector3 pivotInChild(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]); btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*parentRb, *childRb, pivotInParent, pivotInChild); p2p->m_setting.m_impulseClamp = defaultMaxForce; m_data->m_dynamicsWorld->addConstraint(p2p); InteralUserConstraintData userConstraintData; userConstraintData.m_rbConstraint = p2p; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } break; } case eGearType: { if (childRb && parentRb && (childRb != parentRb)) { btVector3 axisA(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]); //for now we use the same local axis for both objects btVector3 axisB(clientCmd.m_userConstraintArguments.m_jointAxis[0], clientCmd.m_userConstraintArguments.m_jointAxis[1], clientCmd.m_userConstraintArguments.m_jointAxis[2]); btScalar ratio = 1; btGearConstraint* gear = new btGearConstraint(*parentRb, *childRb, axisA, axisB, ratio); m_data->m_dynamicsWorld->addConstraint(gear, true); InteralUserConstraintData userConstraintData; userConstraintData.m_rbConstraint = gear; int uid = m_data->m_userConstraintUIDGenerator++; serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = uid; serverCmd.m_userConstraintResultArgs.m_maxAppliedForce = defaultMaxForce; userConstraintData.m_userConstraintData = serverCmd.m_userConstraintResultArgs; m_data->m_userConstraints.insert(uid, userConstraintData); serverCmd.m_type = CMD_USER_CONSTRAINT_COMPLETED; } break; } case eSphericalType: { b3Warning("constraint type not handled yet"); break; } case ePlanarType: { b3Warning("constraint type not handled yet"); break; } default: { b3Warning("unknown constraint type"); } }; } } } } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT) { serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_FAILED; int userConstraintUidChange = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId; InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidChange); if (userConstraintPtr) { if (userConstraintPtr->m_mbConstraint) { if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_PIVOT_IN_B) { btVector3 pivotInB(clientCmd.m_userConstraintArguments.m_childFrame[0], clientCmd.m_userConstraintArguments.m_childFrame[1], clientCmd.m_userConstraintArguments.m_childFrame[2]); userConstraintPtr->m_userConstraintData.m_childFrame[0] = clientCmd.m_userConstraintArguments.m_childFrame[0]; userConstraintPtr->m_userConstraintData.m_childFrame[1] = clientCmd.m_userConstraintArguments.m_childFrame[1]; userConstraintPtr->m_userConstraintData.m_childFrame[2] = clientCmd.m_userConstraintArguments.m_childFrame[2]; userConstraintPtr->m_mbConstraint->setPivotInB(pivotInB); } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B) { btQuaternion childFrameOrn(clientCmd.m_userConstraintArguments.m_childFrame[3], clientCmd.m_userConstraintArguments.m_childFrame[4], clientCmd.m_userConstraintArguments.m_childFrame[5], clientCmd.m_userConstraintArguments.m_childFrame[6]); userConstraintPtr->m_userConstraintData.m_childFrame[3] = clientCmd.m_userConstraintArguments.m_childFrame[3]; userConstraintPtr->m_userConstraintData.m_childFrame[4] = clientCmd.m_userConstraintArguments.m_childFrame[4]; userConstraintPtr->m_userConstraintData.m_childFrame[5] = clientCmd.m_userConstraintArguments.m_childFrame[5]; userConstraintPtr->m_userConstraintData.m_childFrame[6] = clientCmd.m_userConstraintArguments.m_childFrame[6]; btMatrix3x3 childFrameBasis(childFrameOrn); userConstraintPtr->m_mbConstraint->setFrameInB(childFrameBasis); } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE) { btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce * m_data->m_physicsDeltaTime; userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce; userConstraintPtr->m_mbConstraint->setMaxAppliedImpulse(maxImp); } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO) { userConstraintPtr->m_mbConstraint->setGearRatio(clientCmd.m_userConstraintArguments.m_gearRatio); userConstraintPtr->m_userConstraintData.m_gearRatio = clientCmd.m_userConstraintArguments.m_gearRatio; } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET) { userConstraintPtr->m_mbConstraint->setRelativePositionTarget(clientCmd.m_userConstraintArguments.m_relativePositionTarget); userConstraintPtr->m_userConstraintData.m_relativePositionTarget = clientCmd.m_userConstraintArguments.m_relativePositionTarget; } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_ERP) { userConstraintPtr->m_mbConstraint->setErp(clientCmd.m_userConstraintArguments.m_erp); userConstraintPtr->m_userConstraintData.m_erp = clientCmd.m_userConstraintArguments.m_erp; } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK) { userConstraintPtr->m_mbConstraint->setGearAuxLink(clientCmd.m_userConstraintArguments.m_gearAuxLink); userConstraintPtr->m_userConstraintData.m_gearAuxLink = clientCmd.m_userConstraintArguments.m_gearAuxLink; } } if (userConstraintPtr->m_rbConstraint) { if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_MAX_FORCE) { btScalar maxImp = clientCmd.m_userConstraintArguments.m_maxAppliedForce * m_data->m_physicsDeltaTime; userConstraintPtr->m_userConstraintData.m_maxAppliedForce = clientCmd.m_userConstraintArguments.m_maxAppliedForce; //userConstraintPtr->m_rbConstraint->setMaxAppliedImpulse(maxImp); } if (clientCmd.m_updateFlags & USER_CONSTRAINT_CHANGE_GEAR_RATIO) { if (userConstraintPtr->m_rbConstraint->getObjectType() == GEAR_CONSTRAINT_TYPE) { btGearConstraint* gear = (btGearConstraint*)userConstraintPtr->m_rbConstraint; gear->setRatio(clientCmd.m_userConstraintArguments.m_gearRatio); } } } serverCmd.m_userConstraintResultArgs = clientCmd.m_userConstraintArguments; serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidChange; serverCmd.m_updateFlags = clientCmd.m_updateFlags; serverCmd.m_type = CMD_CHANGE_USER_CONSTRAINT_COMPLETED; } } if (clientCmd.m_updateFlags & USER_CONSTRAINT_REMOVE_CONSTRAINT) { serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_FAILED; int userConstraintUidRemove = clientCmd.m_userConstraintArguments.m_userConstraintUniqueId; InteralUserConstraintData* userConstraintPtr = m_data->m_userConstraints.find(userConstraintUidRemove); if (userConstraintPtr) { if (userConstraintPtr->m_mbConstraint) { m_data->m_dynamicsWorld->removeMultiBodyConstraint(userConstraintPtr->m_mbConstraint); delete userConstraintPtr->m_mbConstraint; m_data->m_userConstraints.remove(userConstraintUidRemove); } if (userConstraintPtr->m_rbConstraint) { m_data->m_dynamicsWorld->removeConstraint(userConstraintPtr->m_rbConstraint); delete userConstraintPtr->m_rbConstraint; m_data->m_userConstraints.remove(userConstraintUidRemove); } serverCmd.m_userConstraintResultArgs.m_userConstraintUniqueId = userConstraintUidRemove; serverCmd.m_type = CMD_REMOVE_USER_CONSTRAINT_COMPLETED; } } return hasStatus; } bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId); if (bodyHandle && bodyHandle->m_multiBody) { IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody); IKTrajectoryHelper* ikHelperPtr = 0; if (ikHelperPtrPtr) { ikHelperPtr = *ikHelperPtrPtr; } else { IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper; m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper); ikHelperPtr = tmpHelper; } int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0]; btAlignedObjectArray startingPositions; startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks()); btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[0], clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[1], clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[2]); btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[0], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[1], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[2], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[3]); btTransform targetBaseCoord; if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS) { targetBaseCoord.setOrigin(targetPosWorld); targetBaseCoord.setRotation(targetOrnWorld); } else { btTransform targetWorld; targetWorld.setOrigin(targetPosWorld); targetWorld.setRotation(targetOrnWorld); btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform(); targetBaseCoord = tr.inverse() * targetWorld; } { int DofIndex = 0; for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i) { if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2) { // 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints. double curPos = 0; if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS) { curPos = clientCmd.m_calculateInverseKinematicsArguments.m_currentPositions[DofIndex]; } else { curPos = bodyHandle->m_multiBody->getJointPos(i); } startingPositions.push_back(curPos); DofIndex++; } } } int numIterations = 20; if (clientCmd.m_updateFlags & IK_HAS_MAX_ITERATIONS) { numIterations = clientCmd.m_calculateInverseKinematicsArguments.m_maxNumIterations; } double residualThreshold = 1e-4; if (clientCmd.m_updateFlags & IK_HAS_RESIDUAL_THRESHOLD) { residualThreshold = clientCmd.m_calculateInverseKinematicsArguments.m_residualThreshold; } btScalar currentDiff = 1e30f; b3AlignedObjectArray jacobian_linear; b3AlignedObjectArray jacobian_angular; btAlignedObjectArray q_current; btAlignedObjectArray q_new; btAlignedObjectArray lower_limit; btAlignedObjectArray upper_limit; btAlignedObjectArray joint_range; btAlignedObjectArray rest_pose; const int numDofs = bodyHandle->m_multiBody->getNumDofs(); int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6; btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs); for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++) { BT_PROFILE("InverseKinematics1Step"); if (ikHelperPtr && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks())) { jacobian_linear.resize(3 * numDofs); jacobian_angular.resize(3 * numDofs); int jacSize = 0; btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody); q_current.resize(numDofs); if (tree && ((numDofs + baseDofs) == tree->numDoFs())) { btInverseDynamics::vec3 world_origin; btInverseDynamics::mat33 world_rot; jacSize = jacobian_linear.size(); // Set jacobian value int DofIndex = 0; for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i) { if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2) { // 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints. double curPos = startingPositions[DofIndex]; q_current[DofIndex] = curPos; q[DofIndex + baseDofs] = curPos; qdot[DofIndex + baseDofs] = 0; nu[DofIndex + baseDofs] = 0; DofIndex++; } } // Set the gravity to correspond to the world gravity btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity()); { BT_PROFILE("calculateInverseDynamics"); if (-1 != tree->setGravityInWorldFrame(id_grav) && -1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force)) { tree->calculateJacobians(q); btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs); btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs); // Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link. tree->getBodyJacobianTrans(endEffectorLinkIndex + 1, &jac_t); tree->getBodyJacobianRot(endEffectorLinkIndex + 1, &jac_r); //calculatePositionKinematics is already done inside calculateInverseDynamics tree->getBodyOrigin(endEffectorLinkIndex + 1, &world_origin); tree->getBodyTransform(endEffectorLinkIndex + 1, &world_rot); for (int i = 0; i < 3; ++i) { for (int j = 0; j < numDofs; ++j) { jacobian_linear[i * numDofs + j] = jac_t(i, (baseDofs + j)); jacobian_angular[i * numDofs + j] = jac_r(i, (baseDofs + j)); } } } } q_new.resize(numDofs); int ikMethod = 0; if ((clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) && (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)) { //Nullspace task only works with DLS now. TODO: add nullspace task to SDLS. ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE; } else if (clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) { if (clientCmd.m_updateFlags & IK_SDLS) { ikMethod = IK2_VEL_SDLS_WITH_ORIENTATION; } else { ikMethod = IK2_VEL_DLS_WITH_ORIENTATION; } } else if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY) { //Nullspace task only works with DLS now. TODO: add nullspace task to SDLS. ikMethod = IK2_VEL_DLS_WITH_NULLSPACE; } else { if (clientCmd.m_updateFlags & IK_SDLS) { ikMethod = IK2_VEL_SDLS; } else { ikMethod = IK2_VEL_DLS; ; } } if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY) { lower_limit.resize(numDofs); upper_limit.resize(numDofs); joint_range.resize(numDofs); rest_pose.resize(numDofs); for (int i = 0; i < numDofs; ++i) { lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i]; upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i]; joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i]; rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i]; } { BT_PROFILE("computeNullspaceVel"); ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]); } } //btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse(); btVector3DoubleData endEffectorWorldPosition; btQuaternionDoubleData endEffectorWorldOrientation; //get the position from the inverse dynamics (based on q) instead of endEffectorTransformWorld btVector3 endEffectorPosWorldOrg = world_origin; btQuaternion endEffectorOriWorldOrg; world_rot.getRotation(endEffectorOriWorldOrg); btTransform endEffectorBaseCoord; endEffectorBaseCoord.setOrigin(endEffectorPosWorldOrg); endEffectorBaseCoord.setRotation(endEffectorOriWorldOrg); //don't need the next two lines //btTransform linkInertiaInv = bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse(); //endEffectorBaseCoord = endEffectorBaseCoord * linkInertiaInv; //btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform(); //endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld; //endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld; btQuaternion endEffectorOriBaseCoord = endEffectorBaseCoord.getRotation(); //btVector4 endEffectorOri(endEffectorOriBaseCoord.x(), endEffectorOriBaseCoord.y(), endEffectorOriBaseCoord.z(), endEffectorOriBaseCoord.w()); endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition); endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation); //diff currentDiff = (endEffectorBaseCoord.getOrigin() - targetBaseCoord.getOrigin()).length(); btVector3DoubleData targetPosBaseCoord; btQuaternionDoubleData targetOrnBaseCoord; targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord); targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord); // Set joint damping coefficents. A small default // damping constant is added to prevent singularity // with pseudo inverse. The user can set joint damping // coefficients differently for each joint. The larger // the damping coefficient is, the less we rely on // this joint to achieve the IK target. btAlignedObjectArray joint_damping; joint_damping.resize(numDofs, 0.5); if (clientCmd.m_updateFlags & IK_HAS_JOINT_DAMPING) { for (int i = 0; i < numDofs; ++i) { joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i]; } } ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]); double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; { BT_PROFILE("computeIK"); ikHelperPtr->computeIK(targetPosBaseCoord.m_floats, targetOrnBaseCoord.m_floats, endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats, &q_current[0], numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0], &q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff); } serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId; for (int i = 0; i < numDofs; i++) { serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i]; } serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs; serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED; for (int i = 0; i < numDofs; i++) { startingPositions[i] = q_new[i]; } } } } } return hasStatus; } bool PhysicsServerCommandProcessor::processCalculateInverseKinematicsCommand2(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_CALCULATE_INVERSE_KINEMATICS"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_FAILED; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(clientCmd.m_calculateInverseKinematicsArguments.m_bodyUniqueId); if (bodyHandle && bodyHandle->m_multiBody) { IKTrajectoryHelper** ikHelperPtrPtr = m_data->m_inverseKinematicsHelpers.find(bodyHandle->m_multiBody); IKTrajectoryHelper* ikHelperPtr = 0; if (ikHelperPtrPtr) { ikHelperPtr = *ikHelperPtrPtr; } else { IKTrajectoryHelper* tmpHelper = new IKTrajectoryHelper; m_data->m_inverseKinematicsHelpers.insert(bodyHandle->m_multiBody, tmpHelper); ikHelperPtr = tmpHelper; } btAlignedObjectArray startingPositions; startingPositions.reserve(bodyHandle->m_multiBody->getNumLinks()); { int DofIndex = 0; for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i) { if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2) { // 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints. double curPos = 0; if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS) { curPos = clientCmd.m_calculateInverseKinematicsArguments.m_currentPositions[DofIndex]; } else { curPos = bodyHandle->m_multiBody->getJointPos(i); } startingPositions.push_back(curPos); DofIndex++; } } } int numIterations = 20; if (clientCmd.m_updateFlags & IK_HAS_MAX_ITERATIONS) { numIterations = clientCmd.m_calculateInverseKinematicsArguments.m_maxNumIterations; } double residualThreshold = 1e-4; if (clientCmd.m_updateFlags & IK_HAS_RESIDUAL_THRESHOLD) { residualThreshold = clientCmd.m_calculateInverseKinematicsArguments.m_residualThreshold; } btScalar currentDiff = 1e30f; b3AlignedObjectArray endEffectorTargetWorldPositions; b3AlignedObjectArray endEffectorTargetWorldOrientations; b3AlignedObjectArray endEffectorCurrentWorldPositions; b3AlignedObjectArray jacobian_linear; b3AlignedObjectArray jacobian_angular; btAlignedObjectArray q_current; btAlignedObjectArray q_new; btAlignedObjectArray lower_limit; btAlignedObjectArray upper_limit; btAlignedObjectArray joint_range; btAlignedObjectArray rest_pose; const int numDofs = bodyHandle->m_multiBody->getNumDofs(); int baseDofs = bodyHandle->m_multiBody->hasFixedBase() ? 0 : 6; btInverseDynamics::vecx nu(numDofs + baseDofs), qdot(numDofs + baseDofs), q(numDofs + baseDofs), joint_force(numDofs + baseDofs); endEffectorTargetWorldPositions.resize(0); endEffectorTargetWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3); endEffectorTargetWorldOrientations.resize(0); endEffectorTargetWorldOrientations.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 4); bool validEndEffectorLinkIndices = true; for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++) { int endEffectorLinkIndex = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne]; validEndEffectorLinkIndices = validEndEffectorLinkIndices && (endEffectorLinkIndex < bodyHandle->m_multiBody->getNumLinks()); btVector3 targetPosWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 0], clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 1], clientCmd.m_calculateInverseKinematicsArguments.m_targetPositions[ne * 3 + 2]); btQuaternion targetOrnWorld(clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 0], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 1], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 2], clientCmd.m_calculateInverseKinematicsArguments.m_targetOrientation[ne * 4 + 3]); btTransform targetBaseCoord; if (clientCmd.m_updateFlags & IK_HAS_CURRENT_JOINT_POSITIONS) { targetBaseCoord.setOrigin(targetPosWorld); targetBaseCoord.setRotation(targetOrnWorld); } else { btTransform targetWorld; targetWorld.setOrigin(targetPosWorld); targetWorld.setRotation(targetOrnWorld); btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform(); targetBaseCoord = tr.inverse() * targetWorld; } btVector3DoubleData targetPosBaseCoord; btQuaternionDoubleData targetOrnBaseCoord; targetBaseCoord.getOrigin().serializeDouble(targetPosBaseCoord); targetBaseCoord.getRotation().serializeDouble(targetOrnBaseCoord); endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[0]); endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[1]); endEffectorTargetWorldPositions.push_back(targetPosBaseCoord.m_floats[2]); endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[0]); endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[1]); endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[2]); endEffectorTargetWorldOrientations.push_back(targetOrnBaseCoord.m_floats[3]); } for (int i = 0; i < numIterations && currentDiff > residualThreshold; i++) { BT_PROFILE("InverseKinematics1Step"); if (ikHelperPtr && validEndEffectorLinkIndices) { jacobian_linear.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3 * numDofs); jacobian_angular.resize(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3 * numDofs); int jacSize = 0; btInverseDynamics::MultiBodyTree* tree = m_data->findOrCreateTree(bodyHandle->m_multiBody); q_current.resize(numDofs); if (tree && ((numDofs + baseDofs) == tree->numDoFs())) { btInverseDynamics::vec3 world_origin; btInverseDynamics::mat33 world_rot; jacSize = jacobian_linear.size(); // Set jacobian value int DofIndex = 0; for (int i = 0; i < bodyHandle->m_multiBody->getNumLinks(); ++i) { if (bodyHandle->m_multiBody->getLink(i).m_jointType >= 0 && bodyHandle->m_multiBody->getLink(i).m_jointType <= 2) { // 0, 1, 2 represent revolute, prismatic, and spherical joint types respectively. Skip the fixed joints. double curPos = startingPositions[DofIndex]; q_current[DofIndex] = curPos; q[DofIndex + baseDofs] = curPos; qdot[DofIndex + baseDofs] = 0; nu[DofIndex + baseDofs] = 0; DofIndex++; } } // Set the gravity to correspond to the world gravity btInverseDynamics::vec3 id_grav(m_data->m_dynamicsWorld->getGravity()); { BT_PROFILE("calculateInverseDynamics"); if (-1 != tree->setGravityInWorldFrame(id_grav) && -1 != tree->calculateInverseDynamics(q, qdot, nu, &joint_force)) { tree->calculateJacobians(q); btInverseDynamics::mat3x jac_t(3, numDofs + baseDofs); btInverseDynamics::mat3x jac_r(3, numDofs + baseDofs); currentDiff = 0; endEffectorCurrentWorldPositions.resize(0); endEffectorCurrentWorldPositions.reserve(clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices * 3); for (int ne = 0; ne < clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices; ne++) { int endEffectorLinkIndex2 = clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[ne]; // Note that inverse dynamics uses zero-based indexing of bodies, not starting from -1 for the base link. tree->getBodyJacobianTrans(endEffectorLinkIndex2 + 1, &jac_t); tree->getBodyJacobianRot(endEffectorLinkIndex2 + 1, &jac_r); //calculatePositionKinematics is already done inside calculateInverseDynamics tree->getBodyOrigin(endEffectorLinkIndex2 + 1, &world_origin); tree->getBodyTransform(endEffectorLinkIndex2 + 1, &world_rot); for (int i = 0; i < 3; ++i) { for (int j = 0; j < numDofs; ++j) { jacobian_linear[(ne * 3 + i) * numDofs + j] = jac_t(i, (baseDofs + j)); jacobian_angular[(ne * 3 + i) * numDofs + j] = jac_r(i, (baseDofs + j)); } } endEffectorCurrentWorldPositions.push_back(world_origin[0]); endEffectorCurrentWorldPositions.push_back(world_origin[1]); endEffectorCurrentWorldPositions.push_back(world_origin[2]); btInverseDynamics::vec3 targetPos(btVector3(endEffectorTargetWorldPositions[ne * 3 + 0], endEffectorTargetWorldPositions[ne * 3 + 1], endEffectorTargetWorldPositions[ne * 3 + 2])); //diff currentDiff = btMax(currentDiff, (world_origin - targetPos).length()); } } } q_new.resize(numDofs); int ikMethod = 0; if ((clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) && (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY)) { //Nullspace task only works with DLS now. TODO: add nullspace task to SDLS. ikMethod = IK2_VEL_DLS_WITH_ORIENTATION_NULLSPACE; } else if (clientCmd.m_updateFlags & IK_HAS_TARGET_ORIENTATION) { if (clientCmd.m_updateFlags & IK_SDLS) { ikMethod = IK2_VEL_SDLS_WITH_ORIENTATION; } else { ikMethod = IK2_VEL_DLS_WITH_ORIENTATION; } } else if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY) { //Nullspace task only works with DLS now. TODO: add nullspace task to SDLS. ikMethod = IK2_VEL_DLS_WITH_NULLSPACE; } else { if (clientCmd.m_updateFlags & IK_SDLS) { ikMethod = IK2_VEL_SDLS; } else { ikMethod = IK2_VEL_DLS; ; } } if (clientCmd.m_updateFlags & IK_HAS_NULL_SPACE_VELOCITY) { lower_limit.resize(numDofs); upper_limit.resize(numDofs); joint_range.resize(numDofs); rest_pose.resize(numDofs); for (int i = 0; i < numDofs; ++i) { lower_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_lowerLimit[i]; upper_limit[i] = clientCmd.m_calculateInverseKinematicsArguments.m_upperLimit[i]; joint_range[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointRange[i]; rest_pose[i] = clientCmd.m_calculateInverseKinematicsArguments.m_restPose[i]; } { BT_PROFILE("computeNullspaceVel"); ikHelperPtr->computeNullspaceVel(numDofs, &q_current[0], &lower_limit[0], &upper_limit[0], &joint_range[0], &rest_pose[0]); } } //btTransform endEffectorTransformWorld = bodyHandle->m_multiBody->getLink(endEffectorLinkIndex).m_cachedWorldTransform * bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse(); btVector3DoubleData endEffectorWorldPosition; btQuaternionDoubleData endEffectorWorldOrientation; //get the position from the inverse dynamics (based on q) instead of endEffectorTransformWorld btVector3 endEffectorPosWorldOrg = world_origin; btQuaternion endEffectorOriWorldOrg; world_rot.getRotation(endEffectorOriWorldOrg); btTransform endEffectorBaseCoord; endEffectorBaseCoord.setOrigin(endEffectorPosWorldOrg); endEffectorBaseCoord.setRotation(endEffectorOriWorldOrg); //don't need the next two lines //btTransform linkInertiaInv = bodyHandle->m_linkLocalInertialFrames[endEffectorLinkIndex].inverse(); //endEffectorBaseCoord = endEffectorBaseCoord * linkInertiaInv; //btTransform tr = bodyHandle->m_multiBody->getBaseWorldTransform(); //endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld; //endEffectorBaseCoord = tr.inverse()*endEffectorTransformWorld; btQuaternion endEffectorOriBaseCoord = endEffectorBaseCoord.getRotation(); //btVector4 endEffectorOri(endEffectorOriBaseCoord.x(), endEffectorOriBaseCoord.y(), endEffectorOriBaseCoord.z(), endEffectorOriBaseCoord.w()); endEffectorBaseCoord.getOrigin().serializeDouble(endEffectorWorldPosition); endEffectorBaseCoord.getRotation().serializeDouble(endEffectorWorldOrientation); // Set joint damping coefficents. A small default // damping constant is added to prevent singularity // with pseudo inverse. The user can set joint damping // coefficients differently for each joint. The larger // the damping coefficient is, the less we rely on // this joint to achieve the IK target. btAlignedObjectArray joint_damping; joint_damping.resize(numDofs, 0.5); if (clientCmd.m_updateFlags & IK_HAS_JOINT_DAMPING) { for (int i = 0; i < numDofs; ++i) { joint_damping[i] = clientCmd.m_calculateInverseKinematicsArguments.m_jointDamping[i]; } } ikHelperPtr->setDampingCoeff(numDofs, &joint_damping[0]); double targetDampCoeff[6] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; bool performedIK = false; if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices == 1) { BT_PROFILE("computeIK"); ikHelperPtr->computeIK(&endEffectorTargetWorldPositions[0], &endEffectorTargetWorldOrientations[0], endEffectorWorldPosition.m_floats, endEffectorWorldOrientation.m_floats, &q_current[0], numDofs, clientCmd.m_calculateInverseKinematicsArguments.m_endEffectorLinkIndices[0], &q_new[0], ikMethod, &jacobian_linear[0], &jacobian_angular[0], jacSize * 2, targetDampCoeff); performedIK = true; } else { if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices > 1) { ikHelperPtr->computeIK2(&endEffectorTargetWorldPositions[0], &endEffectorCurrentWorldPositions[0], clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices, //endEffectorWorldOrientation.m_floats, &q_current[0], numDofs, &q_new[0], ikMethod, &jacobian_linear[0], targetDampCoeff); performedIK = true; } } if (performedIK) { serverCmd.m_inverseKinematicsResultArgs.m_bodyUniqueId = clientCmd.m_calculateInverseDynamicsArguments.m_bodyUniqueId; for (int i = 0; i < numDofs; i++) { serverCmd.m_inverseKinematicsResultArgs.m_jointPositions[i] = q_new[i]; } serverCmd.m_inverseKinematicsResultArgs.m_dofCount = numDofs; serverCmd.m_type = CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED; for (int i = 0; i < numDofs; i++) { startingPositions[i] = q_new[i]; } } } } } } return hasStatus; } // PyModule_AddIntConstant(m, "GEOM_SPHERE", GEOM_SPHERE); // PyModule_AddIntConstant(m, "GEOM_BOX", GEOM_BOX); // PyModule_AddIntConstant(m, "GEOM_CYLINDER", GEOM_CYLINDER); // PyModule_AddIntConstant(m, "GEOM_MESH", GEOM_MESH); // PyModule_AddIntConstant(m, "GEOM_PLANE", GEOM_PLANE); // PyModule_AddIntConstant(m, "GEOM_CAPSULE", GEOM_CAPSULE); int PhysicsServerCommandProcessor::extractCollisionShapes(const btCollisionShape* colShape, const btTransform& transform, b3CollisionShapeData* collisionShapeBuffer, int maxCollisionShapes) { if (maxCollisionShapes <= 0) { b3Warning("No space in buffer"); return 0; } int numConverted = 0; collisionShapeBuffer[0].m_localCollisionFrame[0] = transform.getOrigin()[0]; collisionShapeBuffer[0].m_localCollisionFrame[1] = transform.getOrigin()[1]; collisionShapeBuffer[0].m_localCollisionFrame[2] = transform.getOrigin()[2]; collisionShapeBuffer[0].m_localCollisionFrame[3] = transform.getRotation()[0]; collisionShapeBuffer[0].m_localCollisionFrame[4] = transform.getRotation()[1]; collisionShapeBuffer[0].m_localCollisionFrame[5] = transform.getRotation()[2]; collisionShapeBuffer[0].m_localCollisionFrame[6] = transform.getRotation()[3]; collisionShapeBuffer[0].m_meshAssetFileName[0] = 0; switch (colShape->getShapeType()) { case MULTI_SPHERE_SHAPE_PROXYTYPE: { btCapsuleShapeZ* capsule = (btCapsuleShapeZ*)colShape; collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CAPSULE; collisionShapeBuffer[0].m_dimensions[0] = 2. * capsule->getHalfHeight(); collisionShapeBuffer[0].m_dimensions[1] = capsule->getRadius(); collisionShapeBuffer[0].m_dimensions[2] = 0; numConverted++; break; break; } case STATIC_PLANE_PROXYTYPE: { btStaticPlaneShape* plane = (btStaticPlaneShape*)colShape; collisionShapeBuffer[0].m_collisionGeometryType = GEOM_PLANE; collisionShapeBuffer[0].m_dimensions[0] = plane->getPlaneNormal()[0]; collisionShapeBuffer[0].m_dimensions[1] = plane->getPlaneNormal()[1]; collisionShapeBuffer[0].m_dimensions[2] = plane->getPlaneNormal()[2]; numConverted += 1; break; } case TRIANGLE_MESH_SHAPE_PROXYTYPE: case SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE: case CONVEX_HULL_SHAPE_PROXYTYPE: { UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape); if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH)) { collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH; collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0]; collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1]; collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2]; strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str()); numConverted += 1; } else { collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH; sprintf(collisionShapeBuffer[0].m_meshAssetFileName, "unknown_file"); collisionShapeBuffer[0].m_dimensions[0] = 1; collisionShapeBuffer[0].m_dimensions[1] = 1; collisionShapeBuffer[0].m_dimensions[2] = 1; numConverted++; } break; } case CAPSULE_SHAPE_PROXYTYPE: { btCapsuleShapeZ* capsule = (btCapsuleShapeZ*)colShape; collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CAPSULE; collisionShapeBuffer[0].m_dimensions[0] = 2. * capsule->getHalfHeight(); collisionShapeBuffer[0].m_dimensions[1] = capsule->getRadius(); collisionShapeBuffer[0].m_dimensions[2] = 0; numConverted++; break; } case CYLINDER_SHAPE_PROXYTYPE: { btCylinderShapeZ* cyl = (btCylinderShapeZ*)colShape; collisionShapeBuffer[0].m_collisionGeometryType = GEOM_CYLINDER; collisionShapeBuffer[0].m_dimensions[0] = 2. * cyl->getHalfExtentsWithMargin().getZ(); collisionShapeBuffer[0].m_dimensions[1] = cyl->getHalfExtentsWithMargin().getX(); collisionShapeBuffer[0].m_dimensions[2] = 0; numConverted++; break; } case BOX_SHAPE_PROXYTYPE: { btBoxShape* box = (btBoxShape*)colShape; btVector3 halfExtents = box->getHalfExtentsWithMargin(); collisionShapeBuffer[0].m_collisionGeometryType = GEOM_BOX; collisionShapeBuffer[0].m_dimensions[0] = 2. * halfExtents[0]; collisionShapeBuffer[0].m_dimensions[1] = 2. * halfExtents[1]; collisionShapeBuffer[0].m_dimensions[2] = 2. * halfExtents[2]; numConverted++; break; } case SPHERE_SHAPE_PROXYTYPE: { btSphereShape* sphere = (btSphereShape*)colShape; collisionShapeBuffer[0].m_collisionGeometryType = GEOM_SPHERE; collisionShapeBuffer[0].m_dimensions[0] = sphere->getRadius(); collisionShapeBuffer[0].m_dimensions[1] = sphere->getRadius(); collisionShapeBuffer[0].m_dimensions[2] = sphere->getRadius(); numConverted++; break; } case COMPOUND_SHAPE_PROXYTYPE: { //it could be a compound mesh from a wavefront OBJ, check it UrdfCollision* urdfCol = m_data->m_bulletCollisionShape2UrdfCollision.find(colShape); if (urdfCol && (urdfCol->m_geometry.m_type == URDF_GEOM_MESH)) { collisionShapeBuffer[0].m_collisionGeometryType = GEOM_MESH; collisionShapeBuffer[0].m_dimensions[0] = urdfCol->m_geometry.m_meshScale[0]; collisionShapeBuffer[0].m_dimensions[1] = urdfCol->m_geometry.m_meshScale[1]; collisionShapeBuffer[0].m_dimensions[2] = urdfCol->m_geometry.m_meshScale[2]; strcpy(collisionShapeBuffer[0].m_meshAssetFileName, urdfCol->m_geometry.m_meshFileName.c_str()); numConverted += 1; } else { //recurse, accumulate childTransform btCompoundShape* compound = (btCompoundShape*)colShape; for (int i = 0; i < compound->getNumChildShapes(); i++) { btTransform childTrans = transform * compound->getChildTransform(i); int remain = maxCollisionShapes - numConverted; int converted = extractCollisionShapes(compound->getChildShape(i), childTrans, &collisionShapeBuffer[numConverted], remain); numConverted += converted; } } break; } default: { b3Warning("Unexpected collision shape type in PhysicsServerCommandProcessor::extractCollisionShapes"); } }; return numConverted; } bool PhysicsServerCommandProcessor::processRequestCollisionShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_COLLISION_SHAPE_INFO"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_FAILED; int bodyUniqueId = clientCmd.m_requestCollisionShapeDataArguments.m_bodyUniqueId; int linkIndex = clientCmd.m_requestCollisionShapeDataArguments.m_linkIndex; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (bodyHandle) { if (bodyHandle->m_multiBody) { b3CollisionShapeData* collisionShapeStoragePtr = (b3CollisionShapeData*)bufferServerToClient; collisionShapeStoragePtr->m_objectUniqueId = bodyUniqueId; collisionShapeStoragePtr->m_linkIndex = linkIndex; int totalBytesPerObject = sizeof(b3CollisionShapeData); int maxNumColObjects = bufferSizeInBytes / totalBytesPerObject - 1; btTransform childTrans; childTrans.setIdentity(); serverCmd.m_sendCollisionShapeArgs.m_bodyUniqueId = bodyUniqueId; serverCmd.m_sendCollisionShapeArgs.m_linkIndex = linkIndex; if (linkIndex == -1) { if (bodyHandle->m_multiBody->getBaseCollider()) { //extract shape info from base collider int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getBaseCollider()->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects); serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes; serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED; } } else { if (linkIndex >= 0 && linkIndex < bodyHandle->m_multiBody->getNumLinks() && bodyHandle->m_multiBody->getLinkCollider(linkIndex)) { int numConvertedCollisionShapes = extractCollisionShapes(bodyHandle->m_multiBody->getLinkCollider(linkIndex)->getCollisionShape(), childTrans, collisionShapeStoragePtr, maxNumColObjects); serverCmd.m_sendCollisionShapeArgs.m_numCollisionShapes = numConvertedCollisionShapes; serverCmd.m_type = CMD_COLLISION_SHAPE_INFO_COMPLETED; } } } } return hasStatus; } bool PhysicsServerCommandProcessor::processRequestVisualShapeInfoCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_REQUEST_VISUAL_SHAPE_INFO"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_FAILED; //retrieve the visual shape information for a specific body if (m_data->m_pluginManager.getRenderInterface()) { int totalNumVisualShapes = m_data->m_pluginManager.getRenderInterface()->getNumVisualShapes(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId); //int totalBytesPerVisualShape = sizeof (b3VisualShapeData); //int visualShapeStorage = bufferSizeInBytes / totalBytesPerVisualShape - 1; //set serverCmd.m_sendVisualShapeArgs when totalNumVisualShapes is zero if (totalNumVisualShapes == 0) { serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = 0; serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 0; serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex; serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId; serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData) * serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied; serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED; } else { b3VisualShapeData* visualShapeStoragePtr = (b3VisualShapeData*)bufferServerToClient; int remain = totalNumVisualShapes - clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex; int shapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex; int success = m_data->m_pluginManager.getRenderInterface()->getVisualShapesData(clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId, shapeIndex, visualShapeStoragePtr); if (success) { //find the matching texture unique ids. if (visualShapeStoragePtr->m_tinyRendererTextureId >= 0) { b3AlignedObjectArray usedHandles; m_data->m_textureHandles.getUsedHandles(usedHandles); for (int i = 0; i < usedHandles.size(); i++) { int texHandle = usedHandles[i]; InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle); if (texH && (texH->m_tinyRendererTextureId == visualShapeStoragePtr->m_tinyRendererTextureId)) { visualShapeStoragePtr->m_openglTextureId = texH->m_openglTextureId; visualShapeStoragePtr->m_textureUniqueId = texHandle; } } } serverCmd.m_sendVisualShapeArgs.m_numRemainingVisualShapes = remain - 1; serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied = 1; serverCmd.m_sendVisualShapeArgs.m_startingVisualShapeIndex = clientCmd.m_requestVisualShapeDataArguments.m_startingVisualShapeIndex; serverCmd.m_sendVisualShapeArgs.m_bodyUniqueId = clientCmd.m_requestVisualShapeDataArguments.m_bodyUniqueId; serverCmd.m_numDataStreamBytes = sizeof(b3VisualShapeData) * serverCmd.m_sendVisualShapeArgs.m_numVisualShapesCopied; serverCmd.m_type = CMD_VISUAL_SHAPE_INFO_COMPLETED; } else { b3Warning("failed to get shape info"); } } } return hasStatus; } bool PhysicsServerCommandProcessor::processUpdateVisualShapeCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_UPDATE_VISUAL_SHAPE"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_FAILED; InternalTextureHandle* texHandle = 0; if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE) { if (clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId >= 0) { texHandle = m_data->m_textureHandles.getHandle(clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId); } if (clientCmd.m_updateVisualShapeDataArguments.m_textureUniqueId >= -1) { if (texHandle) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->changeShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId, clientCmd.m_updateVisualShapeDataArguments.m_jointIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, texHandle->m_tinyRendererTextureId); } } else { m_data->m_pluginManager.getRenderInterface()->changeShapeTexture(clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId, clientCmd.m_updateVisualShapeDataArguments.m_jointIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, -1); } } } { int bodyUniqueId = clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId; int linkIndex = clientCmd.m_updateVisualShapeDataArguments.m_jointIndex; InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (bodyHandle) { if (bodyHandle->m_multiBody) { if (linkIndex == -1) { if (bodyHandle->m_multiBody->getBaseCollider()) { int graphicsIndex = bodyHandle->m_multiBody->getBaseCollider()->getUserIndex(); if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE) { int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex); if (texHandle) { m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId); } else { m_data->m_guiHelper->replaceTexture(shapeIndex, -1); } } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR) { m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor); } } } else { if (linkIndex < bodyHandle->m_multiBody->getNumLinks()) { if (bodyHandle->m_multiBody->getLink(linkIndex).m_collider) { int graphicsIndex = bodyHandle->m_multiBody->getLink(linkIndex).m_collider->getUserIndex(); if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE) { int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex); if (texHandle) { m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId); } else { m_data->m_guiHelper->replaceTexture(shapeIndex, -1); } } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR) { m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor); } } } } } else { if (bodyHandle->m_rigidBody) { int graphicsIndex = bodyHandle->m_rigidBody->getUserIndex(); if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_TEXTURE) { if (texHandle) { int shapeIndex = m_data->m_guiHelper->getShapeIndexFromInstance(graphicsIndex); m_data->m_guiHelper->replaceTexture(shapeIndex, texHandle->m_openglTextureId); } } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->changeRGBAColor(bodyUniqueId, linkIndex, clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } m_data->m_guiHelper->changeRGBAColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_rgbaColor); } if (clientCmd.m_updateFlags & CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR) { m_data->m_guiHelper->changeSpecularColor(graphicsIndex, clientCmd.m_updateVisualShapeDataArguments.m_specularColor); } } } } } serverCmd.m_type = CMD_VISUAL_SHAPE_UPDATE_COMPLETED; b3Notification notification; notification.m_notificationType = VISUAL_SHAPE_CHANGED; notification.m_visualShapeArgs.m_bodyUniqueId = clientCmd.m_updateVisualShapeDataArguments.m_bodyUniqueId; notification.m_visualShapeArgs.m_linkIndex = clientCmd.m_updateVisualShapeDataArguments.m_jointIndex; notification.m_visualShapeArgs.m_visualShapeIndex = clientCmd.m_updateVisualShapeDataArguments.m_shapeIndex; m_data->m_pluginManager.addNotification(notification); return hasStatus; } bool PhysicsServerCommandProcessor::processChangeTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_CHANGE_TEXTURE_COMMAND_FAILED; InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(clientCmd.m_changeTextureArgs.m_textureUniqueId); if (texH) { int gltex = texH->m_openglTextureId; m_data->m_guiHelper->changeTexture(gltex, (const unsigned char*)bufferServerToClient, clientCmd.m_changeTextureArgs.m_width, clientCmd.m_changeTextureArgs.m_height); serverCmd.m_type = CMD_CLIENT_COMMAND_COMPLETED; } return hasStatus; } bool PhysicsServerCommandProcessor::processLoadTextureCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_LOAD_TEXTURE"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED; char relativeFileName[1024]; char pathPrefix[1024]; CommonFileIOInterface* fileIO(m_data->m_pluginManager.getFileIOInterface()); if (fileIO->findResourcePath(clientCmd.m_loadTextureArguments.m_textureFileName, relativeFileName, 1024)) { b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024); int texHandle = m_data->m_textureHandles.allocHandle(); InternalTextureHandle* texH = m_data->m_textureHandles.getHandle(texHandle); if (texH) { texH->m_tinyRendererTextureId = -1; texH->m_openglTextureId = -1; int uid = -1; if (m_data->m_pluginManager.getRenderInterface()) { uid = m_data->m_pluginManager.getRenderInterface()->loadTextureFile(relativeFileName, fileIO); } if (uid >= 0) { texH->m_tinyRendererTextureId = uid; } { int width, height, n; unsigned char* imageData = 0; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); if (fileIO) { b3AlignedObjectArray buffer; buffer.reserve(1024); int fileId = fileIO->fileOpen(relativeFileName, "rb"); if (fileId >= 0) { int size = fileIO->getFileSize(fileId); if (size > 0) { buffer.resize(size); int actual = fileIO->fileRead(fileId, &buffer[0], size); if (actual != size) { b3Warning("image filesize mismatch!\n"); buffer.resize(0); } } fileIO->fileClose(fileId); } if (buffer.size()) { imageData = stbi_load_from_memory((const unsigned char*)&buffer[0], buffer.size(), &width, &height, &n, 3); } } else { imageData = stbi_load(relativeFileName, &width, &height, &n, 3); } if (imageData) { texH->m_openglTextureId = m_data->m_guiHelper->registerTexture(imageData, width, height); free(imageData); } else { b3Warning("Unsupported texture image format [%s]\n", relativeFileName); } } serverCmd.m_loadTextureResultArguments.m_textureUniqueId = texHandle; serverCmd.m_type = CMD_LOAD_TEXTURE_COMPLETED; } } else { serverCmd.m_type = CMD_LOAD_TEXTURE_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processSaveStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("CMD_SAVE_STATE"); bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_SAVE_STATE_FAILED; btDefaultSerializer* ser = new btDefaultSerializer(); int currentFlags = ser->getSerializationFlags(); ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS); m_data->m_dynamicsWorld->serialize(ser); bParse::btBulletFile* bulletFile = new bParse::btBulletFile((char*)ser->getBufferPointer(), ser->getCurrentBufferSize()); bulletFile->parse(false); if (bulletFile->ok()) { serverCmd.m_type = CMD_SAVE_STATE_COMPLETED; //re-use state if available int reuseStateId = -1; for (int i = 0; i < m_data->m_savedStates.size(); i++) { if (m_data->m_savedStates[i].m_bulletFile == 0) { reuseStateId = i; break; } } SaveStateData sd; sd.m_bulletFile = bulletFile; sd.m_serializer = ser; if (reuseStateId >= 0) { serverCmd.m_saveStateResultArgs.m_stateId = reuseStateId; m_data->m_savedStates[reuseStateId] = sd; } else { serverCmd.m_saveStateResultArgs.m_stateId = m_data->m_savedStates.size(); m_data->m_savedStates.push_back(sd); } } return hasStatus; } bool PhysicsServerCommandProcessor::processRemoveStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("CMD_REMOVE_STATE"); bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_REMOVE_STATE_FAILED; if (clientCmd.m_loadStateArguments.m_stateId >= 0) { if (clientCmd.m_loadStateArguments.m_stateId < m_data->m_savedStates.size()) { SaveStateData& sd = m_data->m_savedStates[clientCmd.m_loadStateArguments.m_stateId]; delete sd.m_bulletFile; delete sd.m_serializer; sd.m_bulletFile = 0; sd.m_serializer = 0; serverCmd.m_type = CMD_REMOVE_STATE_COMPLETED; } } return hasStatus; } bool PhysicsServerCommandProcessor::processRestoreStateCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("CMD_RESTORE_STATE"); bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_RESTORE_STATE_FAILED; btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld); importer->setImporterFlags(eRESTORE_EXISTING_OBJECTS); bool ok = false; if (clientCmd.m_loadStateArguments.m_stateId >= 0) { if (clientCmd.m_loadStateArguments.m_stateId < m_data->m_savedStates.size()) { bParse::btBulletFile* bulletFile = m_data->m_savedStates[clientCmd.m_loadStateArguments.m_stateId].m_bulletFile; if (bulletFile) { ok = importer->convertAllObjects(bulletFile); } } } else { bool found = false; char fileName[1024]; fileName[0] = 0; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); b3AlignedObjectArray buffer; buffer.reserve(1024); if (fileIO) { int fileId = -1; found = fileIO->findResourcePath(clientCmd.m_fileArguments.m_fileName, fileName, 1024); if (found) { fileId = fileIO->fileOpen(fileName, "rb"); } if (fileId >= 0) { int size = fileIO->getFileSize(fileId); if (size > 0) { buffer.resize(size); int actual = fileIO->fileRead(fileId, &buffer[0], size); if (actual != size) { b3Warning("image filesize mismatch!\n"); buffer.resize(0); } else { found = true; } } fileIO->fileClose(fileId); } } if (found && buffer.size()) { ok = importer->loadFileFromMemory(&buffer[0], buffer.size()); } else { b3Error("Error in restoreState: cannot load file %s\n", clientCmd.m_fileArguments.m_fileName); } } delete importer; if (ok) { serverCmd.m_type = CMD_RESTORE_STATE_COMPLETED; } return hasStatus; } bool PhysicsServerCommandProcessor::processLoadBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { BT_PROFILE("CMD_LOAD_BULLET"); bool hasStatus = true; SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_BULLET_LOADING_FAILED; //btBulletWorldImporter* importer = new btBulletWorldImporter(m_data->m_dynamicsWorld); btMultiBodyWorldImporter* importer = new btMultiBodyWorldImporter(m_data->m_dynamicsWorld); bool found = false; CommonFileIOInterface* fileIO = m_data->m_pluginManager.getFileIOInterface(); b3AlignedObjectArray buffer; buffer.reserve(1024); if (fileIO) { char fileName[1024]; int fileId = -1; found = fileIO->findResourcePath(clientCmd.m_fileArguments.m_fileName, fileName, 1024); if (found) { fileId = fileIO->fileOpen(fileName, "rb"); } if (fileId >= 0) { int size = fileIO->getFileSize(fileId); if (size > 0) { buffer.resize(size); int actual = fileIO->fileRead(fileId, &buffer[0], size); if (actual != size) { b3Warning("image filesize mismatch!\n"); buffer.resize(0); } else { found = true; } } fileIO->fileClose(fileId); } } if (found && buffer.size()) { bool ok = importer->loadFileFromMemory(&buffer[0], buffer.size()); if (ok) { int numRb = importer->getNumRigidBodies(); serverStatusOut.m_sdfLoadedArgs.m_numBodies = 0; serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0; for (int i = 0; i < numRb; i++) { btCollisionObject* colObj = importer->getRigidBodyByIndex(i); if (colObj) { btRigidBody* rb = btRigidBody::upcast(colObj); if (rb) { int bodyUniqueId = m_data->m_bodyHandles.allocHandle(); InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(bodyUniqueId); colObj->setUserIndex2(bodyUniqueId); bodyHandle->m_rigidBody = rb; if (serverStatusOut.m_sdfLoadedArgs.m_numBodies < MAX_SDF_BODIES) { serverStatusOut.m_sdfLoadedArgs.m_numBodies++; serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = bodyUniqueId; } b3Notification notification; notification.m_notificationType = BODY_ADDED; notification.m_bodyArgs.m_bodyUniqueId = bodyUniqueId; m_data->m_pluginManager.addNotification(notification); } } } serverCmd.m_type = CMD_BULLET_LOADING_COMPLETED; m_data->m_guiHelper->autogenerateGraphicsObjects(m_data->m_dynamicsWorld); } } return hasStatus; } bool PhysicsServerCommandProcessor::processLoadMJCFCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_LOAD_MJCF"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_MJCF_LOADING_FAILED; const MjcfArgs& mjcfArgs = clientCmd.m_mjcfArguments; if (m_data->m_verboseOutput) { b3Printf("Processed CMD_LOAD_MJCF:%s", mjcfArgs.m_mjcfFileName); } bool useMultiBody = (clientCmd.m_updateFlags & URDF_ARGS_USE_MULTIBODY) ? (mjcfArgs.m_useMultiBody != 0) : true; int flags = CUF_USE_MJCF; if (clientCmd.m_updateFlags & URDF_ARGS_HAS_CUSTOM_URDF_FLAGS) { flags |= clientCmd.m_mjcfArguments.m_flags; } bool completedOk = loadMjcf(mjcfArgs.m_mjcfFileName, bufferServerToClient, bufferSizeInBytes, useMultiBody, flags); if (completedOk) { m_data->m_guiHelper->autogenerateGraphicsObjects(this->m_data->m_dynamicsWorld); serverStatusOut.m_sdfLoadedArgs.m_numBodies = m_data->m_sdfRecentLoadedBodies.size(); serverStatusOut.m_sdfLoadedArgs.m_numUserConstraints = 0; int maxBodies = btMin(MAX_SDF_BODIES, serverStatusOut.m_sdfLoadedArgs.m_numBodies); for (int i = 0; i < maxBodies; i++) { serverStatusOut.m_sdfLoadedArgs.m_bodyUniqueIds[i] = m_data->m_sdfRecentLoadedBodies[i]; } serverStatusOut.m_type = CMD_MJCF_LOADING_COMPLETED; } else { serverStatusOut.m_type = CMD_MJCF_LOADING_FAILED; } return hasStatus; } bool PhysicsServerCommandProcessor::processSaveBulletCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { bool hasStatus = true; BT_PROFILE("CMD_SAVE_BULLET"); SharedMemoryStatus& serverCmd = serverStatusOut; FILE* f = fopen(clientCmd.m_fileArguments.m_fileName, "wb"); if (f) { btDefaultSerializer* ser = new btDefaultSerializer(); int currentFlags = ser->getSerializationFlags(); ser->setSerializationFlags(currentFlags | BT_SERIALIZE_CONTACT_MANIFOLDS); m_data->m_dynamicsWorld->serialize(ser); fwrite(ser->getBufferPointer(), ser->getCurrentBufferSize(), 1, f); fclose(f); serverCmd.m_type = CMD_BULLET_SAVING_COMPLETED; delete ser; return hasStatus; } serverCmd.m_type = CMD_BULLET_SAVING_FAILED; return hasStatus; } bool PhysicsServerCommandProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes) { // BT_PROFILE("processCommand"); int sz = sizeof(SharedMemoryStatus); int sz2 = sizeof(SharedMemoryCommand); bool hasStatus = false; if (m_data->m_commandLogger) { m_data->m_commandLogger->logCommand(clientCmd); } serverStatusOut.m_type = CMD_INVALID_STATUS; serverStatusOut.m_numDataStreamBytes = 0; serverStatusOut.m_dataStream = 0; //consume the command switch (clientCmd.m_type) { case CMD_STATE_LOGGING: { hasStatus = processStateLoggingCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SET_VR_CAMERA_STATE: { hasStatus = processSetVRCameraStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_VR_EVENTS_DATA: { hasStatus = processRequestVREventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_REQUEST_MOUSE_EVENTS_DATA: { hasStatus = processRequestMouseEventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_REQUEST_KEYBOARD_EVENTS_DATA: { hasStatus = processRequestKeyboardEventsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_REQUEST_RAY_CAST_INTERSECTIONS: { hasStatus = processRequestRaycastIntersectionsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_REQUEST_DEBUG_LINES: { hasStatus = processRequestDebugLinesCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_CAMERA_IMAGE_DATA: { hasStatus = processRequestCameraImageCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SYNC_BODY_INFO: { hasStatus = processSyncBodyInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_BODY_INFO: { hasStatus = processRequestBodyInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SAVE_WORLD: { hasStatus = processSaveWorldCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_SDF: { hasStatus = processLoadSDFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_COLLISION_SHAPE: { hasStatus = processCreateCollisionShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_VISUAL_SHAPE: { hasStatus = processCreateVisualShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_MESH_DATA: { hasStatus = processRequestMeshDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_MULTI_BODY: { hasStatus = processCreateMultiBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SET_ADDITIONAL_SEARCH_PATH: { hasStatus = processSetAdditionalSearchPathCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_URDF: { hasStatus = processLoadURDFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_SOFT_BODY: { hasStatus = processLoadSoftBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_SENSOR: { hasStatus = processCreateSensorCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_PROFILE_TIMING: { hasStatus = processProfileTimingCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SEND_DESIRED_STATE: { hasStatus = processSendDesiredStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_COLLISION_INFO: { hasStatus = processRequestCollisionInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_ACTUAL_STATE: { hasStatus = processRequestActualStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_STEP_FORWARD_SIMULATION: { hasStatus = processForwardDynamicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_INTERNAL_DATA: { hasStatus = processRequestInternalDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_CHANGE_DYNAMICS_INFO: { hasStatus = processChangeDynamicsInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_GET_DYNAMICS_INFO: { hasStatus = processGetDynamicsInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS: { hasStatus = processRequestPhysicsSimulationParametersCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SEND_PHYSICS_SIMULATION_PARAMETERS: { hasStatus = processSendPhysicsParametersCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; }; case CMD_INIT_POSE: { hasStatus = processInitPoseCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_RESET_SIMULATION: { hasStatus = processResetSimulationCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_RIGID_BODY: { hasStatus = processCreateRigidBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CREATE_BOX_COLLISION_SHAPE: { //for backward compatibility, CMD_CREATE_BOX_COLLISION_SHAPE is the same as CMD_CREATE_RIGID_BODY hasStatus = processCreateRigidBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_PICK_BODY: { hasStatus = processPickBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_MOVE_PICKED_BODY: { hasStatus = processMovePickedBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REMOVE_PICKING_CONSTRAINT_BODY: { hasStatus = processRemovePickingConstraintCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_AABB_OVERLAP: { hasStatus = processRequestAabbOverlapCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_OPENGL_VISUALIZER_CAMERA: { hasStatus = processRequestOpenGLVisualizeCameraCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CONFIGURE_OPENGL_VISUALIZER: { hasStatus = processConfigureOpenGLVisualizerCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_CONTACT_POINT_INFORMATION: { hasStatus = processRequestContactpointInformationCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CALCULATE_INVERSE_DYNAMICS: { hasStatus = processInverseDynamicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CALCULATE_JACOBIAN: { hasStatus = processCalculateJacobianCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CALCULATE_MASS_MATRIX: { hasStatus = processCalculateMassMatrixCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_APPLY_EXTERNAL_FORCE: { hasStatus = processApplyExternalForceCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REMOVE_BODY: { hasStatus = processRemoveBodyCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_USER_CONSTRAINT: { hasStatus = processCreateUserConstraintCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CALCULATE_INVERSE_KINEMATICS: { if (clientCmd.m_calculateInverseKinematicsArguments.m_numEndEffectorLinkIndices == 1) { hasStatus = processCalculateInverseKinematicsCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); } else { hasStatus = processCalculateInverseKinematicsCommand2(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); } break; } case CMD_REQUEST_VISUAL_SHAPE_INFO: { hasStatus = processRequestVisualShapeInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_COLLISION_SHAPE_INFO: { hasStatus = processRequestCollisionShapeInfoCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_UPDATE_VISUAL_SHAPE: { hasStatus = processUpdateVisualShapeCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CHANGE_TEXTURE: { hasStatus = processChangeTextureCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_TEXTURE: { hasStatus = processLoadTextureCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_RESTORE_STATE: { hasStatus = processRestoreStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SAVE_STATE: { hasStatus = processSaveStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REMOVE_STATE: { hasStatus = processRemoveStateCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_BULLET: { hasStatus = processLoadBulletCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SAVE_BULLET: { hasStatus = processSaveBulletCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_LOAD_MJCF: { hasStatus = processLoadMJCFCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_USER_DEBUG_DRAW: { hasStatus = processUserDebugDrawCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_CUSTOM_COMMAND: { hasStatus = processCustomCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_SYNC_USER_DATA: { hasStatus = processSyncUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REQUEST_USER_DATA: { hasStatus = processRequestUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_ADD_USER_DATA: { hasStatus = processAddUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_REMOVE_USER_DATA: { hasStatus = processRemoveUserDataCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } case CMD_COLLISION_FILTER: { hasStatus = processCollisionFilterCommand(clientCmd, serverStatusOut, bufferServerToClient, bufferSizeInBytes); break; } default: { BT_PROFILE("CMD_UNKNOWN"); b3Error("Unknown command encountered"); SharedMemoryStatus& serverCmd = serverStatusOut; serverCmd.m_type = CMD_UNKNOWN_COMMAND_FLUSHED; hasStatus = true; } }; return hasStatus; } void PhysicsServerCommandProcessor::syncPhysicsToGraphics() { m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld); } void PhysicsServerCommandProcessor::syncPhysicsToGraphics2() { m_data->m_guiHelper->syncPhysicsToGraphics2(m_data->m_dynamicsWorld); } void PhysicsServerCommandProcessor::renderScene(int renderFlags) { if (m_data->m_guiHelper) { if (0 == (renderFlags & COV_DISABLE_SYNC_RENDERING)) { m_data->m_guiHelper->syncPhysicsToGraphics(m_data->m_dynamicsWorld); } m_data->m_guiHelper->render(m_data->m_dynamicsWorld); } } void PhysicsServerCommandProcessor::physicsDebugDraw(int debugDrawFlags) { if (m_data->m_dynamicsWorld) { if (m_data->m_dynamicsWorld->getDebugDrawer()) { m_data->m_dynamicsWorld->getDebugDrawer()->setDebugMode(debugDrawFlags); m_data->m_dynamicsWorld->debugDrawWorld(); #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { for (int i = 0; i < deformWorld->getSoftBodyArray().size(); i++) { btSoftBody* psb = (btSoftBody*)deformWorld->getSoftBodyArray()[i]; if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe))) { //btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer()); btSoftBodyHelpers::Draw(psb, m_data->m_dynamicsWorld->getDebugDrawer(),deformWorld->getDrawFlags()); } } } } { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { for (int i = 0; i < softWorld->getSoftBodyArray().size(); i++) { btSoftBody* psb = (btSoftBody*)softWorld->getSoftBodyArray()[i]; if (m_data->m_dynamicsWorld->getDebugDrawer() && !(m_data->m_dynamicsWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe))) { //btSoftBodyHelpers::DrawFrame(psb,m_data->m_dynamicsWorld->getDebugDrawer()); btSoftBodyHelpers::Draw(psb, m_data->m_dynamicsWorld->getDebugDrawer(),softWorld->getDrawFlags()); } } } } #endif } } } struct MyResultCallback : public btCollisionWorld::ClosestRayResultCallback { MyResultCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld) : btCollisionWorld::ClosestRayResultCallback(rayFromWorld, rayToWorld) { } virtual bool needsCollision(btBroadphaseProxy* proxy0) const { return true; } }; bool PhysicsServerCommandProcessor::pickBody(const btVector3& rayFromWorld, const btVector3& rayToWorld) { if (m_data->m_dynamicsWorld == 0) return false; //btCollisionWorld::ClosestRayResultCallback rayCallback(rayFromWorld, rayToWorld); MyResultCallback rayCallback(rayFromWorld, rayToWorld); rayCallback.m_flags |= btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest; m_data->m_dynamicsWorld->rayTest(rayFromWorld, rayToWorld, rayCallback); if (rayCallback.hasHit()) { btVector3 pickPos = rayCallback.m_hitPointWorld; btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject); if (body) { //other exclusions? if (!(body->isStaticObject() || body->isKinematicObject())) { m_data->m_pickedBody = body; m_data->m_savedActivationState = body->getActivationState(); m_data->m_pickedBody->setActivationState(DISABLE_DEACTIVATION); //printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ()); btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos; btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body, localPivot); m_data->m_dynamicsWorld->addConstraint(p2p, true); m_data->m_pickedConstraint = p2p; btScalar mousePickClamping = 30.f; p2p->m_setting.m_impulseClamp = mousePickClamping; //very weak constraint for picking p2p->m_setting.m_tau = 0.001f; } } else { btMultiBodyLinkCollider* multiCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(rayCallback.m_collisionObject); if (multiCol && multiCol->m_multiBody) { m_data->m_prevCanSleep = multiCol->m_multiBody->getCanSleep(); multiCol->m_multiBody->setCanSleep(false); btVector3 pivotInA = multiCol->m_multiBody->worldPosToLocal(multiCol->m_link, pickPos); btMultiBodyPoint2Point* p2p = new btMultiBodyPoint2Point(multiCol->m_multiBody, multiCol->m_link, 0, pivotInA, pickPos); //if you add too much energy to the system, causing high angular velocities, simulation 'explodes' //see also http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=949 //so we try to avoid it by clamping the maximum impulse (force) that the mouse pick can apply //it is not satisfying, hopefully we find a better solution (higher order integrator, using joint friction using a zero-velocity target motor with limited force etc?) btScalar scaling = 10; p2p->setMaxAppliedImpulse(2 * scaling); btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld; world->addMultiBodyConstraint(p2p); m_data->m_pickingMultiBodyPoint2Point = p2p; } } // pickObject(pickPos, rayCallback.m_collisionObject); m_data->m_oldPickingPos = rayToWorld; m_data->m_hitPos = pickPos; m_data->m_oldPickingDist = (pickPos - rayFromWorld).length(); // printf("hit !\n"); //add p2p } return false; } bool PhysicsServerCommandProcessor::movePickedBody(const btVector3& rayFromWorld, const btVector3& rayToWorld) { if (m_data->m_pickedBody && m_data->m_pickedConstraint) { btPoint2PointConstraint* pickCon = static_cast(m_data->m_pickedConstraint); if (pickCon) { //keep it at the same picking distance btVector3 dir = rayToWorld - rayFromWorld; dir.normalize(); dir *= m_data->m_oldPickingDist; btVector3 newPivotB = rayFromWorld + dir; pickCon->setPivotB(newPivotB); } } if (m_data->m_pickingMultiBodyPoint2Point) { //keep it at the same picking distance btVector3 dir = rayToWorld - rayFromWorld; dir.normalize(); dir *= m_data->m_oldPickingDist; btVector3 newPivotB = rayFromWorld + dir; m_data->m_pickingMultiBodyPoint2Point->setPivotInB(newPivotB); } return false; } void PhysicsServerCommandProcessor::removePickingConstraint() { if (m_data->m_pickedConstraint) { m_data->m_dynamicsWorld->removeConstraint(m_data->m_pickedConstraint); delete m_data->m_pickedConstraint; m_data->m_pickedConstraint = 0; m_data->m_pickedBody->forceActivationState(m_data->m_savedActivationState); m_data->m_pickedBody = 0; } if (m_data->m_pickingMultiBodyPoint2Point) { m_data->m_pickingMultiBodyPoint2Point->getMultiBodyA()->setCanSleep(m_data->m_prevCanSleep); btMultiBodyDynamicsWorld* world = (btMultiBodyDynamicsWorld*)m_data->m_dynamicsWorld; world->removeMultiBodyConstraint(m_data->m_pickingMultiBodyPoint2Point); delete m_data->m_pickingMultiBodyPoint2Point; m_data->m_pickingMultiBodyPoint2Point = 0; } } void PhysicsServerCommandProcessor::enableCommandLogging(bool enable, const char* fileName) { if (enable) { if (0 == m_data->m_commandLogger) { m_data->m_commandLogger = new CommandLogger(fileName); } } else { if (0 != m_data->m_commandLogger) { delete m_data->m_commandLogger; m_data->m_commandLogger = 0; } } } void PhysicsServerCommandProcessor::replayFromLogFile(const char* fileName) { CommandLogPlayback* pb = new CommandLogPlayback(fileName); m_data->m_logPlayback = pb; } int gDroppedSimulationSteps = 0; int gNumSteps = 0; double gDtInSec = 0.f; double gSubStep = 0.f; void PhysicsServerCommandProcessor::enableRealTimeSimulation(bool enableRealTimeSim) { m_data->m_useRealTimeSimulation = enableRealTimeSim; } bool PhysicsServerCommandProcessor::isRealTimeSimulationEnabled() const { return m_data->m_useRealTimeSimulation; } void PhysicsServerCommandProcessor::stepSimulationRealTime(double dtInSec, const struct b3VRControllerEvent* vrControllerEvents, int numVRControllerEvents, const struct b3KeyboardEvent* keyEvents, int numKeyEvents, const struct b3MouseEvent* mouseEvents, int numMouseEvents) { m_data->m_vrControllerEvents.addNewVREvents(vrControllerEvents, numVRControllerEvents); m_data->m_pluginManager.addEvents(vrControllerEvents, numVRControllerEvents, keyEvents, numKeyEvents, mouseEvents, numMouseEvents); for (int i = 0; i < m_data->m_stateLoggers.size(); i++) { if (m_data->m_stateLoggers[i]->m_loggingType == STATE_LOGGING_VR_CONTROLLERS) { VRControllerStateLogger* vrLogger = (VRControllerStateLogger*)m_data->m_stateLoggers[i]; vrLogger->m_vrEvents.addNewVREvents(vrControllerEvents, numVRControllerEvents); } } for (int ii = 0; ii < numMouseEvents; ii++) { const b3MouseEvent& event = mouseEvents[ii]; bool found = false; //search a matching one first, otherwise add new event for (int e = 0; e < m_data->m_mouseEvents.size(); e++) { if (event.m_eventType == m_data->m_mouseEvents[e].m_eventType) { if (event.m_eventType == MOUSE_MOVE_EVENT) { m_data->m_mouseEvents[e].m_mousePosX = event.m_mousePosX; m_data->m_mouseEvents[e].m_mousePosY = event.m_mousePosY; found = true; } else if ((event.m_eventType == MOUSE_BUTTON_EVENT) && event.m_buttonIndex == m_data->m_mouseEvents[e].m_buttonIndex) { m_data->m_mouseEvents[e].m_buttonState |= event.m_buttonState; if (event.m_buttonState & eButtonIsDown) { m_data->m_mouseEvents[e].m_buttonState |= eButtonIsDown; } else { m_data->m_mouseEvents[e].m_buttonState &= ~eButtonIsDown; } found = true; } } } if (!found) { m_data->m_mouseEvents.push_back(event); } } for (int i = 0; i < numKeyEvents; i++) { const b3KeyboardEvent& event = keyEvents[i]; bool found = false; //search a matching one first, otherwise add new event for (int e = 0; e < m_data->m_keyboardEvents.size(); e++) { if (event.m_keyCode == m_data->m_keyboardEvents[e].m_keyCode) { m_data->m_keyboardEvents[e].m_keyState |= event.m_keyState; if (event.m_keyState & eButtonIsDown) { m_data->m_keyboardEvents[e].m_keyState |= eButtonIsDown; } else { m_data->m_keyboardEvents[e].m_keyState &= ~eButtonIsDown; } found = true; } } if (!found) { m_data->m_keyboardEvents.push_back(event); } } if (gResetSimulation) { resetSimulation(); gResetSimulation = false; } if (gVRTrackingObjectUniqueId >= 0) { InternalBodyHandle* bodyHandle = m_data->m_bodyHandles.getHandle(gVRTrackingObjectUniqueId); if (bodyHandle && bodyHandle->m_multiBody) { // gVRTrackingObjectTr = bodyHandle->m_multiBody->getBaseWorldTransform(); if (gVRTrackingObjectUniqueId >= 0) { gVRTrackingObjectTr.setOrigin(bodyHandle->m_multiBody->getBaseWorldTransform().getOrigin()); gVRTeleportPos1 = gVRTrackingObjectTr.getOrigin(); } if (gVRTrackingObjectFlag & VR_CAMERA_TRACK_OBJECT_ORIENTATION) { gVRTrackingObjectTr.setBasis(bodyHandle->m_multiBody->getBaseWorldTransform().getBasis()); gVRTeleportOrn = gVRTrackingObjectTr.getRotation(); } } } if ((m_data->m_useRealTimeSimulation) && m_data->m_guiHelper) { int maxSteps = m_data->m_numSimulationSubSteps + 3; if (m_data->m_numSimulationSubSteps) { gSubStep = m_data->m_physicsDeltaTime / m_data->m_numSimulationSubSteps; } else { gSubStep = m_data->m_physicsDeltaTime; } btScalar deltaTimeScaled = dtInSec * simTimeScalingFactor; int numSteps = m_data->m_dynamicsWorld->stepSimulation(deltaTimeScaled, maxSteps, gSubStep); m_data->m_simulationTimestamp += deltaTimeScaled; gDroppedSimulationSteps += numSteps > maxSteps ? numSteps - maxSteps : 0; if (numSteps) { gNumSteps = numSteps; gDtInSec = dtInSec; addBodyChangedNotifications(); } } } b3Notification createTransformChangedNotification(int bodyUniqueId, int linkIndex, const btCollisionObject* colObj) { b3Notification notification; notification.m_notificationType = TRANSFORM_CHANGED; notification.m_transformChangeArgs.m_bodyUniqueId = bodyUniqueId; notification.m_transformChangeArgs.m_linkIndex = linkIndex; const btTransform& tr = colObj->getWorldTransform(); notification.m_transformChangeArgs.m_worldPosition[0] = tr.getOrigin()[0]; notification.m_transformChangeArgs.m_worldPosition[1] = tr.getOrigin()[1]; notification.m_transformChangeArgs.m_worldPosition[2] = tr.getOrigin()[2]; notification.m_transformChangeArgs.m_worldRotation[0] = tr.getRotation()[0]; notification.m_transformChangeArgs.m_worldRotation[1] = tr.getRotation()[1]; notification.m_transformChangeArgs.m_worldRotation[2] = tr.getRotation()[2]; notification.m_transformChangeArgs.m_worldRotation[3] = tr.getRotation()[3]; const btVector3& scaling = colObj->getCollisionShape()->getLocalScaling(); notification.m_transformChangeArgs.m_localScaling[0] = scaling[0]; notification.m_transformChangeArgs.m_localScaling[1] = scaling[1]; notification.m_transformChangeArgs.m_localScaling[2] = scaling[2]; return notification; } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD b3Notification createSoftBodyChangedNotification(int bodyUniqueId, int linkIndex) { b3Notification notification; notification.m_notificationType = SOFTBODY_CHANGED; notification.m_softBodyChangeArgs.m_bodyUniqueId = bodyUniqueId; notification.m_softBodyChangeArgs.m_linkIndex = linkIndex; return notification; } #endif void PhysicsServerCommandProcessor::addBodyChangedNotifications() { b3Notification notification; notification.m_notificationType = SIMULATION_STEPPED; m_data->m_pluginManager.addNotification(notification); b3AlignedObjectArray usedHandles; m_data->m_bodyHandles.getUsedHandles(usedHandles); for (int i = 0; i < usedHandles.size(); i++) { int bodyUniqueId = usedHandles[i]; InternalBodyData* bodyData = m_data->m_bodyHandles.getHandle(bodyUniqueId); if (!bodyData) { continue; } if (bodyData->m_multiBody) { btMultiBody* mb = bodyData->m_multiBody; if (mb->getBaseCollider()->isActive()) { m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, -1, mb->getBaseCollider())); } for (int linkIndex = 0; linkIndex < mb->getNumLinks(); linkIndex++) { if (mb->getLinkCollider(linkIndex)->isActive()) { m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, linkIndex, mb->getLinkCollider(linkIndex))); } } } else if (bodyData->m_rigidBody && bodyData->m_rigidBody->isActive()) { m_data->m_pluginManager.addNotification(createTransformChangedNotification(bodyUniqueId, -1, bodyData->m_rigidBody)); } #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD else if (bodyData->m_softBody) { int linkIndex = -1; m_data->m_pluginManager.addNotification(createSoftBodyChangedNotification(bodyUniqueId, linkIndex)); } #endif } } void PhysicsServerCommandProcessor::resetSimulation(int flags) { //clean up all data m_data->m_remoteSyncTransformTime = m_data->m_remoteSyncTransformInterval; m_data->m_simulationTimestamp = 0; m_data->m_cachedVUrdfisualShapes.clear(); #ifndef SKIP_SOFT_BODY_MULTI_BODY_DYNAMICS_WORLD if (m_data && m_data->m_dynamicsWorld) { { btDeformableMultiBodyDynamicsWorld* deformWorld = getDeformableWorld(); if (deformWorld) { deformWorld ->getWorldInfo().m_sparsesdf.Reset(); } } { btSoftMultiBodyDynamicsWorld* softWorld = getSoftWorld(); if (softWorld) { softWorld->getWorldInfo().m_sparsesdf.Reset(); } } } #endif if (m_data && m_data->m_guiHelper) { m_data->m_guiHelper->removeAllGraphicsInstances(); m_data->m_guiHelper->removeAllUserDebugItems(); } if (m_data) { if (m_data->m_pluginManager.getRenderInterface()) { m_data->m_pluginManager.getRenderInterface()->resetAll(); } if (m_data->m_pluginManager.getCollisionInterface()) { m_data->m_pluginManager.getCollisionInterface()->resetAll(); } for (int i = 0; i < m_data->m_savedStates.size(); i++) { delete m_data->m_savedStates[i].m_bulletFile; delete m_data->m_savedStates[i].m_serializer; } m_data->m_savedStates.clear(); } removePickingConstraint(); deleteDynamicsWorld(); createEmptyDynamicsWorld(flags); m_data->m_bodyHandles.exitHandles(); m_data->m_bodyHandles.initHandles(); m_data->m_userCollisionShapeHandles.exitHandles(); m_data->m_userCollisionShapeHandles.initHandles(); m_data->m_userDataHandles.exitHandles(); m_data->m_userDataHandles.initHandles(); m_data->m_userDataHandleLookup.clear(); b3Notification notification; notification.m_notificationType = SIMULATION_RESET; m_data->m_pluginManager.addNotification(notification); syncPhysicsToGraphics2(); } void PhysicsServerCommandProcessor::setTimeOut(double /*timeOutInSeconds*/) { } const btVector3& PhysicsServerCommandProcessor::getVRTeleportPosition() const { return gVRTeleportPos1; } void PhysicsServerCommandProcessor::setVRTeleportPosition(const btVector3& vrTeleportPos) { gVRTeleportPos1 = vrTeleportPos; } const btQuaternion& PhysicsServerCommandProcessor::getVRTeleportOrientation() const { return gVRTeleportOrn; } void PhysicsServerCommandProcessor::setVRTeleportOrientation(const btQuaternion& vrTeleportOrn) { gVRTeleportOrn = vrTeleportOrn; }